TH zürich

Informatik

Übungsstunde Woche 5

Repetition

- 1. Perform the following steps:
 - 1.1 Convert the integer numbers a = 4 and b = 7 into their binary representation.
 - 1.2 Add the binary representations.
 - 1.3 Convert the result into decimal.
- 2. Evaluate the following expressions:
 - 2.1 5 < 4 < 1
 - 2.2 true > false

ETH zürich

Repetition

Solutions

```
1.
    1.1 4_{10} = 100_2 and 7_{10} = 111_2
    1.2 100_2 + 111_2 = 1011_2
   1.3 1011_2 = 11_{10}
2.
    2.1
          5 < 4 < 1
          (5 < 4) < 1
          false < 1</pre>
          0 < 1
          true
    2.2
          true > false
          true > 0
          1 > 0
```

true

Kommazahlen konvertieren

Compute the binary expansions of the following decimal numbers.

- 1. 0.25
- 2. 11.1

Kommazahlen konvertieren

Solutions:

1.
$$0.25_{10} = 0.01_2$$

$$\frac{x \quad b_i \quad x - b_i \quad 2 \cdot (x - b_i)}{0.25 \quad 0 \quad 0.25 \quad 0.5}$$

$$0.5 \quad 0 \quad 0.5 \quad 1$$

$$1 \quad 1 \quad 0 \quad 0$$

2. $11.1_{10} = 1011.0\overline{0011}_2$

 11.1_{10} is first split into $11_{10} + 0.1_{10}$. The binary representation of 0.1_{10} is derived as follows:

X	bi	$x - b_i$	$2 \cdot (x - b_i)$
0.1	0	0.1	0.2
0.2	0	0.2	0.4
0.4	0	0.4	0.8
0.8	0	0.8	1.6
1.6	1	0.6	1.2
1.2	1	0.2	0.4
0.4	0	0.4	0.8

Fliesskommazahlen

State the following numbers in $F^*(2, 4, -2, 2)$:

- 1. the largest number;
- 2. the smallest number;
- 3. the smallest non-negative number.

Compute how many numbers are in the set $F^*(2, 4, -2, 2)$.

Fliesskommazahlen

Solutions:

- 1. The largest number is $1.111 \cdot 2^2$ which is 7.5 in decimal.
- 2. The smallest number is $-1.111 \cdot 2^2$ which is -7.5 in decimal.
- 3. The smallest non-negative number is $1.000 \cdot 2^{-2}$ which is 0.25 in decimal.

The set has 80 numbers in it. This can be seen as follows. For a fixed exponent there are three digits we can vary freely, and for each number also the negative number is in the set, thus resulting in $2 \cdot 2^3 = 16$ numbers per exponent. On the other hand, there are 5 possible exponents, thus resulting in $5 \cdot 16 = 80$ numbers. Notice that in normalized number systems we cannot "count some numbers twice" as we've seen in the lecture that the representation of a number is unique.

Fliesskommazahlen (Prüfungsaufgabe)

Beantworten Sie die folgenden Fragen zum normalisierten Flieskommasystem F*. Answer the following questions regarding the normalized floating point system F*. $F^*(\beta = 2, p = 3, e_{\min} = -1, e_{\max} = 4)$ Erinnerung: Bei F* schliesst die Präzision (Stelligkeit) das führende Bit mit ein. Reminder: For F*, the precision (number of digits) includes the leading bit. Wahr Falsch \bigcirc \bigcirc 3.25 ist im Fliesskommazahlensystem F* exakt repräsentierbar. 3.25 can be represented exactly in the floating point system F*. \bigcirc \bigcirc Es gibt keine Zahl $Z \in F^*$ für die gilt 0.0625 < Z < 0.25. There is no number $Z \in F^*$ such that 0.0625 < Z < 0.25. \bigcirc 1.25 ist im Fliesskommasystem F* exakt repräsentierbar: \bigcirc 1.25 can be represented exactly in the floating point system F*

Fliesskommazahlen (Prüfungsaufgabe)

Beantworten Sie die folgenden Fragen zum normalisierten Flieskommasystem F*.

Answer the following questions regarding the normalized floating point system $\mathsf{F}^*.$

 $F^*(\beta = 2, p = 3, e_{\min} = -1, e_{\max} = 4)$

Erinnerung: Bei F* schliesst die Präzision (Stelligkeit) das führende Bit mit ein.

Reminder: For F*, the precision (number of digits) includes the leading bit.

	Wahr	Falsch		
	• ×		 3.25 ist im Fliesskommazahlensystem F* exakt repräsentierbar. 3.25 can be represented exactly in the floating point system F*. 	✓
		•	Es gibt keine Zahl $Z \in F^*$ für die gilt 0.0625 < Z < 0.25. There is no number $Z \in F^*$ such that 0.0625 < Z < 0.25.	✓
		•×	1.25 ist im Fliesskommasystem F*exakt repräsentierbar:1.25 can be represented exactly inthe floating point system F*	✓