Linear Algebra II Exercise Class

Eric Ceglie

29. April 2024

1 Inner Products

1.1 Recap

Definition 1.1. Let V be a \mathbb{C}-vector space. An inner product on V is a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C},(v, w) \mapsto\langle v, w\rangle
$$

such that
(1) $\forall w \in V$ the function $V \rightarrow \mathbb{C}, v \mapsto\langle v, w\rangle$ is linear,
(2) $\forall v, w \in V:\langle v, w\rangle=\overline{\langle w, v\rangle}$,
(3) $\forall v \in V \backslash\{0\}:\langle v, v\rangle>0$.

Proposition 1.2. If $\langle\cdot, \cdot\rangle$ is an inner product on V then $\|v\|:=\sqrt{\langle v, v\rangle}$ defines a norm on V.
Theorem 1.3. Every finite-dimensional inner product space $(V,\langle\cdot, \cdot\rangle)$ over \mathbb{C} has a orthonormal basis b_{1}, \ldots, b_{n}. In this case, for any $v \in V$ we have

$$
v=\sum_{k=1}^{n}\left\langle v, b_{k}\right\rangle b_{k} .
$$

1.2 Exercises

Theorem 1.4 (Riesz-representatino theorem). Let $(V,\langle\cdot, \cdot\rangle)$ be a finite-dimensional inner product space of \mathbb{C} and $\ell \in V^{*}$. Then there exists a unique $v_{0} \in V$ such that

$$
\begin{equation*}
\ell(v)=\left\langle v, v_{0}\right\rangle \tag{1}
\end{equation*}
$$

for all $v \in V$.

Exercise 1.5. Prove Riesz-representatino theorem 1.4
Proof. Let $\ell \in V^{*}$ be arbitrary.
Uniqueness. Assume $v_{0}, w_{0} \in V$ both satisfy (11), which means that we have

$$
\left\langle u, v_{0}\right\rangle=\left\langle u, w_{0}\right\rangle
$$

for all $u \in V$. Taking $u:=v_{0}-w_{0}$ and using linearity in the first component, we obtain $\left\|v_{0}-w_{0}\right\|^{2}=0$ and thus $v_{0}-w_{0}=0$ by the third axiom of being a norm.
Existence. By Theorem 1.3, there exists an orthonormal basis b_{1}, \ldots, b_{n} of V. Set

$$
v_{0}:=\sum_{k=1}^{n} \overline{\ell\left(b_{k}\right)} b_{k}
$$

and observe that then for any $v \in V$ we have

$$
\begin{aligned}
\left\langle v, v_{0}\right\rangle & =\left\langle v, \sum_{k=1}^{n} \overline{\ell\left(b_{k}\right)} b_{k}\right\rangle \\
& =\sum_{k=1}^{n} \ell\left(b_{k}\right)\left\langle v, b_{k}\right\rangle \\
& =\ell\left(\sum_{k=1}^{n} b_{k}\left\langle v, b_{k}\right\rangle\right) \\
& =\ell(v),
\end{aligned}
$$

where we applied the formula from Theorem 1.3 twice and linearity of ℓ.
Exercise 1.6. Let $(V,\langle\cdot, \cdot\rangle)$ be a \mathbb{C}-vector space with an inner product and $T: V \rightarrow V$ a linear map.
(a) Assume that we have

$$
\begin{equation*}
\forall v, w \in V: \quad\langle T v, w\rangle=\langle v, T w\rangle . \tag{2}
\end{equation*}
$$

Show that any eigenvalue of T is real.
(b) Assume that there exists another linear map $S: V \rightarrow V$ with $T \circ S=S \circ T=\mathrm{id}_{V}$ such that

$$
\begin{equation*}
\forall v, w \in V: \quad\langle T v, w\rangle=\langle v, S w\rangle . \tag{3}
\end{equation*}
$$

Show that for any eigenvalue $\lambda \in \mathbb{C}$ of T we have $|\lambda|=1$.
(c) Now assume that $V=\mathbb{C}^{n}$ for some $n \geq 1$ and that $\langle\cdot, \cdot\rangle$ is the standard euclidean inner product. For any matrix $A \in M_{n \times n}(\mathbb{C})$, translate the condition

$$
\begin{equation*}
\forall v, w \in V: \quad\langle A v, w\rangle=\langle v, A w\rangle \tag{4}
\end{equation*}
$$

into a condition for the matrix A, i.e. a condition which does not involve the inner product.

Solution.

