Systems @ ETH ziric

Exercise Session 10

Computer Architecture and
Systems Programming

Autumn Semester 2024

Disclaimer n;

Systems @ ETH ziric
 Website: n.ethz.ch/~falkbe/
* (Extra) Demos on GitHub: github.com/falkbe

* My exercise slides have additional slides (which are not official
part of the course) having a blue heading

* For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

In this session...

Systems @ ETH ziric

Questions Regarding Attacklab

Lecture Recap Floating Point

* FP Basics

 FP: Normalised, Denormalised, Special Values
* FP: Rounding

* FP: Operations

e SSE3

Exam Questions on Floating Point

Recap of floating point
Preview assignment 8: Floating point

Systems @ ETH ziric

Lecture Recap

Basics

Systems Programming and Computer Architecture

Numeral Systems :;

Systems @ ETH ziric
* Should be known be now, just a quick reminder

* Very important for fundamental understanding as well as for
other courses (CN Ternary IP Addresses Exam Task)

Basics: Numeral systems (Decimal)

Nutwn s Sgtone | Detimal

1
a M-10@ 3

rn - l L
ALY, S32 = 1407 + 210 F510 F 340 + 3410

rﬁ\m 2h

oS (s s L) [\$

-9 =2 =2
? 4,_'4024 olMO‘ + dy 400 +0c)q-10 +d_2-4p +d,3.40
2 o
= 3 oA
i:-g

-W :
beweraly : N= 2 di- 10", defo,.. 95 Bue 40

1=-N

Svstems @ ETH zivicn

Basics: Numeral systems (Binary)

Nuawnbis Sighone | Bivnauy

] 07

— | =
2020 27 1270273

5
110,010 = "+42

’Lu @ﬁl\l} “Mh T 2

oS (oS ‘\,3 (s [\§
- =3 =4
s bt b a2t by 2

2 i
= z b‘Z'
l‘:~3

Ge-vw(qludf N= -VZ“ bi' l; / 52320:43 @Mt 2

Qasg, 2o ==

Basics: Numeral systems Generally

Ziirich

Number Sydryms. | Jer MY Base

Nu\m‘ﬂgvddm Bese o: .% Vi b; | ; Vié{O:wb'”,

==

N

Cxempt | Poie 40: 3 v 40V €10.,40-13= £o,., 9
1=>-W
n -« !
Bt 2: 2 | vi-9' | wik$0..,2-13= £0,%3
=W

LA . \ ¥
%Qk 46 2 V(‘4b' y Vi e{olt '46'12 = €034' 21 3: L') S7Ll“7; &/ 9
il ol Q,b,L,d,e,43

Basics: Numeral systems Generally

Lamadrid Base Name System applied on this website @ETH zirich
Bases 1-10 Bases 11-20
1 unary 11 undecimal 21 unvigesimal 40 quadragesimal
2 binary 12 duodecimal 22 duovigesimal 50 quinquagesimal
3 ternary 13 tridecimal 23 trivigesimal 60 sexagesimal
4 quaternary 14 tetradecimal 24 tetravigesimal 70 septuagesimal
S quinary 15 pentadecimal 25 pentavigesimal 80 octogesimal
6 senary 16 hexadecimal 90 nonogesimal
7 septenary 17 heptadecimal 30 trigesimal 100 centesimal
8 octal 18 octodecimal 32 duotrigesimal 120 centovigesimal
9 nonary 19 enneadecimal 36 hexatrigesimal 144 centotetraquadragesimal
10 decimal 20 vigesimal 360 trecentosexagesimal

* This concept applies to any base b

Basics: Numeral systems Generally

Lamadrid Base Name System applied on this website @ETH zirich
Bases 1-10 Bases 11-20
1 unary 11 undecimal 21 u There are 10 rocks.
2 binary 12 duodecimal 22 d Oh, you must be
3 ternary 13 tridecimal 23 tr using base 4. See, —
4 quaternary 14 tetradecimal 24 te I use base 10.
S quinary 15 pentadecimal 25 p
6 senary 16 hexadecimal No. I_use base 10.
7 septenary 17 heptadecimal 30 tr What is base 4? 2 ‘
8 octal 18 octodecimal 32 d ! H
9 nonary 19 enneadecimal 36 h it
10 decimal 20 vigesimal

 You can also understand
bad jokes now

e W

Every base is base 10.

FP Recap

Svstems @ ETH ziricn
Fractional binary numbers
2i
* Representation 2
* Bits to right of “binary point” A
represent fractional powers of 2 coo X
* Represents rational number: —1
by by *ss b, by by by b, b; eee b,

FP Recap

Floating point representation
(recap from Digital Circuits?)

* Numerical form:
(—1)5.M.2E
* Sign bit s determines whether number is negative or positive
* Significand M normally a fractional value in range [1.0,2.0).
* Exponent E weights value by power of two

* Encoding
* MSB (Most Significant Bit) s is sign bit s
» exp field encodes E (but is not equal to E)
* frac field encodes M (but is not equal to M)

s | exp frac

Systems @ ETH ziric

 S,M,E refer to
numerical
form

e s, exp, frac
refer to binary
encoding

FP Recap

Original precisions

IEEE 754 Single Precision (32 bits):

s | exp frac
1 8 23

IEEE 754 Double Precision (64 bits):

s | exp frac
1 11 52

"ystems @ ETH ziricn

FP Recap

Systems @ ETH ziric
| Precision | Significand bits | Exponentbits | Total

Half 11 5 16
Single 24 8 32
Double 53 11 64
Quadruple 113 15 128
Octuple 237 19 256
Google bfloat16 7 8 16
Nvidia TensorFloat 10 8 19

