Linear Algebra II
 Exercise Class

Eric Ceglie

26. February 2024

1 The Determinant

Let K be a field.

1.1 Recap

Definition 1.1. A function $D: M_{n \times n}(K) \rightarrow K$ is called a determinant map if it satisfies
(1) $D\left(I_{n}\right)=1$,
(2) D is n-linear and alternating as a function of the columns.

Theorem 1.2. For all $n \geq 1$ there exists a unique determinant map det and it is characterized by

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sng}(\sigma) \prod_{i=1}^{n} a_{\sigma i, i}
$$

for $A \in M_{n \times n}(K)$.

1.2 Computing Determinants

Exercise 1.3. For any $\tau \in S_{n}$, consider the corresponding permutation matrix

$$
P_{\tau}:=\left(\delta_{i, \tau j}\right)_{i, j=1, \ldots, n}
$$

Show that $\operatorname{det}\left(P_{\tau}\right)=\operatorname{sgn}(\tau)$ holds.

Proof. Using Theorem 1.2, we get

$$
\begin{aligned}
\operatorname{det}\left(P_{\tau}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sng}(\sigma) \prod_{i=1}^{n} \delta_{\sigma i, \tau j} \\
& =\operatorname{sgn}(\tau)+\sum_{\sigma \in S_{n} \backslash\{\tau\}} \operatorname{sng}(\sigma) \underbrace{\prod_{i=1}^{n} \delta_{\sigma i, \tau j}}_{=0}=\operatorname{sgn}(\tau)
\end{aligned}
$$

since if $\sigma \in S_{n} \backslash\{\tau\}$ then there exists a $i \in\{1, \ldots, n\}$ with $\sigma i \neq \tau i$.
Exercise 1.4. Let $n \geq 1$ and consider the matrix $A_{n}:=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ given by

$$
a_{i j}:= \begin{cases}0 & \text { if } i=j \\ i \cdot j & \text { if } i \neq j\end{cases}
$$

for all $i, j=1, \ldots, n$. Compute $\operatorname{det} A_{n}$.
Solution. The given matrix looks as follows

$$
A_{n}=\left(\begin{array}{ccccc}
0 & 2 & 3 & \ldots & n \\
2 & 0 & 2 \cdot 3 & \ldots & 2 \cdot n \\
3 & 3 \cdot 2 & 0 & \ldots & 3 \cdot n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & n \cdot 2 & \ldots & n(n-1) & 0
\end{array}\right) .
$$

We now apply some elementary transformations, leaving the determinant invariant. Subtracting the first row from the second row twice, three times from the third row and so on, we get

$$
\left(\begin{array}{ccccc}
0 & 2 & 3 & \ldots & n \\
2 & -4 & 0 & \ldots & 0 \\
3 & 0 & -9 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & 0 & \ldots & 0 & -n^{2}
\end{array}\right)
$$

Now proceed by adding the $\frac{1}{2}$ times the second row to the first row, $\frac{1}{3}$ times the third row to the first and so on, we get

$$
\left(\begin{array}{ccccc}
n-1 & 0 & 0 & \ldots & 0 \\
2 & -4 & 0 & \ldots & 0 \\
3 & 0 & -9 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & 0 & \ldots & 0 & -n^{2}
\end{array}\right)
$$

which is now an upper triangular matrix. Hence we obtain the determinant just by multiplying the diagonal entries, i.e. we have

$$
\operatorname{det} A_{n}=(n-1) \prod_{k=2}^{n}\left(-k^{2}\right)=(-1)^{n-1}(n-1)(n!)^{2}
$$

The following theorem provides a A very useful tool for computing determinants.
Theorem 1.5 (Laplace expansion). Let $A \in M_{n \times n}(K)$ for $n \geq 1$ and for each $i, j=1, \ldots, n$ denote by $A_{i j} \in M_{(n-1) \times(n-1)}(K)$ the matrix obtained by deleting the i-th row and the j-th column from A. Then we have

$$
\forall 1 \leq i \leq n: \quad \operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

and

$$
\forall 1 \leq j \leq n: \quad \operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

Example 1.6. Let

$$
A:=\left(\begin{array}{cccc}
1 & 0 & 4 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & -1 & 0 \\
0 & 0 & 5 & 7
\end{array}\right)
$$

