

Exercise Session 10

Computer Architecture and Systems Programming

Autumn Semester 2024

Disclaimer

- Website: n.ethz.ch/~falkbe/
- (Extra) Demos on GitHub: github.com/falkbe
- My exercise slides have **additional slides** (which are not official part of the course) **having a blue heading**
- For the exam **only** the official exercise slides are relevant, if in doubt always check the ones on the official moodle page

In this session...

- Questions Regarding Attacklab
- Lecture Recap Floating Point
 - FP Basics
 - FP: Normalised, Denormalised, Special Values
 - FP: Rounding
 - FP: Operations
 - SSE3
- Exam Questions on Floating Point
- Recap of floating point
- Preview assignment 8: Floating point

Lecture Recap

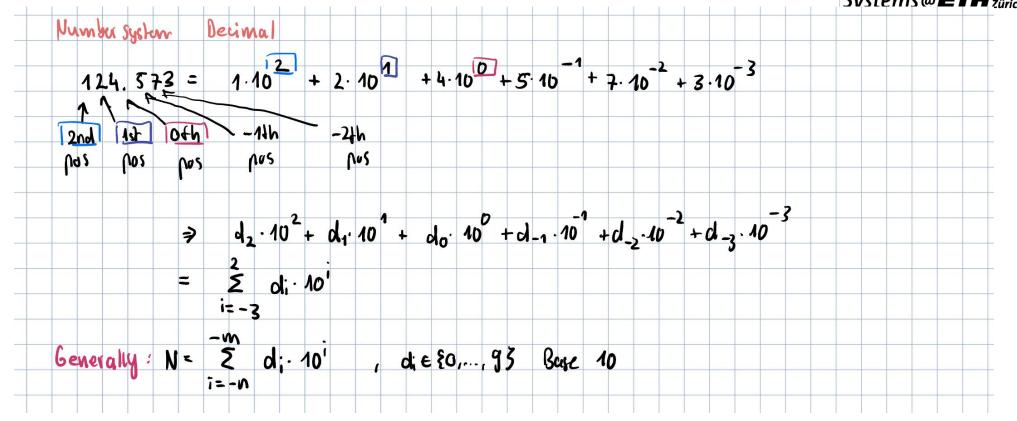
Basics

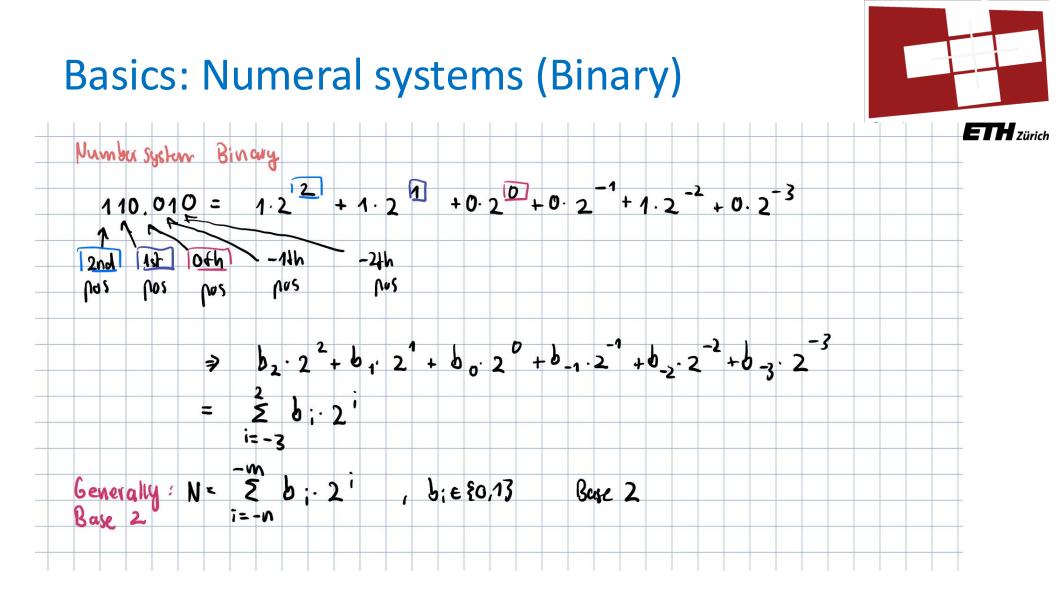
Systems Programming and Computer Architecture