AMD fp24 17 7 24

Systems @ ETH ziric

Lecture Recap

Floating Points in C

Systems Programming and Computer Architecture

FP In C

Systems @ ETH ziric

e C99 guarantees two levels:
 float - single precision
 double -double precision

* long double is usually quadruple precision

e Conversions/casting
* Casting between int, float, and double changes bit representation
e double/float - int
* Truncates fractional part (like rounding toward zero)
* Not defined when out of range or NaN: Generally sets to TMin
 int - double
* Exact conversion, as long as int has < 53 bit word size
e int > float
* Will round according to rounding mode

Rounding of FP in C

- SyStems @mzur"..h

Truncates
fractional part;
overflow for
large values

Double Truncates
fractional part;
overflow for
large values

No loss for
small values;
precision loss
for large values

Precision loss
for large/precise
values

No loss

No loss

Systems @ ETH ziric

Lecture Recap

FP: Normalised, Denormalised, Special Values

Systems Programming and Computer Architecture

FP Recap n;

Systems @ ETH ziric
 There are 3 types of encodings

* 1. Normalised: values in the normal range
e 2. Denormalised: values which are very small
e 3. Special Numbers: Infinity, 0, NaN

FP Recap :;

Systems @ ETH ziric
 There are 3 types of encodings

* 1. Normalised: values in the normal range
e 2. Denormalised: values which are very small
e 3. Special Numbers: Infinity, 0, NaN

FP Recap: 1. Normalised

Systems @ ETH ziric
* Condition: exp # 000..0 andexp # 111.1

e S,M,E refer to

* Exponent coded as biased value: E = Exp — Bias Pume”%"
« Exp: unsigned value exp orm
* Bias =2¢1-1, where e is number of exponent bits * s, exp, frac
* Single precision: 127 (Exp: 1...254, E: -126...127) re_fer to
* Double precision: 1023 (Exp: 1...2046, E: -1022...1023) binary
encoding
* Significand coded with implied leading 1: M = 1.XXX..X, Numerical form:
e XXX..X: bits of frac (—1)5.M.2F
* Minimum when 000..0 (M = 1.0)
* Maximum when 111..1 (M =2.0—¢) s | exp frac
* Get extra leading bit for “free”
1. Normalized
s # 0 and # 255 f

s | exp frac

Normalized encoding example

Systems @ ETH ziric

Value: float F = 15213.0;
15213, =11101101101101,
=1.1101101101101, x 213

Significand

s M= 1.1101101101101,

* frac= 11011011011010000000000,

e Bias=(2"e)-1, for e=8: 127

Exponent

" = 13 « E=Exp-Bias & Exp=E+Bias

* Bias = 127

« Exp= 140 = 10001100, & Exp=13+127

=140

Result: E 10001100 11011011011010000000000
S

exp frac

FP Recap :;

Systems @ ETH ziric
 There are 3 types of encodings

* 1. Normalised: values in the normal range
* 2. Denormalised: values which are very small
e 3. Special Numbers: Infinity, 0, NaN

FP Recap: 2. Denormalised

* Exponent value: E = —Bias + 1 (instead of E = 0 — Bias)

* Significand coded with implied leading 0: M = 0. XXX...X,
* XXX..X: bits of frac

* Cases
e exp = 000.0, frac = 000..0

* Represents value 0
* Note distinct values: +0 and -0 (why?)

e exp = 000.0, frac # 000..0

* Numbers very close to 0.0
* Lose precision as get smaller

2. Denormalized
s|0(0|0|0|0|0O|0O|0O f

s | exp frac

FP Recap :;

Systems @ ETH ziric
 There are 3 types of encodings

* 1. Normalised: values in the normal range
e 2. Denormalised: values which are very small
e 3. Special Numbers: Infinity, O, NaN

FP Recap: 3. Special Values

. Condition: eXp = 111...1 Systems@mzﬁﬂch

» Case: exp = 111..1, frac = 000..0
» Represents value o (infinity)
* Operation that overflows
* Both positive and negative
* E.g. 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -o0

 Case:exp = 111.1, frac # 000..0
* Not-a-Number (NaN)
* Represents case when no numeric value can be determined
* E.g., sqrt(=1), 00 -00, 00 *Q

3a. Infinity

S | exp frac

FP Recap: Normalised, Denormalised, Special
Values Graphical

Svstems @ ETH ziricn
1. Normalized

S # 0 and # 255 f

2. Denormalized
s{0|0|0|0O(0O|0|0O]|0O f

3a. Infinity
s{1({1{1}1{1{1{1}1;0/0|0|0|0|0|0O|0O|O|O|O|O|O|O|O|O|O|O(O(O(O|O(O

FP Recap

@ETH :irich
* Really tiny 6-bit IEEE-like format

* e =3 exponent bits s | exp frac
* f =2 fraction bits 1 3 2
* Biasis 231-1=3

A A A A A A A AAAAMMMERMMAAAL LA A A —A—A—A
-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

hA— A — A —h— A2 0 006006 L L A h—Ah—A—~A—A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

Systems @ ETH ziric

Lecture Recap
FP: Rounding Modes

Systems Programming and Computer Architecture

FP Recap: Rounding Modes

Systems @ ETH ziric
Rounding

* Rounding modes (illustrate with CHF rounding)

Towards zero 1 1 2 -1
Round down (-o0) 1 1 2 -2
Round up (+x) 2 2 3 1
2 2 2 2

N N R O =

Nearest Even (defaurt)

* 4 Rounding Modes IEEE 754 supports

FP Recap: Round to even Decimal

“ ’ S t mz&:rich
Closer look at “round-to-even ystemse

» Default rounding mode for IEEE FP

* Hard to get any other kind without dropping into assembly
* All others are statistically biased
* Sum of set of positive numbers will consistently be over- or under- estimated

» Applying to other decimal places / bit positions

* When exactly halfway between two possible values
* Round so that least significant digit is even

