Linear Algebra II Exercise Class

Eric Ceglie

22. April 2024

1 Normed Vector Spaces

1.1 Recap

Let $K \in\{\mathbb{R}, \mathbb{C}\}$ and let V be a K-vector space.
Definition 1.1. A norm on V is a map

$$
\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}, v \mapsto\|v\|
$$

such that for all $v, w \in V$ and $\alpha \in \mathbb{R}$ we have
(1) $\|v+w\| \leq\|v\|+\|w\|$,
(2) $\|\alpha v\|=|\alpha|\|v\|$,
(3) if $\|v\|=0$ then $v=0$.

1.2 Exercises

Exercise 1.2. Let V be a finite-dimensional \mathbb{R}-vector space. For any subset $E \subseteq V^{*}$ define

$$
\begin{aligned}
\|v\|_{1, E} & :=\sum_{\ell \in E}|\ell(v)|, \\
\|v\|_{\infty, E} & :=\max _{\ell \in E}|\ell(v)|
\end{aligned}
$$

for $v \in V$.
(a) For an arbitrary subset $E \subseteq V^{*}$, which of the three axioms from Definition 1.1 are satisfied by $\|\cdot\|_{1, E}$ and $\|\cdot\|_{\infty, E}$. For the ones you are not able to prove, find a specific example for which it fails.
(b) Find a condition for $E \subseteq V^{*}$ which is equivalent to $\|\cdot\|_{1, E}$ and $\|\cdot\|_{\infty, E}$ both being a norm and prove it.
(c) Construct a norm $\|\cdot\|$ on the \mathbb{R}-vector space \mathbb{R}^{2}, for which the unit ball

$$
\left\{v \in \mathbb{R}^{2} \mid\|v\| \leq 1\right\}
$$

is a regular hexagon.

Solution.

(a) We claim that axioms (1) and (2) always hold. The this end, let $v, w \in V$ and $\alpha \in K$ be arbitrary and observe that

$$
\begin{aligned}
\|v+w\|_{1, E} & =\sum_{\ell \in E}|\ell(v+w)| \\
& =\sum_{\ell \in E}|\ell(v)+\ell(w)| \\
& \leq \sum_{\ell \in E}(|\ell(v)|+|\ell(w)|) \\
& =\|v\|_{1, E}+\|w\|_{1, E}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\|v+w\|_{\infty, E} & =\max _{\ell \in E}|\ell(v+w)| \\
& \leq \max _{\ell \in E}(|\ell(v)|+|\ell(w)|) \\
& \leq \max _{\ell \in E}|\ell(v)|+\max _{\ell \in E}|\ell(w)| \\
& =\|v\|_{\infty, E}+\|w\|_{\infty, E},
\end{aligned}
$$

where we also used that for a arbitrary finite sets $A, B \subseteq \mathbb{R}$ we have $\max _{a \in A, b \in B}(a+b) \leq$ $\max _{a \in A} a+\max _{b \in B} b$. This proves axiom (1) in both cases. Axiom (2) is just a formal verification. Now we claim that (3) does not hold in general. To this end, consider $V:=\mathbb{R}^{2}$ as an \mathbb{R}-vector space and the standard basis b_{1}, b_{2} of V. Now take $E:=\left\{b_{1}^{*}\right\} \subseteq V^{*}$. Then we have $b_{1}^{*}\left(b_{2}\right)=0$ and thus

$$
\left\|b_{2}\right\|_{1, E}=\left\|b_{2}\right\|_{\infty, E}=\left|b_{1}^{*}\left(b_{2}\right)\right|=0
$$

but $b_{2} \neq 0$, so in this case axiom (3) does not holds.
(b) Claim. For a subset $E \subseteq V^{*}$ the functions $\|\cdot\|_{1, E}$ and $\|\cdot\|_{\infty, E}$ are both norms if and only if we have $\langle E\rangle=V^{*}$.

Proof. We present a detailed proof for $\|\cdot\|_{1, E}$ as for $\|\cdot\|_{\infty, E}$ it works in the very same manner. Also note that by (a) it only remains to verify the (3) axiom of Definition 1.1.

Let b_{1}, \ldots, b_{n} be a basis of V and let $E \subseteq V^{*}$ be arbitrary.
$" \Longleftarrow "$. Assume that $\langle E\rangle=V^{*}$ holds and let $v \in V$ be arbitrary with $\|v\|_{1, E}=0$. Our goal now is to conclude that then $v=0$ holds. To this end, write $v=\sum_{k=1}^{n} \alpha_{k} b_{k}$ for $\alpha_{k} \in \mathbb{R}$ and let $1 \leq k \leq n$ be arbitrary. Observe that by definition of the dual basis we now have $\alpha_{k}=b_{k}^{*}(v)$. Since $\langle E\rangle=V^{*}$, we can find $\beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$ and $\ell_{1}, \ldots, \ell_{m} \in E$ with

$$
b_{k}^{*}=\sum_{j=1}^{m} \beta_{j} \ell_{j} .
$$

But now we may estimate

$$
\begin{aligned}
\left|\alpha_{k}\right| & =\left|b_{k}^{*}(v)\right| \\
& =\left|\sum_{j=1}^{m} \beta_{j} \ell_{j}(v)\right| \\
& \leq \sum_{j=1}^{m}\left|\beta_{j}\right|\left|\ell_{j}(v)\right| \\
& \leq \max _{1 \leq j \leq m}\left|\beta_{j}\right| \sum_{\ell \in E}|\ell(v)| \\
& =\max _{1 \leq j \leq m}\left|\beta_{j}\right|\|v\|_{1, E}=0 .
\end{aligned}
$$

