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1 Inner Products

1.1 Recap

Definition 1.1. Let V be a C-vector space. An inner product on V is a function

⟨·, ·⟩ : V × V → C, (v, w) 7→ ⟨v, w⟩

such that

(1) ∀w ∈ V the function V → C, v 7→ ⟨v, w⟩ is linear,

(2) ∀v, w ∈ V : ⟨v, w⟩ = ⟨w, v⟩,

(3) ∀v ∈ V ∖ {0} : ⟨v, v⟩ > 0.

Proposition 1.2. If ⟨·, ·⟩ is an inner product on V then ∥v∥ :=
√

⟨v, v⟩ defines a norm on V .

Theorem 1.3. Every finite-dimensional inner product space (V, ⟨·, ·⟩) over C has a orthonormal basis

b1, . . . , bn. In this case, for any v ∈ V we have

v =

n∑
k=1

⟨v, bk⟩bk.

1.2 Exercises

Theorem 1.4 (Riesz-representatino theorem). Let (V, ⟨·, ·⟩) be a finite-dimensional inner product

space of C and ℓ ∈ V ∗. Then there exists a unique v0 ∈ V such that

ℓ(v) = ⟨v, v0⟩ (1)

for all v ∈ V .
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Exercise 1.5. Prove Riesz-representatino theorem 1.4.

Proof. Let ℓ ∈ V ∗ be arbitrary.

Uniqueness. Assume v0, w0 ∈ V both satisfy (1), which means that we have

⟨u, v0⟩ = ⟨u,w0⟩

for all u ∈ V . Taking u := v0−w0 and using linearity in the first component, we obtain ∥v0−w0∥2 = 0

and thus v0 − w0 = 0 by the third axiom of being a norm.

Existence. By Theorem 1.3, there exists an orthonormal basis b1, . . . , bn of V . Set

v0 :=

n∑
k=1

ℓ(bk)bk

and observe that then for any v ∈ V we have

⟨v, v0⟩ =

〈
v,

n∑
k=1

ℓ(bk)bk

〉

=

n∑
k=1

ℓ(bk)⟨v, bk⟩

= ℓ

(
n∑

k=1

bk⟨v, bk⟩

)
= ℓ(v),

where we applied the formula from Theorem 1.3 twice and linearity of ℓ.

Exercise 1.6. Let (V, ⟨·, ·⟩) be a C-vector space with an inner product and T : V → V a linear map.

(a) Assume that we have

∀v, w ∈ V : ⟨Tv,w⟩ = ⟨v, Tw⟩. (2)

Show that any eigenvalue of T is real.

(b) Assume that there exists another linear map S : V → V with T ◦ S = S ◦ T = idV such that

∀v, w ∈ V : ⟨Tv,w⟩ = ⟨v, Sw⟩. (3)

Show that for any eigenvalue λ ∈ C of T we have |λ| = 1.

(c) Now assume that V = Cn for some n ≥ 1 and that ⟨·, ·⟩ is the standard euclidean inner product.

For any matrix A ∈ Mn×n(C), translate the condition

∀v, w ∈ V : ⟨Av,w⟩ = ⟨v,Aw⟩ (4)

into a condition for the matrix A, i.e. a condition which does not involve the inner product.
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Solution.

(a) Proof. Assume that (2) holds and let λ ∈ C be an eigenvalue of T . Then by definition there

exists some v ∈ V ∖ {0} with Tv = λv. Now observe that

λ∥v∥2 = λ⟨v, v⟩

= ⟨λv, v⟩

= ⟨Tv, v⟩

= ⟨v, Tv⟩

= ⟨v, λv⟩

= λ⟨v, v⟩ = λ∥v∥2.

Since v ̸= 0 we have ∥v∥2 > 0 and thus we may divide by it to obtain

λ = λ,

which proves λ ∈ R.

(b) Proof. Assume that (3) holds and let λ ∈ C be an eigenvalue of T . Then by definition there

exists some v ∈ V ∖ {0} with Tv = λv. Now observe that

∥v∥2 = ⟨v, v⟩

= ⟨v, STv⟩

= ⟨Tv, Tv⟩

= ∥Tv∥2

= ∥λv∥2

= |λ|2∥v∥2,

where we used S ◦ T = idV and (3). Now again since ∥v∥2 > 0, we may divide by it to obtain

|λ|2 = 1,

which implies |λ| = 1.

(c) Let A = (aij)i,j=1,...,n ∈ Mn×n(C) be arbitrary and assume (4) holds. Observe that for any

i, j ∈ {1, . . . , n} we have

⟨Aei, ej⟩ =

〈
a1i

a2i
...

ani

 , ej

〉
= aji
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and similarly we obtain

⟨ei, Aej⟩ = aij .

Applying (4) this implies

∀i, j ∈ {1, . . . , n} : aij = aji,

which is equivalent to

A = AT .

Exercise 1.7. Let V be an arbitrary C-vector space. Show that there exists an inner product on V .

Hint. Choose a basis and use the fact that any vector can be uniquely represented as a finite linear

combination of basis vectors to define an inner product.

Proof. Let B = (bi)i∈I be a basis of V . Then for any two vectors v, w ∈ V there exists unique values

(αi)i∈I , (βi)i∈I ⊆ C such that all but finitely many are equal to zero and

v =
∑
i∈I

αibi, w =
∑
i∈I

βibi.

As these representations are unique, we can use them to define

⟨v, w⟩ :=
∑
i∈I

αiβi,

which is again a finite sum as all but finitely many coefficients are equal to zero. We now show that

this indeed defines an inner product.

Let v, w, u ∈ V and λ ∈ C be arbitrary. Write them uniquely as

v =
∑
i∈I

αibi, w =
∑
i∈I

βibi, u =
∑
i∈I

γibi.

(1) We have

⟨v + λw, u⟩ =
∑
i∈I

(αi + λβi)γi

=
∑
i∈I

αiγi + λ
∑
i∈I

βiγi

= ⟨v, u⟩+ λ⟨w, u⟩,

which proves linearity in the first component.
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(2) We have

⟨v, w⟩ =
∑
i∈I

αiβi

=
∑
i∈I

βiαi

=
∑
i∈I

βiαi

= ⟨w, v⟩.

(3) Assume that v ̸= 0 so there exists some k ∈ I with αk ̸= 0. Then we have

⟨v, v⟩ =
∑
i∈I

αiαi

=
∑
i∈I

|αi|2

≥ |αk|2 > 0.

This proves that ⟨·, ·⟩ defines an inner product on V .
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