* E.g., round to nearest hundredth

Value ___|Resut ___|Description

1.2349999 1.23 (less than half way)
1.2350001 1.24 (greater than half way)
1.2350000 1.24 (half-way — round up)

1.2450000 1.24 (half way — round down)

26

FP Recap: Round to even Binary

Systems @ ETH ziric
Rounding binary numbers
* Binary
e Binary fractional numbers eqw_valen’F of %5
(decimal) is

* “Even” when least significant bit is O

* “Half way” when bits to right of rounding position = 100..., .1000..." (binary)

* Evenin binary:

* Examples
P means 0 as Isb

Round to nearest 1/4 (2 bits right of binary point)

I TSRS« odd in binary:

23/, 10.00011, 10.00, <%:down 2 1 as Isb
23/ 10.00110, 10.01, >%:up 2, means 1as s
27/, 10.11100, 11.00, =%:up 3

25/, 10.10100, 10.10, =%:down 2%

1.BBGRXXX

FP Recap: Rounding cusicussof resu

Round bit: 1%t bit removed

'

mmmm

1.0000000 N
13 1.1010000 100 N 1.101
17 1.0001000 o010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1. Y 10.000

11111@@ 111

Round up Conditions
Trivial Cases (we are not in the middle)

. R=1,5=1 => Up (as Number is >0,5)
. R=0, S=_ => Down (as Number is <0,5)

Round to even Cases (we are exactly in the middle)
. G=1, R=1, $S=0 => Up (to make it even, as G=1 means it not even)
. G=0, R=1, $S=0 => Down (to keep it even, as G=0 means its even)

WJ

Sticky bit: OR of remaining bits

DYILEITS @ K= I ¥ Ziirich

FP Recap: Round to even Binary

Postnormalize

* I[ssue
* Rounding may have caused overflow
* Handle by shifting right once & incrementing exponent

|_Value | Rounded | Exp | Adjusted | Result _
128 1.000 7 128

13 1.101 3 13
17 l.006 4 16
19 l1.01¢ 4 20
138 l1.001 7 134
63 10.000 5 1.000/6 64

1stems @ ETH ziricn

Systems @ ETH ziric

Lecture Recap
FP: Operations

Systems Programming and Computer Architecture

FP Recap: Multiplication

.) o _ ystems @ ETH ziric
Floating point multiplication

* Exact Result: (-1)* M 2

* Signs: s;Ms,
* Significand M: M, * M, (1)t M, 2E1 x (-1)2 M, 2F2
* Exponent E: E,+E,

* Fixing

* If M2 2, shift Mright, increment E
* If E out of range, overflow
* Round M to fit frac precision

* Implementation
* Biggest chore is multiplying significands

FP Recap: Addition
Floating point addition

>ms @ ETH zivin

(_1)51 Ml 2E1 4 (_1)52 MZ E2

Assume E; > E, f— E-£, —
7

* Exact result: (-1)* M 2f |

-1 52 M
* Sign s, significand M: * (=1)* M, |
* Result of signed align & add
* Exponent E: E; (—1) M |

* Fixing
* If M2 2, shift Mright, increment E
* if M < 1, shift M left k positions, decrement E by k
* Qverflow if E out of range
* Round M to fit frac precision

FP Operations Remark m

Systems @ ETH ziric
* The float lab is about implementing those

* Highly recommend doing this lab: stuff like this is very likely
to appear as a coding exercise in the exam

Systems @ ETH ziric

Lecture Recap
SSE3 — Streaming SIMD Extension 3

Systems Programming and Computer Architecture

SSE3 Introduction

SSE3 (Streaming SIMD Extensions 3):
Part of a family of instruction set
extensions of x86, to accelerate
computation

SSE introduced %xmm registers

SSE2 extended %xmm to support both
single and double prec.

SSE3 added more specialced SIMD
instructions

AVX introduced wider %ymm regs (256

bits)

AVX-512 extended to 512-bit %zmm time
regs

8086

286

386

486

Pentium
Pentium MMX

Pentium llI

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo

x86-16

x86-32

MMX
SSE
SSE2

SSE3
x86-64 / em64t

SSE4

SSE3 Registers

Systems @ ETH ziric
* General purposes registers: %rax, %rdi, etc.

* Purpose: Integer operations, memory addresses and control flow:
they handle arithmetic computations, pointer manipulation passing
arguments etc.

* SIMD Registers: %xmmO0, %xmm1, etc.

* Purpose: Specialised for floating point computations and SIMD
operations

* Why separate registers? We have separate hardware for floating
point calculations (Floating point Unit FPU)

SSE3 Registers

. Systems @ ETH ziric
SSE3 registers

* All caller saved

* %xmmO for floating point return value
128 bit = 2 doubles = 4 singles

's A ~

%xmmeo Argument #1 %xmm8

%xmm1 Argument #2 %xmm9

%xmm2 Argument #3 %xmm1e

%xmm3 Argument #4 %xmm11

%xmm4 Argument #5 %xmm12

%xmm5 Argument #6 %xmm13

%Xmmeé Argument #7 %xmm14

%xmm7 Argument #8 %xmm15 = Sste

SSE3 Registers
SSE3 registers

* Different data types and associated instructions

* Integer vectors:
* 16-way byte
* 8-way 2 bytes
* 4-way 4 bytes

* Floating point vectors:
* 4-way single
* 2-way double

* Floating point scalars:
* single
* double

128 bit
A

s@ ETH ziin

LSB

r

g

FP Registers

SSE3 instructions: examples ms@ETHzn
* Single precision 4-way vector add: addps %xmm@ %xmml
| ‘ ‘ | | %Xmme
Ny
/'®\
| ‘ ‘ | | %xmml
* Single precision scalar add: addss %xmm@ %xmml
| | ‘ | | %Xmme
he
/'®\. .
l] | %xmml 45

