Linear Algebra II Exercise Class

Eric Ceglie

11. March 2024

1 Exercise Sheet 15

Exercise 6 A complex number $\zeta \in \mathbb{C}$ is said to be a n-th root of unity if $\zeta^{n}=1$ and ζ is said to be a primitive n-th root of unity if additionally

$$
\forall 1 \leq m<n: \quad \zeta^{m} \neq 1
$$

The n-th cyclotomic polynomial (Kreisteilungspolynom) $\Phi_{n}(z) \in \mathbb{Z}[z]$ is the unique polynomial of maximal degree with leading coefficient 1 that is a divisor of $z^{n}-1$ and coprime to all $z^{d}-1$ for $1 \leq d<n$.
Solution. See https://metaphor.ethz.ch/x/2024/fs/401-1152-02L/ex/l15.pdf.

2 Eigenspaces

Let V be a K-vector space.
Definition 2.1. Let $T: V \rightarrow V$ be a linear map and λ an eigenvalue of T. The eigenspace of λ is given by

$$
E_{\lambda}:=\{v \in V \mid T v=\lambda v\}=\operatorname{ker}\left(T-\lambda \cdot \mathrm{id}_{V}\right)
$$

Exercise 2.2. Let V be a \mathbb{R}-vector space and $T: V \rightarrow V$ a linear map with $T^{2}=\mathrm{id}_{V}$. Prove that

$$
V=E_{1} \oplus E_{-1}
$$

holds.
Proof. Let $v \in V$ be arbitrary. Then

$$
v=\frac{v+T v}{2}+\frac{v-T v}{2}
$$

holds and

$$
T\left(\frac{v+T v}{2}\right)=\frac{T v+T^{2} v}{2}=\frac{T v+v}{2}
$$

which implies $\frac{v+T v}{2} \in E_{1}$ and similarly $\frac{v-T v}{2} \in E_{-1}$. This proves $V=E_{1}+E_{-1}$. Since for any two eigenspaces we have $E_{1} \cap E_{-1}=\{0\}$, this concludes the proof.

Remark 2.3. Observe that Exercise 2.2 is a generalization of the fact that any function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be uniquely written as the sum of an even and an odd function.
Indeed, let V be the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and apply the previous exercise to the map

$$
T: V \rightarrow V, f \mapsto \tilde{f}
$$

where we set $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(-x)$. Clearly $T^{2}=\mathrm{id}_{V}$ and the eigenspaces E_{1} and E_{-1} precisely correspond to the even and odd functions.

3 Algebraic and Geometric Multiplicity

Let V be finite-dimensional.

3.1 Recap

Definition 3.1. Let $T: V \rightarrow V$ be a linear map and λ an eigenvalue of T.

- The geometric multiplicity of λ is defined by $g_{\lambda}:=\operatorname{dim} E_{\lambda}$.
- The algebraic multiplicity of λ is defined by $a_{\lambda}:=\max \left\{k \in \mathbb{N} \mid(\lambda-x)^{k}\right.$ divides $\left.\chi_{T}(x)\right\}$.

Recall 3.2. We always have $g_{\lambda} \leq a_{\lambda}$. Moreover, if $\lambda_{1}, \ldots, \lambda_{k}$ are all eigenvalues of T then T is diagonalizable if and only if $g_{\lambda_{i}}=a_{\lambda_{i}}$ holds for all $1 \leq i \leq k$. In this case, we also have $V=\bigoplus_{i=1}^{k} E_{\lambda_{i}}$.

Exercise 3.3. Compute the determinant of the matrix

$$
M:=\left(\begin{array}{cccc}
2 & 1 & \ldots & 1 \\
1 & 2 & \ldots & \vdots \\
\vdots & \vdots & \ddots & 1 \\
1 & \ldots & 1 & 2
\end{array}\right) \in M_{n \times n}(\mathbb{Q})
$$

Solution. Define

$$
A:=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & \ddots & \vdots \\
1 & \ldots & 1
\end{array}\right)
$$

and observe that $M=A+I_{n}$, so

$$
\operatorname{det}(M)=\operatorname{det}\left(A+I_{n}\right)=\chi_{A}(-1)
$$

Hence it suffices to determine χ_{A}. To this end, observe that the vectors

$$
\left(\begin{array}{c}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
-1 \\
\vdots \\
0
\end{array}\right), \quad \cdots, \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
-1
\end{array}\right)
$$

are $n-1$ linearly independent eigenvectors of A to the eigenvalue 0 . Hence we have

$$
a_{0} \geq g_{0}=\operatorname{dim} E_{0} \geq n-1
$$

which by definition of the algebraic multiplicity implies

$$
(-x)^{n-1} \mid \chi_{A}(x) .
$$

Moreover, the vector $(1, \ldots, 1)^{T}$ is an eigenvector of A to the eigenvalue n, so by similar reasoning we have

$$
n-x \mid \chi_{A}(x)
$$

Now since $\operatorname{deg}\left(\chi_{A}\right)=n$ implies

$$
\chi_{A}(x)=(-x)^{n-1}(n-x)
$$

and thus we arrive at

$$
\operatorname{det}(M)=\chi_{A}(-1)=n+1
$$