This proves $\alpha_{1}=\ldots=\alpha_{n}=0$ and thus $v=0$.
" \Longrightarrow ". Assume that $\langle E\rangle \subsetneq V^{*}$ holds. We wish to show that in this case $\|\cdot\|_{1, E}$ is not a norm. To this end, observe that the assumption implies that there exists some $1 \leq k \leq n$ such that $b_{k}^{*} \in V^{*} \backslash\langle E\rangle$. Now assume that there exists a $\ell \in E$ with $\ell\left(b_{k}\right) \neq 0$. Observe that

$$
\operatorname{dim}(\operatorname{ker}(\ell))=\operatorname{dim}(V)-\operatorname{dim}(\operatorname{im}(\ell)) \geq n-1
$$

since $\operatorname{dim}(\operatorname{im}(\ell)) \leq \operatorname{dim}(\mathbb{R})=1$. This implies

$$
\forall j \neq k: \quad \ell\left(b_{j}\right)=0 .
$$

But then we would have

$$
b_{k}^{*}=\ell\left(b_{k}\right)^{-1} \ell
$$

contradicting $b_{k}^{*} \notin\langle E\rangle$. Hence we established that

$$
\forall \ell \in E: \quad \ell\left(b_{k}\right)=0
$$

and thus

$$
\left\|b_{k}\right\|_{1, E}=\sum_{\ell \in E}\left|\ell\left(b_{k}\right)\right|=0
$$

which proves that $\|\cdot\|_{1, E}$ is not a norm since $b_{k} \neq 0$.
(c) First observe that for any $(a, b) \in \mathbb{R}$ the map

$$
\ell_{a, b}: \mathbb{R}^{2} \rightarrow \mathbb{R},\binom{x}{y} \mapsto a x+b y=\left\langle\binom{ a}{b},\binom{x}{y}\right\rangle
$$

is linear, so it is an element of the dual $\left(\mathbb{R}^{2}\right)^{*}$. Now note that for the function $\|\cdot\|_{\infty,\left\{\ell_{1,1}\right\}}$ all vectors on the line $\left\{(x, y) \in \mathbb{R}^{2} \mid x=-y\right\}$ yields zero. Hence the set

$$
\left\{v \in \mathbb{R}^{2}\left|\|v\|_{\infty,\left\{\ell_{1,1}\right\}}=\left|\ell_{1,1}(x, y)\right| \leq 1\right\}\right.
$$

looks like a tube of diameter 2 with direction $\binom{1}{-1}$.

Using this intuition, we may use three of these tubes to patch them together into a norm with the desired properties. In particular, for any $(a, b) \in \mathbb{R}^{2}$ define

$$
B_{a, b}:=\left\{(x, y) \in \mathbb{R}^{2}| | \ell_{a, b}(x, y) \mid \leq 1\right\}
$$

Set $\zeta:=e^{\frac{2 \pi i}{3}}$ and

$$
\begin{aligned}
\left(a_{1}, b_{1}\right) & :=(\operatorname{Re}(\zeta), \operatorname{Im}(\zeta)) \\
\left(a_{2}, b_{2}\right) & :=\left(\operatorname{Re}\left(\zeta^{2}\right), \operatorname{Im}\left(\zeta^{2}\right)\right) \\
\left(a_{3}, b_{3}\right) & :=\left(\operatorname{Re}\left(\zeta^{3}\right), \operatorname{Im}\left(\zeta^{3}\right)\right)=(1,0)
\end{aligned}
$$

Then the norm $\|\cdot\|_{\infty, E}$ given by the set $E:=\left\{\ell_{a_{1}, b_{1}}, \ell_{a_{2}, b_{2}}, \ell_{a_{3}, b_{3}}\right\}$ has the desired property.

Indeed, we have $\langle E\rangle=\left(\mathbb{R}^{2}\right)^{*}$, so by (b) it is a norm and for any $v \in \mathbb{R}^{2}$ we have

$$
\begin{aligned}
\left\{v \in \mathbb{R}^{2} \mid\|v\|_{\infty, E} \leq 1\right\} & =\left\{v \in \mathbb{R}^{2}\left|\max _{1 \leq k \leq 3}\right| \ell_{a_{k}, b_{k}}(v) \mid \leq 1\right\} \\
& =\bigcap_{1 \leq k \leq 3}\left\{v \in \mathbb{R}^{2}| | \ell_{a_{k}, b_{k}}(v) \mid \leq 1\right\} \\
& =\bigcap_{1 \leq k \leq 3} B_{a_{k}, b_{k}}
\end{aligned}
$$

Hence the set unit ball $\left\{v \in \mathbb{R}^{2} \mid\|v\|_{\infty, E} \leq 1\right\}$ is a regular hexagon and looks as follows.