Systemse ET

SSE3 Registers

SSE3 instruction names

emse ETH ziin

packed (vector) single slot (scalar)

addps addss

single precision

addpd addsd

.. focus in this course
double precision

Systems Programming 2023 Ch. 14: Floating Point 46

SSE3 Registers

SSE3 basic instructions 15 @ETH
Single Double Effect
* Moves: movss movsd D&S

* Usual operand form: reg - reg, reg > mem, mem - reg

Single Double Effect

* Arithmetic: addss addsd D&D+S
subss subsd D&<D-S
mulss mulsd D& DxS
divss divsd D&DJ/S
maxss maxsd D ¢ max(D,S)
minss minsd D & min(D,S)
sqrtss sgrtsd D & sqrt(S)

Systems Programming 2023 Ch. 14: Floating Point a7

SSE3 Registers

x86-64 FP code example

* Compute inner product of two

vectors
* Single precision arithmetic
* Uses SSE3 instructions

float ipf (float x[], float y[], int n)
{

int i;

float result = 0.0;

for (i =0; 1 < n; i++) {
result += x[i]*y[i];

}

return result;

ipf:
xorps %xmml, %xmml
xorl %ecx, %ecx
jmp .L8

.L10:
movslq Z%ecx,%rax
incl %ecx

movss (%rsi,%rax,4), %xmme@
mulss (%rdi,%rax,4), %xmme
addss %xmmo, %xmml
.L8:
cmpl %edx, %ecx
jl .L1e
movaps %xmml, %xmme
ret

HoH H H H H N HH HHHH

Systems @ ETH zirich

result = 9.0
i=29

goto middle
loop:

icpy = i

i++

t = y[icpy]
t *= x[icpy]
result += t
middle:

i:n

if < goto loop
return result

* Recall: SSE3 is simply an extension of x86: so it look like x86
you have seen until now with additional instructions

=g~

Systems @ ETH ziric

Floating Point Exam Questions
HS15 Q6

Systems Programming and Computer Architecture

Remark FP Exam Questions n;

Systems @ ETH ziric
* |In (almost) every exam there are floating point questions like

the following
* So its worth it to be able to solve them quickly & correctly as
they are not hard

* They may come in the form of programming exercises in your
case (do the fp lab!)

Recall General Format of s,exp,frac

Floating point representation
(recap from Digital Circuits?)

* Numerical form:
(—1)°. M. 2E
* Sign bit s determines whether number is negative or positive
* Significand M normally a fractional value in range [1.0,2.0).
* Exponent E weights value by power of two

* Encoding
* MSB (Most Significant Bit) s is sign bit s
» exp field encodes E (but is not equal to E)
* frac field encodes M (but is not equal to M)

s | exp frac

Systems @ ETH ziric

HS15 Question 6

Question 6 [16 points]

Consider the following 8-bit floating point representation based on the IEEE floating point format:
« There s a sign bit in the most significant bit.
« The next 3 bits are the exponent. The exponent bias is 23~ — 1 = 3.
+ The last 4 bits are the fraction.

+ The representation encodes numbers of the form: V = (—1)* x M x 2¥, where M is the signifi-
cand and E is the exponent.

The rules are like those in the IEEE standard (i.e. normalized and denormalized numbers, and the same
representation of 0, infinity, and NAN).

Fill in the table below for this format. Here are the instructions for each field:
« Binary: The 8 bit binary representation.

* M:The value of the significand. This should be a number of the form 2 or 7, where z is an integer,
and y is an integral power of 2. Examples include 0, 3.

« E: The integer value of the exponent.
« Value: The numeric value represented by the number.

»n

Note: you need not fill in entries marked with “—".

Systems @ ETH zirich

HS15 Question 6

Systems @ ETH zirich
Description Binary M E Value

Minus zero —0.0

— 01000101

Smallest denormalized

Largest normalized

One 1.0

— 9.9

Positive infinity — — +o0

Remark FP Exam Questions :;

Systems @ ETH ziric
* |l solve some as an example: then you can solve some on your

own and we can com pare

* FPis not hard: once you converted 2-3 fps you grasped the
concept and thus are easy points in the exam

Description Binary M E Value k

HS Minus zero 1 000 00O (9 -2 —0.0
= 01000101
Smallest denormalized mS@mZﬁrich
Largest normalized
One 1.0
— 5.5
Positive infinity — — +00

Minws 2o (3biks exp, bik bue / biosz23 Tt -1:=3)

s em (B0

$= 1 (negamu)] bivnu-%. 110 0 0Ojoo oo W
ez 000 i M 0.0000=0 W
lia= 0 0 OO] E: "LWH"\ = 31 = M

-2
Vae: (15000002 =-0.0

'nw\(?\/\u"" lecitly
0 [(clewerwa)

Description Binary M E Value
Minus zero A 000 wo 0 —2 —0.0
— 01000101 211 A 2.l TH ziich

Smallest denormalized

Largest normalized

One 1.0
— 5.5
Positive infinity — — +00

Vv, 04 00101 0 4
S=0 walieh | lecgds (1 913 ner waaiied
7 0

M=4.0101 =1+3+3 = st 24
1 16 m W\

<=1 0 0, > Mg, E= exp- Biw < 43=1 WM
Vol Ly M2 = o) —14-:- 2 =268 M

—

Description Binary M E Value
Minus zero A1 000 000 0] -2 —-0.0
- 01000101 21 /1 A 2615 |
Smallestdenormalized |0 op0) owoq | 1/1b -2 4/GL| @ETH zircy
Largest normalized
One 1.0
— 5.5
Positive infinity = = +00

Smad (o) (3hibs exp, bk b / base2® T -423)

denoi Wi L
. s e i
$20 (posiht) binwy. 0]0 0 0Jo0 04 W
) A My V& p

ez 000 (denow) n= 0000 1= Mpb W

a0 0 01 = ~biasgy = <311 = M

0 i M- | ¢ |1
Velve: (-1 :0.000 4-7.z= 2| ‘)| <2l = /l‘l W\

'.vmv?\/\df lwug
O (clewerwt)

Try the next one on your own!