(a) Proof. Assume that (2) holds and let $\lambda \in \mathbb{C}$ be an eigenvalue of T. Then by definition there exists some $v \in V \backslash\{0\}$ with $T v=\lambda v$. Now observe that

$$
\begin{aligned}
\lambda\|v\|^{2} & =\lambda\langle v, v\rangle \\
& =\langle\lambda v, v\rangle \\
& =\langle T v, v\rangle \\
& =\langle v, T v\rangle \\
& =\langle v, \lambda v\rangle \\
& =\bar{\lambda}\langle v, v\rangle=\bar{\lambda}\|v\|^{2} .
\end{aligned}
$$

Since $v \neq 0$ we have $\|v\|^{2}>0$ and thus we may divide by it to obtain

$$
\lambda=\bar{\lambda},
$$

which proves $\lambda \in \mathbb{R}$.
(b) Proof. Assume that (3) holds and let $\lambda \in \mathbb{C}$ be an eigenvalue of T. Then by definition there exists some $v \in V \backslash\{0\}$ with $T v=\lambda v$. Now observe that

$$
\begin{aligned}
\|v\|^{2} & =\langle v, v\rangle \\
& =\langle v, S T v\rangle \\
& =\langle T v, T v\rangle \\
& =\|T v\|^{2} \\
& =\|\lambda v\|^{2} \\
& =|\lambda|^{2}\|v\|^{2},
\end{aligned}
$$

where we used $S \circ T=\operatorname{id}_{V}$ and (3). Now again since $\|v\|^{2}>0$, we may divide by it to obtain

$$
|\lambda|^{2}=1,
$$

which implies $|\lambda|=1$.
(c) Let $A=\left(a_{i j}\right)_{i, j=1, \ldots, n} \in M_{n \times n}(\mathbb{C})$ be arbitrary and assume (4) holds. Observe that for any $i, j \in\{1, \ldots, n\}$ we have

$$
\left\langle A e_{i}, e_{j}\right\rangle=\left\langle\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{n i}
\end{array}\right), e_{j}\right\rangle=a_{j i}
$$

and similarly we obtain

$$
\left\langle e_{i}, A e_{j}\right\rangle=\overline{a_{i j}} .
$$

Applying (4) this implies

$$
\forall i, j \in\{1, \ldots, n\}: \quad a_{i j}=\overline{a_{j i}}
$$

which is equivalent to

$$
A=\overline{A^{T}}
$$

Exercise 1.7. Let V be an arbitrary \mathbb{C}-vector space. Show that there exists an inner product on V.
Hint. Choose a basis and use the fact that any vector can be uniquely represented as a finite linear combination of basis vectors to define an inner product.

Proof. Let $\mathcal{B}=\left(b_{i}\right)_{i \in I}$ be a basis of V. Then for any two vectors $v, w \in V$ there exists unique values $\left(\alpha_{i}\right)_{i \in I},\left(\beta_{i}\right)_{i \in I} \subseteq \mathbb{C}$ such that all but finitely many are equal to zero and

$$
v=\sum_{i \in I} \alpha_{i} b_{i}, \quad w=\sum_{i \in I} \beta_{i} b_{i} .
$$

As these representations are unique, we can use them to define

$$
\langle v, w\rangle:=\sum_{i \in I} \alpha_{i} \overline{\beta_{i}},
$$

which is again a finite sum as all but finitely many coefficients are equal to zero. We now show that this indeed defines an inner product.
Let $v, w, u \in V$ and $\lambda \in \mathbb{C}$ be arbitrary. Write them uniquely as

$$
v=\sum_{i \in I} \alpha_{i} b_{i}, \quad w=\sum_{i \in I} \beta_{i} b_{i}, \quad u=\sum_{i \in I} \gamma_{i} b_{i} .
$$

(1) We have

$$
\begin{aligned}
\langle v+\lambda w, u\rangle & =\sum_{i \in I}\left(\alpha_{i}+\lambda \beta_{i}\right) \overline{\gamma_{i}} \\
& =\sum_{i \in I} \alpha_{i} \overline{\gamma_{i}}+\lambda \sum_{i \in I} \beta_{i} \overline{\gamma_{i}} \\
& =\langle v, u\rangle+\lambda\langle w, u\rangle,
\end{aligned}
$$

which proves linearity in the first component.
(2) We have

$$
\begin{aligned}
\langle v, w\rangle & =\sum_{i \in I} \alpha_{i} \overline{\beta_{i}} \\
& =\sum_{i \in I} \overline{\beta_{i} \overline{\alpha_{i}}} \\
& =\overline{\sum_{i \in I} \beta_{i} \overline{\alpha_{i}}} \\
& =\overline{\langle w, v\rangle} .
\end{aligned}
$$

(3) Assume that $v \neq 0$ so there exists some $k \in I$ with $\alpha_{k} \neq 0$. Then we have

$$
\begin{aligned}
\langle v, v\rangle & =\sum_{i \in I} \alpha_{i} \overline{\alpha_{i}} \\
& =\sum_{i \in I}\left|\alpha_{i}\right|^{2} \\
& \geq\left|\alpha_{k}\right|^{2}>0 .
\end{aligned}
$$

This proves that $\langle\cdot, \cdot\rangle$ defines an inner product on V.

