Linear Algebra II Exercise Class

Eric Ceglie

18. March 2024

1 The Minimal Polynomial

1.1 Recap and Some Theory

Let V be a $K\text{-vector space and }T:V\to V$ a linear map.

Theorem 1.1. For every monic polynomial $\varphi \in K[x]$ the following are equivalent:

- $\varphi(T) = 0$ and for all $\psi \in K[x]$ with $\psi(T) = 0$ we have $\varphi \mid \psi$,
- $\varphi(T) = 0$ and for all $\psi \in K[x] \setminus \{0\}$ with $\psi(T) = 0$ we have $\deg \varphi \leq \deg \psi$.

Moreover, such a polynomial is uniquely determined, called the minimal polynomial of T denoted by m_T .

Theorem 1.2. If $\dim_K(V) < \infty$ then the minimal polynomial m_T always exists.

PROOF IDEA. Recall that if $n := \dim_K(V) < \infty$ then

$$\operatorname{End}_K(V) \cong M_{n \times n}(K),$$

so $\dim_K(\operatorname{End}_K(V)) = n^2 < \infty$. Hence $T^0, T, T^2, \ldots, T^{n^2}$ are linearly independent, which provides us with a polynomial $\varphi \in K[x]$ satisfying $\varphi(T) = 0$. Taking the minimal monic polynomial with this property yields the minimal polynomial.

Example 1.3. Note that in general the minimal polynomial might not exist. The following will provide an explanation for this fact.

Proposition 1.4. Let $\varphi \in K[x]$ be arbitrary with $\varphi(T) = 0$. Then for every eigenvalue $\lambda \in K$ of T we have $\varphi(\lambda) = 0$.

Proof. Let $\lambda \in K$ be an eigenvalue of T and $v \in V \setminus \{0\}$ a corresponding eigenvector. Now recall that $\varphi(T) = 0 = 0_{\operatorname{End}_K(V)}$ is a map, namely the map given by $v \mapsto 0$. Now write $\varphi(x) = \sum_{k=0}^m a_k x^k$ for $a_k \in K$. Then

$$0 = 0_{\operatorname{End}_{K}(V)}(v) = \varphi(T)(v)$$
$$= \left(\sum_{k=0}^{m} a_{k}T^{k}\right)(v) = \sum_{k=0}^{m} a_{k}T^{k}(v)$$
$$= \sum_{k=0}^{m} a_{k}\lambda^{k}v = \varphi(\lambda)v.$$

Since $v \neq 0$ this implies $\varphi(\lambda) = 0$.

Corollary 1.5. An endomorphism of an infinite-dimensional vector space with infinitely many different eigenvalues has no minimal polynomial.

Proof. As by definition we require $m_T(T) = 0$ for the minimal polynomial and every polynomial has only a finite number of roots, the claim follows from Proposition 1.4.

Example 1.6. With Corollary 1.5 we now know how to find an endomorphism for which its minimal polynomial does not exist.

Consider the vector space of real-valued sequences $V := \mathbb{R}^{\mathbb{N}}$ and the linear map

$$T: V \to V, \ (x_n)_n \mapsto (nx_n)_n.$$

Then every $n \in \mathbb{N}$ is an eigenvalue and thus the minimal polynomial of T does not exist by Corollary 1.5.

Another interesting example is the derivative operator

$$D: \mathbb{R}[x] \to \mathbb{R}[x], f \mapsto f'.$$

If there was a polynomial $\varphi \in \mathbb{R}[x]$ with $\varphi(D) = 0$ then all polynomials would be solutions to the same linear differential equation with constant coefficients given by

$$\varphi(D)(y) = 0,$$

which is clearly not possible.

Exercise 1.7. Let

$$A := \begin{pmatrix} 0 & -2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

- (a) Find the characteristic polynomial χ_A .
- (b) Find the minimal polynomial m_A .
- (c) Compute $2A^5 3A^3 + A^2 7I_3$.

Solution.