Systems @ ETH zirich
Description Binary M E Value
Minus zero 1 000 00O v, -2 —0.0
_ 01000101 21 /1 A 2.615
Smallest denormalized |0 o(p0 owoi 4/46 -2 A/Gq
Largest normalized
One 1.0
— 5.5

Positive infinity — — +00

Description Binary M E Value
Minus zero A 000 OO0 (0] -2 -0.0
_ 01000101 21 /b A 2.6
Smallestdenormalized |0 0p0 owoq | 4/1f -2 A/64 tems @ ETH ziricn
Largest normalized 0 110 M) %4 /b 3 5.6
One 1.0
— 5.5
Positive infinity = — +0o0
.) Tk o
Loagesk (3bits exp, 4 bl huc/ bogz2" -4 '3)
nor waplise T
s e “
$=0 ot)] by K 5] al1 4[4]
e A 10 Gooml | | K441 4s ar SiEEeH s AL
1b
biacz= 1 1.1 1) E<expbius eq:b 2 E=6-33 W
Y A4 47,' /Vq\v(,; (-1]0-1, n1 141 -2_3 = 435 ‘)} < 3_24.':45‘,5' W\

Coclul: '.w\v\\ndf fect
no‘ww,\i\eol bios 1 [neimahsed

Remark FP Exam Questions :;

Systems @ ETH ziric
* The rest work analogous, i.e. once you know the formulas and

how to calculate its trivial (i.e. easy points in the exam)

=g~

Systems @ ETH ziric

Floating Point Exam Questions
HS19 Q11

Systems Programming and Computer Architecture

HS19 Question 11

Systems @ ETH ziric

Question 11 [16 points]

Consider a floating point format which uses 10 bits but otherwise follows |IEEE standard format. 5
bits are used for the fractional part, and 4 bits to represent the exponent.

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

S
+ —— — 4+
+ —— — +
+ —— — 4+
+ —— — +

HS19 Question 11

Question 11

[16 points] Systems @ ETH zirich

Consider a floating point fi hich uses 10 bits but otherwise follows IEEE standard formati 5 |
bits 3re used for thé fracti rt) and 4 bits]o represent the\&po\nemj

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

* You need to know the layout of Sign, Exponent, Mantissa
* Also that there is always one sign bit

HS19 Question 11

Question 11 [16 points] Systems @ ETH zirich

Consider a floating point f hich uses 10 bits but otherwise follows IEEE standard formati 5
bits are used for thep@ﬁiﬁb and {4 bits }o represent the\'e?pﬁnq

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

The bias for this format is 7. Explain why.

(2 points)

HS19 Question 11

Question 11 [16 points] Systems @ ETH zirich

Consider a floating %ich uses 10 bits but otherwise follows IEEE standard formati 5

bits Are used for thé fracti rt and |4 bits }o represent the\'ew

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

The bias for this format is 7. Explain why.

(2 points)

e=tbils for cx’):"r
e y-1
Bies = 2 -1=2 -1=8-1=7%

HS19 Question 11

The bias for this format is 7. Explain why.

Question 11

[16 points]

Consider a floating point f hich uses 10 bits but otherwise follows IEEE standard form
bits &re used for the fracti]

rt} and |4 bits Jo represent the\éﬁmm]

atisL

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

How is the real number 1/2 represented in binary in this system? Show your working.

ch

Question 11

HS19 Question 11

[16 points]

hich uses 10 bits but otherwise follows IEEE standard format‘ 5 |
bits are used for thé fracti]

rt) and 4 bits Jo represent the(exponentf

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S

for sign, M for mantissa, or E for exponent.

The bias for this format is 7. Explain why.

How is the real number 1/2 represented in binary in this system? Show your working.

skant: (4= (0.4

-

" Q\M%

Tonslomn . D10 br E= =4

E = Q,KV\- Q\qs
lmwv% 1

) q{\;]ﬁﬂiu\ =143 =
</

1TA) llag it (lac,&ha\

E:((\ (4 k)10 11

S‘\cdw

Frodiong)’ [0 0 0 oo ol 0l941 oJloo 000

(2 points)

ch

Question 11 [16 points]

Consider a floating

oint f hich uses 10 bits but otherwise follows IEEE standard formati 51
I I S 1 9 Qu e S t i O n 1 1 bits 2re used for the%rz_c_tﬁm and {4 bits]o represent the\fe?poﬁ'm]

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

The bias for this format is 7. Explain why. . o | el g | ch

What real number is represented by the binary value 1111000000 in this system? Show your
working

(4 points)

Question 11 [16 points]

Consider a floating point f hich uses 10 bits but otherwise follows |IEEE standard format‘ 51
I I S 1 9 Qu e S t i O n 1 1 bits 2re used for thé fracti rt} and 4 bits]o represent the\fe?poﬁ'm]

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)
The bias for this format is 7. Explain why. U P P IR ch

What real number is represented by the binary value 1111000000 in this system? Show your
working

v 1112421 0l000 00
Sign: 4 v\ef,a\s‘”

ep: 1210 (Ul 9 Ceeyqling ® E=M-3=%
mavisal (0 00 00V

(E
Nuwmevice) Fon: (=0 M- 2

1 »
5 1)~ 400000 -2 = <2 z.me
f

vk leadipy A (a5 expt M1, eq1400..0 S Normaiied |

Question 11 [16 points]

Consider a floating point f hich uses 10 bits but otherwise follows |IEEE standard format‘ 51
I I S 1 9 Qu e S t i n 1 1 bits 2re used for thé fracti rt) and |4 bits]o represent the\fe?poﬁ'mj

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S
for sign, M for mantissa, or E for exponent.

