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1 The Minimal Polynomial

1.1 Recap and Some Theory

Let V be a K-vector space and T : V → V a linear map.

Theorem 1.1. For every monic polynomial φ ∈ K[x] the following are equivalent:

• φ(T ) = 0 and for all ψ ∈ K[x] with ψ(T ) = 0 we have φ | ψ,

• φ(T ) = 0 and for all ψ ∈ K[x]∖ {0} with ψ(T ) = 0 we have degφ ≤ degψ.

Moreover, such a polynomial is uniquely determined, called the minimal polynomial of T denoted by

mT .

Theorem 1.2. If dimK(V ) <∞ then the minimal polynomial mT always exists.

Proof idea. Recall that if n := dimK(V ) <∞ then

EndK(V ) ∼=Mn×n(K),

so dimK(EndK(V )) = n2 < ∞. Hence T 0, T, T 2, . . . , Tn2

are linearly independent, which provides us

with a polynomial φ ∈ K[x] satisfying φ(T ) = 0. Taking the minimal monic polynomial with this

property yields the minimal polynomial. ::

Example 1.3. Note that in general the minimal polynomial might not exist. The following will

provide an explanation for this fact.

Proposition 1.4. Let φ ∈ K[x] be arbitrary with φ(T ) = 0. Then for every eigenvalue λ ∈ K of T

we have φ(λ) = 0.
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Proof. Let λ ∈ K be an eigenvalue of T and v ∈ V ∖ {0} a corresponding eigenvector. Now recall that

φ(T ) = 0 = 0EndK(V ) is a map, namely the map given by v 7→ 0. Now write φ(x) =
∑m

k=0 akx
k for

ak ∈ K. Then

0 = 0EndK(V )(v) = φ(T )(v)

=

(
m∑

k=0

akT
k

)
(v) =

m∑
k=0

akT
k(v)

=

m∑
k=0

akλ
kv = φ(λ)v.

Since v ̸= 0 this implies φ(λ) = 0.

Corollary 1.5. An endomorphism of an infinite-dimensional vector space with infinitely many differ-

ent eigenvalues has no minimal polynomial.

Proof. As by definition we require mT (T ) = 0 for the minimal polynomial and every polynomial has

only a finite number of roots, the claim follows from Proposition 1.4.

Example 1.6. With Corollary 1.5 we now know how to find an endomorphism for which its minimal

polynomial does not exist.

Consider the vector space of real-valued sequences V := RN and the linear map

T : V → V, (xn)n 7→ (nxn)n.

Then every n ∈ N is an eigenvalue and thus the minimal polynomial of T does not exist by Corollary

1.5.

Another interesting example is the derivative operator

D : R[x] → R[x], f 7→ f ′.

If there was a polynomial φ ∈ R[x] with φ(D) = 0 then all polynomials would be solutions to the same

linear differential equation with constant coefficients given by

φ(D)(y) = 0,

which is clearly not possible.

Exercise 1.7. Let

A :=

0 −2 −2

1 3 1

0 0 2


.
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(a) Find the characteristic polynomial χA.

(b) Find the minimal polynomial mA.

(c) Compute 2A5 − 3A3 +A2 − 7I3.

Solution.

(a) We compute

χA(x) = det(xI3 −A) = det

 x 2 2

−1 x− 3 −1

0 0 x− 2


= (x2 − 3x+ 2)(x− 2) = (x− 1)(x− 2)2.

(b) Observe that since mA | χA part (a) implies that we only have two options for the minimal

polynomial, namely

(x− 1)(x− 2) or (x− 1)(x− 2)2.

Since

(A− I3)(A− 2I3) =

−1 −2 −2

1 2 1

0 0 1


−2 −2 −2

1 1 1

0 0 0

 =

0 0 0

0 0 0

0 0 0


we get mA(x) = (x− 1)(x− 2).

(c) Note that by part (b) we know that

0 = (A− 1)(A− 2) = A2 − 3A+ 2I3,

which implies

A2 = 3A− 2I3.
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This allows compute

2A5 − 3A3 +A2 − 7I3 = 2AA2A2 − 3AA2 +A2 − 7I3

= 2A(3A− 2I3)
2 − 3A(3A− 2I3) + (3A− 2I3)− 7I3

= 2A(9A2 − 12A+ 4I3)− 3(3A2 − 2A) + 3A− 9I3

= 2A(9(3A− 2I3)− 12A+ 4I3)− 3(3(3A− 2I3)− 2A) + 3A− 9I3

= 2A(15A− 14I3)− 21A+ 18I3 + 3A− 9I3

= 30A2 − 28A− 18A+ 9I3

= 30(3A− 2I3)− 46A+ 9I3

= 90A− 60I3 − 46A+ 9I3

= 44A− 51I3

=

 0 −88 −88

44 132 44

0 0 88

−

51 0 0

0 51 0

0 0 51

 =

−51 −88 −88

44 81 44

0 0 37

 .

Exercise 1.8. Show that every matrix A ∈ Mn×n(K) with minimal polynomial χA(x) = xn is

nilpotent, i.e. ∃m ∈ N : Am = 0.

Proof. The theorem of Cayley-Hamilton immediately implies An = χA(A) = 0.

2 Jordan Normal Form

Let V be a K-vector space over an algebraically closed field K.

2.1 Recap

Theorem 2.1. Let T : V → V be a linear map. Then there exists a basis B of V such that

[T ]BB =


Jn1

(α1)

Jn2
(α2)

. . .

Jnk
(αk)


for n1, . . . , nk ≥ 1 with n1 + . . .+ nk = n and α1, . . . , αk ∈ K. If λ ∈ K is an eigenvalue of T then

gλ = |{1 ≤ j ≤ k | αk = λ}|

holds for the geometric multiplicity of λ. Moreover, the minimal polynomial of T is given by

mT (x) =
∏
λ∈K

eigenvalue

(x− λ)s(λ), (1)

4



Linear Algebra II
Exercise Class Eric Ceglie

where s(λ) := max{nj | 1 ≤ j ≤ k : αj = k} is the size of the biggest Jordanblock corresponding to λ.

2.2 Exercises

Exercise 2.2. Recall that a matrix A ∈ Mn×n(K) is called idempotent if A2 = A holds. Show that

every idempotent matrix is diagonalizable without directly using the concept of eigenvectors.

Proof. By assumption we have A2 −A = 0 and thus mA | x(x− 1) for the minimal polynomial. Hence

the minimal polynomial factors into linear factors with multiplicity 1 and roots in {0, 1}, so using (1)

and Theorem 2.1 A is diagonalizable with values in {0, 1} on the diagonal.
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