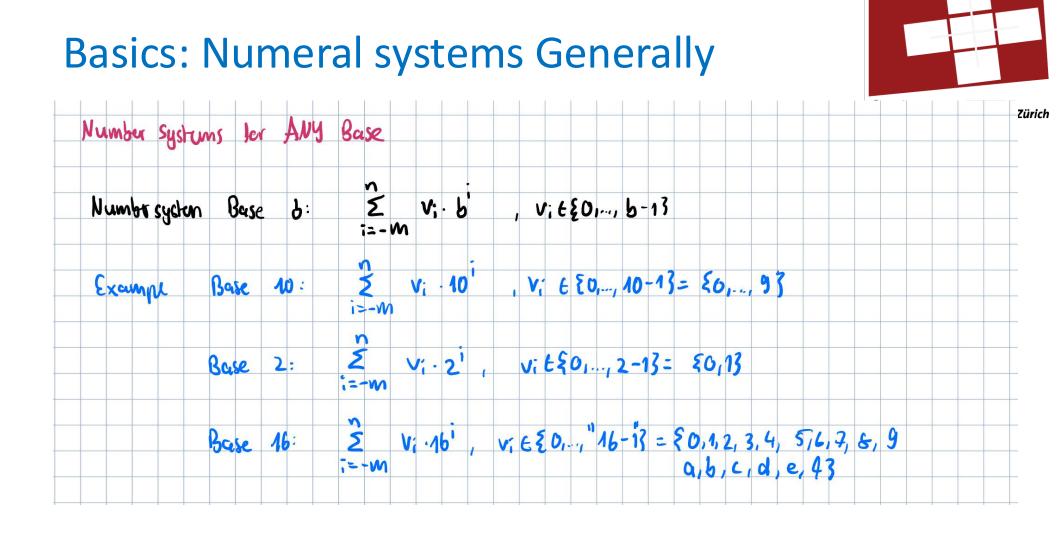
Numeral Systems

- Should be known be now, just a quick reminder
- Very important for fundamental understanding as well as for other courses (CN Ternary IP Addresses Exam Task)

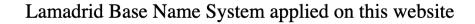
Basics: Numeral systems (Decimal)







Basics: Numeral systems Generally



Bases 1-10

1 unary

2 binary

- 3 ternary
- 4 quaternary
- 5 quinary
- 6 senary
- 7 septenary
- 8 octal
- 9 nonary
- 10 decimal

11 undecimal
 12 duodecimal
 13 tridecimal
 14 tetradecimal
 15 pentadecimal
 16 hexadecimal
 17 heptadecimal
 18 octodecimal

Bases 11-20

- 19 enneadecimal
- 20 vigesimal

- 21 unvigesimal
- 22 duovigesimal
- 23 trivigesimal
- 24 tetravigesimal
- 25 pentavigesimal

. . .

- 30 trigesimal32 duotrigesimal
- 36 hexatrigesimal

. . .

- 40 quadragesimal
- 50 quinquagesimal
- 60 sexagesimal
- 70 septuagesimal
- 80 octogesimal
- 90 nonogesimal
- 100 centesimal
- 120 centovigesimal
- 144 centotetraquadragesimal
- 360 trecentosexagesimal

• This concept applies to any base b

@ ETH zürich

Basics: Numeral systems Generally

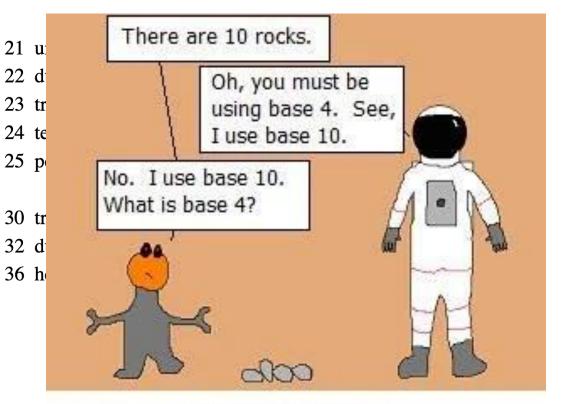
Lamadrid Base Name System applied on this website

Bases 1-10

- 1 unary
- 2 binary
- 3 ternary
- 4 quaternary
- 5 quinary
- 6 senary
- 7 septenary
- 8 octal
- 9 nonary
- 10 decimal
- 11 undecimal
 12 duodecimal
 13 tridecimal
 14 tetradecimal
 15 pentadecimal
 16 hexadecimal
 17 heptadecimal
 18 octodecimal
 19 enneadecimal