(2 points)

The bias for this format is 7. Explain why. .

What number in this system is represented by the smallest negative denormalized value?
Give your answer as a decimal number, and show your working.

(4 points)

Question 11 [16 points]

Consider a floating

oint f hich uses 10 bits but otherwise follows IEEE standard format‘ 5 |
° bits 2re used for thé fracti rt) and |4 bits]o represent the\femm]
I I S 1 9 Qu e St I O n 1 1 Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S

for sign, M for mantissa, or E for exponent.

(2 points)

The bias for this format is 7. Explain why. U P P R R

What number in this system is represented by the smallest negative denormalized value?
Give your answer as a decimal number, and show your working.

Wowki Smalletr , neg. denotwr ., neg= $= 4, oenamd eq= ©0 0 0

dn G allor e’ it Yo 14111

Vave 1|ooool'l 1411
E (Jevow): -Bijus44 = -F#1=-b

1 ~b R S RN R WS
(-) 011914 121-20 = -1.(i+qs§¢4_6 3,)2
A\

.mq\\duf l‘%qd,a, O os iy plevom

~b

N}

-0. %6352

=g~

Systems @ ETH ziric

Floating Point Exam Questions
HS17 Question 3

Systems Programming and Computer Architecture

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What is the bias for this format?

(2 points)

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What is the bias for this format?

(2 points)

[S1 exp | 4

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What integer is the largest positive normalized value below infinity?
Give your answer as a decimal number, and show your working.

(4 points)

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What integer is the largest positive normalized value below infinity?
Systems @ ETH ziric

Give your answer as a decimal number, and show your working.

Scmdn'.%; lngmP notMmHSﬂd valid (Bius=7')

$:10 Bingy: 0141 1 0]21 4 1
ep=111 0 E: exp-Biuy ,exp= 13 =9 E=M -3=7]
boss (11 7] hewrol
N t—ﬁauuﬁ_u -2.@ r [T *31\1} = 222
Swmply shibl
zﬁu; s iy 0 I B
11111000

=(2y8)10

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What real number is represented by the binary value 100000000 in this system? Show your working

(2 points)

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

What real number is represented by the binary value 100000000 in this system? Show your working

(2 points)

* Do not calculate anything!

* By the bit representation we know it must be -0

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]
How is the real number 1 represented in binary in this system? Show your working.

(4 points)

HS17 Question 3

Systems @ ETH ziric
Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]
How is the real number 1 represented in binary in this system? Show your working.

(4 points)
e Sign=0 (obvious)
* Normalised means implied leading 1 => to get 1.0 we need frac=0
e E=exp-bias (normalized), we want E to be 0, so this implies exp=bias

=>exp=7, i.e. exp=0111
:0 0111 0000s,.

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]
How is the real number -1/32 represented in binary in this system? Show your working.
(4 points)

HS17 Question 3

Systems @ ETH ziric

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4
bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]

How is the real number -1/32 represented in binary in this system? Show your working.

(4 nninte)

bdat 2:0.00 00 1

A
e, = 2
Valve, 3 32

1 1

lewdig 1° 1.0, wih Ex-S

2 E=exr\hbiqsfﬁ'-> exn= E+ling = 5143=(2)y, < (o 01 0),
hac=00 0 0

Siﬁn:’l

i« v
Wed: 1|0 0106(00 00

sigh ex(\ dvac

Q8A mas
Questions about the Attacklab ?
“ YOU DON'THAVE ANY BUFFER OVERFLOWS

Systems @ ETH zirich

IFYOUR PROGRAM DOESN'T ACCEPT ANY INPUT

Systems @ ETH ziric

Floating point

Recap for the Assighment

83

Floating Point Representation :;

Systems @ ETH zirich

Numerical Form Encoding
“Scientific Notation” “Bit Pattern”
Sign S e€{0,1} Sign S €{0,1}
Exponent E exp -~E
Mantissa M €[1.0, 2.0) frac ~M

S exp

1 8 23 float

F = (_1)8 .M - 2E 1 11 52 double

84

Casting

Systems @ ETH ziric
Integer Types Floats
 What happens here? What happens here?
1. unsigned int foo0; 1. int i
2. long bar = (long) foo; At L
’ ’ 2. long long 1;
3. float f;
OR 4. double d;

int must fit in a long

(int) f;
(int) d;
(float) d;
(double) i;
= (double) f;

vih WwWN R
Q Q -h H- R
[

85

Floats <-> Integers

Systems @ ETH ziric
* Casting between floats, doubles and integers

generally changes the bit representation!

int i = OxABCDABCD;
float f = (float) i;

int *i2 = (int *) &f;

printf(“%x, %x”, i, *i2);

coONOYUT D WN B

// Prints abcdabcd, cea864a8

86

Floats <-> Integers

double/float int Truncate the fractional part.
Out of range, NaN , inf

float f1 = 1.12345; (int) f1 == ? -> Default handler assigns
_ . i == ?
float f2 = 1.999999; (int) f2 . INT_MIN.
int double exact conversion if integral value

IS max 54 bits
(double) 11; 11 == (long long) di;
(double) 12; 12 == (long long) d2;

long long 11=0OX7FFFFFFFFFFFFFFF; double di
long long 12=0OxFFFFFFFF; double d2

int float round using rounding mode

87

Floats <-> Integers

Systems @ ETH ziric

float f2
float 3

1.50f;
1.50f;

printf("%f", f2+f3);
printf("%i", (int)(f2+f3));
printf("%i", (int)f2 + (int)f3);

f2 + 3 == 3.00000
(int)(f2 + f3) == 3

(int)f2 + (int)f3 == 2

88

P WDNPR

ui D WN

What happens here?

