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1 Normed Vector Spaces

1.1 Recap

Let K ∈ {R,C} and let V be a K-vector space.

Definition 1.1. A norm on V is a map

∥ · ∥ : V → R≥0, v 7→ ∥v∥

such that for all v, w ∈ V and α ∈ R we have

(1) ∥v + w∥ ≤ ∥v∥+ ∥w∥,

(2) ∥αv∥ = |α|∥v∥,

(3) if ∥v∥ = 0 then v = 0.

1.2 Exercises

Exercise 1.2. Let V be a finite-dimensional R-vector space. For any subset E ⊆ V ∗ define

∥v∥1,E :=
∑
ℓ∈E

|ℓ(v)|,

∥v∥∞,E := max
ℓ∈E

|ℓ(v)|

for v ∈ V .

(a) For an arbitrary subset E ⊆ V ∗, which of the three axioms from Definition 1.1 are satisfied by

∥ · ∥1,E and ∥ · ∥∞,E . For the ones you are not able to prove, find a specific example for which it

fails.
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(b) Find a condition for E ⊆ V ∗ which is equivalent to ∥ · ∥1,E and ∥ · ∥∞,E both being a norm and

prove it.

(c) Construct a norm ∥ · ∥ on the R-vector space R2, for which the unit ball

{v ∈ R2 | ∥v∥ ≤ 1}

is a regular hexagon.

Solution.

(a) We claim that axioms (1) and (2) always hold. The this end, let v, w ∈ V and α ∈ K be arbitrary

and observe that

∥v + w∥1,E =
∑
ℓ∈E

|ℓ(v + w)|

=
∑
ℓ∈E

|ℓ(v) + ℓ(w)|

≤
∑
ℓ∈E

(|ℓ(v)|+ |ℓ(w)|)

= ∥v∥1,E + ∥w∥1,E

and similarly

∥v + w∥∞,E = max
ℓ∈E

|ℓ(v + w)|

≤ max
ℓ∈E

(|ℓ(v)|+ |ℓ(w)|)

≤ max
ℓ∈E

|ℓ(v)|+max
ℓ∈E

|ℓ(w)|

= ∥v∥∞,E + ∥w∥∞,E ,

where we also used that for a arbitrary finite sets A,B ⊆ R we have maxa∈A,b∈B(a + b) ≤
maxa∈A a+maxb∈B b. This proves axiom (1) in both cases. Axiom (2) is just a formal verification.

Now we claim that (3) does not hold in general. To this end, consider V := R2 as an R-vector
space and the standard basis b1, b2 of V . Now take E := {b∗1} ⊆ V ∗. Then we have b∗1(b2) = 0

and thus

∥b2∥1,E = ∥b2∥∞,E = |b∗1(b2)| = 0

but b2 ̸= 0, so in this case axiom (3) does not holds.

(b) Claim. For a subset E ⊆ V ∗ the functions ∥ · ∥1,E and ∥ · ∥∞,E are both norms if and only if we

have ⟨E⟩ = V ∗.

Proof. We present a detailed proof for ∥ · ∥1,E as for ∥ · ∥∞,E it works in the very same manner.

Also note that by (a) it only remains to verify the (3) axiom of Definition 1.1.
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Let b1, . . . , bn be a basis of V and let E ⊆ V ∗ be arbitrary.

“⇐=”. Assume that ⟨E⟩ = V ∗ holds and let v ∈ V be arbitrary with ∥v∥1,E = 0. Our goal

now is to conclude that then v = 0 holds. To this end, write v =
∑n

k=1 αkbk for αk ∈ R and let

1 ≤ k ≤ n be arbitrary. Observe that by definition of the dual basis we now have αk = b∗k(v).

Since ⟨E⟩ = V ∗, we can find β1, . . . , βm ∈ R and ℓ1, . . . , ℓm ∈ E with

b∗k =

m∑
j=1

βjℓj .

But now we may estimate

|αk| = |b∗k(v)|

=

∣∣∣∣∣∣
m∑
j=1

βjℓj(v)

∣∣∣∣∣∣
≤

m∑
j=1

|βj ||ℓj(v)|

≤ max
1≤j≤m

|βj |
∑
ℓ∈E

|ℓ(v)|

= max
1≤j≤m

|βj |∥v∥1,E = 0.

This proves α1 = . . . = αn = 0 and thus v = 0.

“=⇒”. Assume that ⟨E⟩ ⊊ V ∗ holds. We wish to show that in this case ∥ · ∥1,E is not a norm.

To this end, observe that the assumption implies that there exists some 1 ≤ k ≤ n such that

b∗k ∈ V ∗ ∖ ⟨E⟩. Now assume that there exists a ℓ ∈ E with ℓ(bk) ̸= 0. Observe that

dim(ker(ℓ)) = dim(V )− dim(im(ℓ)) ≥ n− 1

since dim(im(ℓ)) ≤ dim(R) = 1. This implies

∀j ̸= k : ℓ(bj) = 0.

But then we would have

b∗k = ℓ(bk)
−1ℓ,

contradicting b∗k ̸∈ ⟨E⟩. Hence we established that

∀ℓ ∈ E : ℓ(bk) = 0

and thus

∥bk∥1,E =
∑
ℓ∈E

|ℓ(bk)| = 0

which proves that ∥ · ∥1,E is not a norm since bk ̸= 0.
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(c) First observe that for any (a, b) ∈ R the map

ℓa,b : R2 → R,

(
x

y

)
7→ ax+ by =

〈(
a

b

)
,

(
x

y

)〉

is linear, so it is an element of the dual (R2)∗. Now note that for the function ∥ · ∥∞,{ℓ1,1} all

vectors on the line {(x, y) ∈ R2 | x = −y} yields zero. Hence the set

{v ∈ R2 | ∥v∥∞,{ℓ1,1} = |ℓ1,1(x, y)| ≤ 1}

looks like a tube of diameter 2 with direction
(

1
−1

)
.
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Using this intuition, we may use three of these tubes to patch them together into a norm with

the desired properties. In particular, for any (a, b) ∈ R2 define

Ba,b := {(x, y) ∈ R2 | |ℓa,b(x, y)| ≤ 1}.

Set ζ := e
2πi
3 and

(a1, b1) := (Re(ζ), Im(ζ)),

(a2, b2) := (Re(ζ2), Im(ζ2)),

(a3, b3) := (Re(ζ3), Im(ζ3)) = (1, 0).

Then the norm ∥ · ∥∞,E given by the set E := {ℓa1,b1 , ℓa2,b2 , ℓa3,b3} has the desired property.
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Indeed, we have ⟨E⟩ = (R2)∗, so by (b) it is a norm and for any v ∈ R2 we have

{v ∈ R2 | ∥v∥∞,E ≤ 1} = {v ∈ R2 | max
1≤k≤3

|ℓak,bk(v)| ≤ 1}

=
⋂

1≤k≤3

{v ∈ R2 | |ℓak,bk(v)| ≤ 1}

=
⋂

1≤k≤3

Bak,bk .

Hence the set unit ball {v ∈ R2 | ∥v∥∞,E ≤ 1} is a regular hexagon and looks as follows.
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