(a) We compute

$$\chi_A(x) = \det(xI_3 - A) = \det\begin{pmatrix} x & 2 & 2\\ -1 & x - 3 & -1\\ 0 & 0 & x - 2 \end{pmatrix}$$
$$= (x^2 - 3x + 2)(x - 2) = (x - 1)(x - 2)^2.$$

(b) Observe that since $m_A \mid \chi_A$ part (a) implies that we only have two options for the minimal polynomial, namely

$$(x-1)(x-2)$$
 or $(x-1)(x-2)^2$.

Since

$$(A - I_3)(A - 2I_3) = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -2 & -2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

we get $m_A(x) = (x - 1)(x - 2)$.

(c) Note that by part (b) we know that

$$0 = (A - 1)(A - 2) = A^2 - 3A + 2I_3,$$

which implies

$$A^2 = 3A - 2I_3.$$

This allows compute

$$\begin{aligned} 2A^5 - 3A^3 + A^2 - 7I_3 &= 2AA^2A^2 - 3AA^2 + A^2 - 7I_3 \\ &= 2A(3A - 2I_3)^2 - 3A(3A - 2I_3) + (3A - 2I_3) - 7I_3 \\ &= 2A(9A^2 - 12A + 4I_3) - 3(3A^2 - 2A) + 3A - 9I_3 \\ &= 2A(9(3A - 2I_3) - 12A + 4I_3) - 3(3(3A - 2I_3) - 2A) + 3A - 9I_3 \\ &= 2A(15A - 14I_3) - 21A + 18I_3 + 3A - 9I_3 \\ &= 30A^2 - 28A - 18A + 9I_3 \\ &= 30(3A - 2I_3) - 46A + 9I_3 \\ &= 90A - 60I_3 - 46A + 9I_3 \\ &= 44A - 51I_3 \\ &= 44A - 51I_3 \\ &= \begin{pmatrix} 0 & -88 & -88 \\ 44 & 132 & 44 \\ 0 & 0 & 88 \end{pmatrix} - \begin{pmatrix} 51 & 0 & 0 \\ 0 & 51 & 0 \\ 0 & 0 & 51 \end{pmatrix} = \begin{pmatrix} -51 & -88 & -88 \\ 44 & 81 & 44 \\ 0 & 0 & 37 \end{pmatrix}. \end{aligned}$$

Exercise 1.8. Show that every matrix $A \in M_{n \times n}(K)$ with minimal polynomial $\chi_A(x) = x^n$ is nilpotent, i.e. $\exists m \in \mathbb{N} : A^m = 0$.

Proof. The theorem of Cayley-Hamilton immediately implies $A^n = \chi_A(A) = 0$.

2 Jordan Normal Form

Let V be a K-vector space over an algebraically closed field K.

2.1 Recap

Theorem 2.1. Let $T: V \to V$ be a linear map. Then there exists a basis \mathcal{B} of V such that

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} J_{n_1}(\alpha_1) & & & \\ & J_{n_2}(\alpha_2) & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & J_{n_k}(\alpha_k) \end{pmatrix}$$

for $n_1, \ldots, n_k \geq 1$ with $n_1 + \ldots + n_k = n$ and $\alpha_1, \ldots, \alpha_k \in K$. If $\lambda \in K$ is an eigenvalue of T then

$$g_{\lambda} = |\{1 \le j \le k \mid \alpha_k = \lambda\}$$

holds for the geometric multiplicity of λ . Moreover, the minimal polynomial of T is given by

$$m_T(x) = \prod_{\substack{\lambda \in K \\ eigenvalue}} (x - \lambda)^{s(\lambda)}, \tag{1}$$

where $s(\lambda) := \max\{n_j \mid 1 \le j \le k : \alpha_j = k\}$ is the size of the biggest Jordanblock corresponding to λ .

2.2 Exercises

Exercise 2.2. Recall that a matrix $A \in M_{n \times n}(K)$ is called idempotent if $A^2 = A$ holds. Show that every idempotent matrix is diagonalizable without directly using the concept of eigenvectors.

Proof. By assumption we have $A^2 - A = 0$ and thus $m_A \mid x(x-1)$ for the minimal polynomial. Hence the minimal polynomial factors into linear factors with multiplicity 1 and roots in $\{0, 1\}$, so using (1) and Theorem 2.1 A is diagonalizable with values in $\{0, 1\}$ on the diagonal.