Q Q -h K- -

. int 1i;

. long long 1;
. float f;

. double d;

(int) f;
(int) d;
(float) d;
(double) 1i;
(double) f;

Casting

Systems @ ETH ziric

(1) Truncate fractional part, assign TMin/TMax if
integral part under-/overflows int

(2) same as (1)

(3) Loss of precision and float is set to +/-inf if
exponent of double does not fit in exponent of float

(4) No loss, every (32-bit) int can be represented
exactly as double.

(5) No loss of precision. C standard guarantees that

every float can be represented exactly as a double.
(only tricky for denormalized values)

89

F=(-1)°>-M-2F S exp frac

Normalized / Denormalized

 Normalized: exp != {000...0, 111...1} Systems @ ETH ziricn

— Good for bigger values

— Not equi-spaced
* Denormalized number: exp == 000...0
— Good for very small values
— Equi-spaced [-0 + eps, 6 - eps], 6=smallest normalized number

— Zero
Norrlnalized Denorrp alized Norm alized

|

RS
3 b X
2

F=(-1)°>-M-2F S exp frac

Normalized / Denormalized

* Denormalized not a number: exp == 111...1 Systems @ ETH ziic»
— +/- infinity if frac = 000...0
— NaN else
______ Normalized Denorrpalized Normalized L

R 1 b ek T T -
H f 1~ OO e -_. -r-'r o0
n
1 1 1 1

F=(-1)>-M-2F S exp frac
Exponent

_ Systems @ ETH ziric
 Must be able to have negative exponents -> encode as

biased value
— exp = E + bias

We will see in a
few slides why we
subtract 1 here

* bias=2¢1-1:
— For Single precision?
— For Double precision?

* Normalized: exponent never all zeros nor all ones

92

F=(-1)S-M-2E S exp frac .
Significand

Systems @ ETH ziric
* In binary: M € [1.0, 2.0)
* The encoding always assumes a leading 1
* Remove it to save one bit!

* What are the max and min values for the significand?

93

F=(-1)°>-M-2F S exp frac

Exponent

Systems @ ETH ziric
* Express values very close to O:

exponent must be as negative as possible

* Expis all zero and the exponent is evaluated as
—exp =-bias +1

94

F=(-1)°-M-2F S exp frac |
Significand n;

Systems @ ETH ziric
* We are close to zero: M € [0.0, 1.0)
* The encoding always assumes a leading O

* Remove it to save one bit!
(like with the 1 in normalized case)

95

F=(-1)>-M-2F S exp frac

Special Values

Svstems @ ETH ziricn
m
000...0 Infinity (+/ -)
operation overflows
I=000...0 111...1 Not-a-Number (NaN)
No numeric value
sgrt(-1)
0 000...0 000...0 Zero (like integer 0)

1 000...0 000...0 Minus O

96

-07?
Systems @ ETH ziricn

In IEEE arithmetic, it is natural to define log 0 = -e= and log x

to be a NaN when x < 0. Suppose that x represents a small

negative number that has underflowed to zero. Thanks to

signed zero, x will be negative, so log can return a NaN.

However, if there were no signed zero, the log function

could not distinguish an underflowed negative number from

O and would therefore have to return -oo.

97

F=(-1)°>-M-2F S exp frac

Tiny floating point example

s |exp frac
) 4 3 The exam usually
has a question on
* 8-bit floating point representation tiny floats

— the sign bit is in the most significant bit.
— the next four bits are the exponent, with a bias of 2471 = 7.
— the last three bits are the frac

ich

 Same general form as |IEEE Format
— normalized, denormalized
— representation of 0, NaN, infinity

98

F=(-1)°>-M-2F S exp frac

Denormalized
numbers

Normalized
numbers

OO OO O®: OOCOOOO: OO0

o

exp

0000
0000
0000

0000
0000
0001
0001

0110
0110
0111
0111
0111

1110
1110
1111

frac

000
001
010

110
111
000
001

110
111
000
001
010

110
111
000

Value

%)
1/8*1/64
2/8*1/64

6/8*1/64
7/8*1/64
8/8*1/64
9/8*1/64

14/8*1/2
15/8*1/2
8/8*1
9/8*1
10/8*1

14/8*128
15/8*128
inf

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

9/8
10/8

224
240

_

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

F=(-1)°>-M-2F S exp frac

Creating a floating point number

7 6 3 2 Systems @ ETHzirich
* Steps s | exp frac

— Normalize to have leading 1
— Round to fit within fraction
— Postnormalize to deal with effects

of rounding

128 10000000
e (Case study 13 00001101
— Convert 8-bit unsigned numbers to 17 00010001
tiny floating point format 19 00010011

138 10001010

63 00111111

F=(-1)°>-M-2F S exp frac

Normalize
7 6 3 2 Systems @ ETHzirich

ReqUirement s | exp frac
— Set binary point so that numbers of form 1.xxxxx

— Adjust all to have leading one
* Decrement exponent as shift Ieft

m

10000000 1.0000000
13 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5

F=(-1)°>-M-2F S exp frac

Rounding

1.BBGRXXX Systems @ ETH ziic»
Guard bit: LSB of result T ' o o ,
, _ Sticky bit: bitwise OR of remaining bits
Round bit: 15t bit removed

Roundin: mm

1.0000000 1.0

Round =1, Sticky =1

, 13 1.1010000 100 N 1.101
= up if > 0.5

17 1.0001000 010 N 1.000
Round = 1, Sticky = 0, Guard = 1 19 1.0011000 110 Y 1.010
= round to even 138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

F=(-1)°>-M-2F S exp frac

Postnormalize

I SSue. Systems @ ETH ziricn

Rounding may have caused overflow
Shift right once & increment exponent

__Value | Rounded | Exp | _Adjusted
128 1.000 128

7
13 1.101 3 13
17 1.000 4 16
19 1.010 4 20
138 1.001 7 144
63 10.000 5 1.000/e=6 64

F=(-1)°>-M-2F S exp frac |
A possible Exam Question n;

Systems @ ETH ziric
* You have an 8 bit floating point representation with

3 fraction bits.