Using Laplace expansion 1.5 along the first row, we get

$$
\begin{aligned}
\operatorname{det} A & =1 \cdot \operatorname{det}\left(\begin{array}{ccc}
2 & 0 & 0 \\
3 & -1 & 0 \\
0 & 5 & 7
\end{array}\right)+4 \cdot \operatorname{det}\left(\begin{array}{ccc}
2 & 2 & 0 \\
0 & 3 & 0 \\
0 & 0 & 7
\end{array}\right) \\
& =-2 \cdot 7+24 \cdot 7=22 \cdot 7=154
\end{aligned}
$$

Exercise 1.7. Let $\left(a_{k}\right)_{k \geq 1} \subseteq K$ be a sequence and for $n \geq 1$ define the matrix

$$
A_{n}:=\left(a_{\min (i, j)}\right)_{i, j=1, \ldots, n}
$$

(a) Show that

$$
\operatorname{det}\left(A_{n+1}\right)=\operatorname{det}\left(A_{n}\right) \cdot\left(a_{n+1}-a_{n}\right)
$$

holds for all $n \geq 1$.
(b) Find an explicit formula for $\operatorname{det}\left(A_{n}\right)$ and prove it.

Solution.

(a) Proof. The given matrix looks as follows

$$
A_{n+1}=\left(\begin{array}{ccccc}
a_{1} & a_{1} & a_{1} & \ldots & a_{1} \\
a_{1} & a_{2} & a_{2} & \ldots & a_{2} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n+1}
\end{array}\right)
$$

Observe that we may subtract the second to last row from the last row obtaining

$$
\left(\begin{array}{ccccc}
a_{1} & a_{1} & a_{1} & \ldots & a_{1} \\
a_{1} & a_{2} & a_{2} & \ldots & a_{2} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n+1}-a_{n}
\end{array}\right)
$$

which leaves the determinant invariant. The upper left $n \times n$-block is now precisely A_{n} and thus, by using Laplace expansion 1.5 we obtain

$$
\operatorname{det}\left(A_{n+1}\right)=\operatorname{det}\left(A_{n}\right) \cdot\left(a_{n+1}-a_{n}\right)
$$

concluding the proof.
(b) Claim. We have $\operatorname{det}\left(A_{n}\right)=a_{1} \cdot\left(a_{2}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Proof. We use (a) to do a proof by induction. We clearly have $\operatorname{det}\left(A_{1}\right)=a_{1}$. Now let $n \geq 1$ and assume that the formula already holds for A_{n}. Using (a) and the induction, we get

$$
\operatorname{det}\left(A_{n+1}\right)=\operatorname{det}\left(A_{n}\right)\left(a_{n+1}-a_{n}\right)=a_{1} \cdot\left(a_{2}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)
$$

concluding the proof.

1.3 The Adjugate of a Matrix

Definition 1.8. The adjugate matrix of a matrix $A \in M_{n \times n}(K)$ is given by

$$
\operatorname{adj}(A):=\left((-1)^{i+j} \cdot \operatorname{det}\left(A_{i j}\right)\right)_{1 \leq i, j \leq n}^{T}
$$

Theorem 1.9. Let $A \in M_{n \times n}(K)$. Then we have

$$
\operatorname{det}(A) I_{n}=A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A
$$

Moreover, the matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$ in K and in this case the formula

$$
\begin{equation*}
A^{-1}=\operatorname{det}(A)^{-1} \cdot \operatorname{adj}(A) \tag{1}
\end{equation*}
$$

holds.

Example 1.10. Let

$$
A:=\left(\begin{array}{ccc}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right)
$$

Observe that $\operatorname{det} A=10$ and thus A is invertible and we may apply formula (1) to obtain its inverse. In particular, we have

$$
\begin{aligned}
A^{-1} & =\operatorname{det}(A)^{-1} \cdot \operatorname{adj}(A) \\
& =\frac{1}{10}\left(\begin{array}{ccc}
2 & -2 & 2 \\
-(-2) & 3 & -3 \\
0 & -(-10) & 0
\end{array}\right)^{T} \\
& =\frac{1}{10}\left(\begin{array}{ccc}
2 & 2 & 0 \\
-2 & 3 & 10 \\
2 & -3 & 0
\end{array}\right) .
\end{aligned}
$$

