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1 Inner Products and Adjoints

Definition 1.1. Let V be an arbitrary inner product space and T : V → V a linear map. T

is called unitary if T ∗T = TT ∗ = idV holds.

1.1 Exercises

Exercise 1.2. Let V be an arbitrary inner product space and T : V → V linear. Prove that

T is unitary if and only if T is a surjective isometry.1

Proof. “=⇒”. Assume that T is unitary, so by definition we have T ∗T = TT ∗ = idV . Then

T is surjective because TT ∗V = idV (V ) = V . Moreover, for any v ∈ V we have

∥v∥2 = ⟨v, v⟩ = ⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ = ∥Tv∥2,

so T is also an isometry.

“⇐=”. Assume that T is a surjective isometry. Since T is an isometry, we have

∀v, w ∈ V : ⟨Tv, Tw⟩ = ⟨v, w⟩

by lemma 18.1.4. from lecture. Hence for any v, w ∈ V we

⟨v, w⟩ = ⟨T ∗Tv,w⟩
1In lecture, you saw that the situation simplifies if dim(V ) < ∞.
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and taking w = v − T ∗Tv implies

∥v − T ∗Tv∥ = 0.

This proves T ∗T = idV .

Now v ∈ V be arbitrary and by surjectivity of T choose some w ∈ V with Tw = v. Then we

have

w = T ∗Tw = T ∗v

and thus multiplying by T yields,

v = Tw = TT ∗v

which proves TT ∗ = idV , so T is unitary.

Exercise 1.3. Fix an integer n ≥ 1 and define

Pn := {f : Z → C | ∀k ∈ Z : f(k + n) = f(k)}.

(a) Show that Pn is a subspace of the C-vector space of functions f : Z → C.

(b) Show that

⟨f, g⟩ := 1

n

n−1∑
k=0

f(k)g(k)

defines an inner product on Pn.

(c) For every integer 0 ≤ j < n define

ej(k) := e
2πij
n

k

for k ∈ Z. Show that e1, . . . , en is an orthonormal basis of Pn.

(d) For any f ∈ Pn, define

f̂ : Z → C

by

f̂(l) :=
1√
n

n−1∑
k=0

f(k)e−
2πik
n

l.
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Show that f̂ ∈ Pn and that the map

F : Pn → Pn, f 7→ f̂

is linear.

(e) Compute the adjoint of F . If F self-adjoint, normal or unitary?

Solution.

(a) This is just a formal verification.

(b) Proof. Linearity in the first component and anti-symmetry are immediate. For the last

axiom, observe that for any f ∈ Pn we have

⟨f, f⟩ = 1

n

n−1∑
k=0

|f(k)|2 ≥ 0,

where equality holds if and only if there exists some 0 ≤ k < n with f(k) ̸= 0. But since

f is n-periodic, this is equivalent to f = 0.

(c) Observe that for any 0 ≤ j < n and k ∈ Z we have

ej(k + n) = e
2πij
n

(k+n) = e
2πij
n

ke2πij = e
2πij
n

k = ej(k),

so we have ej ∈ Pn. Moreover, for 0 ≤ j, l < n we have

⟨ej , el⟩ =
1

n

n−1∑
k=0

e
2πij
n

ke−
2πil
n

k

=
1

n

n−1∑
k=0

e
2πik
n

(j−l)

=

1 if j = l,

1
n
1−(e

2πik
n (j−l))n

1−e
2πik
n (j−l)

= 0 if j ̸= l,

which proves that e1, . . . , en forms an orthonormal system, in particular these n vectors

are linearly independent. Now since dim(Pn) = n holds,2 this proves that e1, . . . , en

indeed forms an orthonormal basis of Pn.

2One may establish this for example by explicitly writing down an isomorphism Pn
∼= Cn.
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(d) This is again a formal verification.

(e) Observe that for any two f, g ∈ Pn we have

⟨F(f), g⟩ = 1

n

n−1∑
k=0

f̂(k)g(k)

=
1

n

n−1∑
k=0

(
1√
n

n−1∑
l=0

f(l)e−
2πil
n

k

)
g(k)

=
1

n

n−1∑
l=0

f(l)
1√
n

n−1∑
k=0

e
2πik
n

lg(k).

Hence if we define

g̃(l) :=
1√
n

n−1∑
k=0

g(k)e
2πik
n

l

then the adjoint of F is given by

F∗g = g̃.

Note that this proves that F is unitary. Indeed, we have

F∗Ff(l) = F∗f̂(l)

=
1√
n

n−1∑
k=0

f̂(k)e
2πik
n

l

=
1√
n

n−1∑
k=0

1√
n

n−1∑
j=0

f(j)e−
2πij
n

ke
2πik
n

l

=
1

n

n−1∑
j=0

f(j)
n−1∑
k=0

e
2πik
n

(l−j)

︸ ︷︷ ︸
=n δl,j

=
n−1∑
j=0

f(j)δl,j = f(l)

by the same computation as in (c). This proves F∗F = idPn and thus F is unitary since

Pn is finite-dimensional.
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