— Give the floating point representations of
e 144
. 64

— Is the conversion exact?

104

F=(-1)>-M-2F S exp frac |
Addition (normalized) :;

Systems @ ETH ziric

* Signed align and add (Assume E1 > E2)

— Shift the first operand by the difference of their
exponents

— Add the M and s bits

I
I (_1)51 M1 I

I (_1)52 M? I

| S |
* shift and adjust exponent until M € [1.0, 2.0)
* Round

 Post-Normalize

105

F=(-1)°>-M-2F S exp frac

Multiplication (normalized) :;

e F= (_1)51 & S2 *(IVIl*I\/IZ) * JE1+E2
(@ denotes XOR)

c M=M1*M2
e S=S1QS2
 E=E1+E2

e shift and adjust exponent until
M € [1.0, 2.0)

Systems @ ETH ziric

Round M to fit fraction
bits

Post-normalize and
check if exponent still
In range

106

F=(-1)S-M-2F

S exp frac

(1)

2)

)

4

| Start I

Compare the exponents of the two numbers
shift the smaller number to the right until its
exponent matches the larger exponent

v

Add the significands (mantissas)

v

Simplified
Floating Point
Addition
Flowchart

Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Overflow or
Underflow ?

Generate exception
or return error

If mantissa =0
set exponent to 0

Systems @ ETH ziric

107

http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

F=(-1)°>-M-2F S exp frac

Simplified Floating Point
Multiplication Flowchart

1)

Is one/both
operands =0?

_ Set the result to zero: SyStemS @ E," Ziirich

exponent =0

(2) Compute sign of result: Xs XOR Ys

v
Multiply the mantissas
Q) v
| Round or truncate the result mantissa |
(4) Compute exponent:
biased exp.(X) + biased exp.(Y) - bias
v

(5) | Normalize mantissa if needed |

Overflow or
Underflow?

(6) Generate exception
or return error

108

http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

Systems @ ETH ziric
If you are really interested in further knowledge

about floating-point have a look at the following
reprint of the paper:

What Every Computer Scientist Should Know About
Floating-Point Arithmetic by David Goldberg,
published 1991 in Computing Surveys

109

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Assignment 08

Floating Point

e
\

Part 1: Pen & Paper exercise n;

Systems @ ETH ziric
* Conversion of Decimal to IEEE floating point

numbers

* Checks basic understanding of floating point
numbers

111

Part 2: Now it’s your turn! n;

Systems @ ETH ziric
* Implement your floating point handler in C!

— No use of floats/doubles

— Use the given skeleton

112

Your float t

Systems @ ETH ziric
* You will represent the float as a struct

1. typedef struct float t {
2 uint8 t sign;

3. uint8 t exponent;

4 uint32_t mantissa;

5.

.};

* Challenge: Can you use bit fields for this and simply
cast the pointer?

https://www.geeksforgeeks.org/bit-fields-c 113

https://www.geeksforgeeks.org/bit-fields-c

Conversion

Systems @ ETH ziric
* The only time you are allowed to use floats is when

you convert them to/from your float_t

1. float_t fp encode(float x);

1. float fp_decode(float_t x);

114

A possible strategy for testing n;

Systems @ ETH ziric

Create some float numbers and convert them into your float_t.
— Choose some “regular” numbers

— Don’t neglect the corner cases
* Denormalized
* NaN
e Inf
¢ -0

Perform some additions, multiplications, negations using your
implementation

Convert the results back to float and compare

115

Simple Example Test

Systems @ ETH ziric
1. void main() {
2. float f1 = 1.123;
3. float f2 = 550;
4. float f3;
5. float t ft1l = fp _encode(fl);
6. float_t ft2 = fp_encode(f2);
7. float t ft3;
8.
9. 3 = f1+f2;
10. ft3 = fp_add(ftl, ft2);
11.

12. assert(f3 == fp_decode(ft3));

116

Have a nice week!

Systems @ ETH zirich

YEAH, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LOpKING FOR THE BUG
BEFORE THEY FIGURED
IT OUT.

HEY, CHECK 1T ouT: @™ -11 15 DURING A COMPETITION, I THATS
19.999099979. THATS WEIRD. | TowD THE PROGRAMMERS ON

YEAH. THATS HOW I | OUR TEAM THAT " -17r
GOT KICKED ouT oF | WAS A STANDARD TEST OF FLOATING -
THE ACM N COLLEGE. POINT HANDLERS -- IT WOULD
COME OUT TO 20 UNLESS
THEY HAD ROUNDING ERRORS.

PR RR £ K

Systems Programming and Computer Architecture 117

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Q&A
	Slide 83: Floating point
	Slide 84: Floating Point Representation
	Slide 85: Casting
	Slide 86: Floats <-> Integers
	Slide 87: Floats <-> Integers
	Slide 88: Floats <-> Integers
	Slide 89: Casting
	Slide 90: Normalized / Denormalized
	Slide 91: Normalized / Denormalized
	Slide 92: Exponent
	Slide 93: Significand
	Slide 94: Exponent
	Slide 95: Significand
	Slide 96: Special Values
	Slide 97: -0 ?
	Slide 98: Tiny floating point example
	Slide 99
	Slide 100: Creating a floating point number
	Slide 101: Normalize
	Slide 102: Rounding
	Slide 103: Postnormalize
	Slide 104: A possible Exam Question
	Slide 105: Addition (normalized)
	Slide 106: Multiplication (normalized)
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Assignment 08
	Slide 111: Part 1: Pen & Paper exercise
	Slide 112: Part 2: Now it’s your turn!
	Slide 113: Your float_t
	Slide 114: Conversion
	Slide 115: A possible strategy for testing
	Slide 116: Simple Example Test
	Slide 117