Bases 11-20

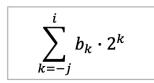
- 20 vigesimal
- You can also understand bad jokes now

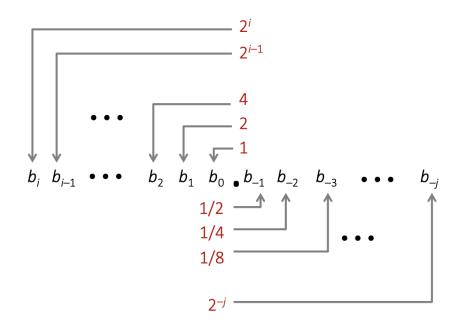


Every base is base 10.

Fractional binary numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:





Floating point representation (recap from Digital Circuits?)

• Numerical form:

 $(-1)^{s}.M.2^{E}$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB (Most Significant Bit) s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s exp frac

- **S,M,E** refer to numerical form
- s, exp, frac refer to binary encoding

Original precisions

IEEE 754 Single Precision (32 bits):

s	exp	frac
1	8	23

IEEE 754 Double Precision (64 bits):

s	exp	frac		
1	11	52		

Precision	Significand bits	Exponent bits	Total
Half	11	5	16
Single	24	8	32
Double	53	11	64
Quadruple	113	15	128
Octuple	237	19	256
Google bfloat16	7	8	16
Nvidia TensorFloat	10	8	19
AMD fp24	17	7	24

Lecture Recap Floating Points in C

Systems Programming and Computer Architecture

FP in C

- C99 guarantees two levels:
 - float single precision
 - double double precision
- long double is usually quadruple precision
- Conversions/casting
 - Casting between int, float, and double changes bit representation
 - double/float \rightarrow int
 - Truncates fractional part (like rounding toward zero)
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has \leq 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode

Rounding of FP in C

From/To	Int	Float	Double
Int	-	No loss for small values; precision loss for large values	No loss
Float	Truncates fractional part; overflow for large values	-	No loss
Double	Truncates fractional part; overflow for large values	Precision loss for large/precise values	-

Lecture Recap

FP: Normalised, Denormalised, Special Values

Systems Programming and Computer Architecture

- There are **3 types** of encodings
- 1. Normalised: values in the normal range
- 2. Denormalised: values which are very small
- 3. Special Numbers: Infinity, 0, NaN

- There are **3 types** of encodings
- 1. Normalised: values in the normal range
- 2. Denormalised: values which are very small
- 3. Special Numbers: Infinity, 0, NaN

FP Recap: 1. Normalised

- Condition: exp \neq 000...0 and exp \neq 111...1
- Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{e-1} 1, where e is number of exponent bits
 - Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)

- **S,M,E** refer to numerical form
- **s, exp, frac** refer to binary encoding
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (*M* = 1.0)
 - Maximum when 111...1 (*M* = 2.0 ε)
 - Get extra leading bit for "free"

1. Normalized

s \neq 0 and \neq 255fsexpfrac

Numerical form:

$$(-1)^{s}.M.2^{E}$$

Normalized encoding example

 Value: float F = 15213.0; 15213₁₀ = 11101101101₂ = 1.1101101101₂ x 2¹³

• Significand

- *M* = 1.<u>1101101101</u>₂
- frac = $1101101101101_000000000_2$

• Bias=(2^e)-1, for e=8: 127

- Exponent
 - *E* = 13
 - *Bias* = 127
 - $Exp = 140 = 10001100_2$

E=Exp-Bias ⇔ Exp=E+Bias
 ⇔ Exp=13+127

=140

• Result:

 0
 10001100
 1101101101000000000

 s
 exp
 frac

- There are **3 types** of encodings
- 1. Normalised: values in the normal range
- **2. Denormalised**: values which are very small
- 3. Special Numbers: Infinity, 0, NaN

FP Recap: 2. Denormalised

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
- 2. Denormalized

s 0 0 0 0 0 0 0 0 0

s exp frac

- There are **3 types** of encodings
- 1. Normalised: values in the normal range
- 2. Denormalised: values which are very small
- **3. Special Numbers**: Infinity, 0, NaN

FP Recap: 3. Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g. 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(−1), ∞ ∞, ∞ * 0

3a. Infinity

 s
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

3b. NaN

 s
 1
 1
 1
 1
 1
 1
 $\neq 0$

 s
 exp
 frac

FP Recap: Normalised, Denormalised, Special Values Graphical

1. Normalized

s	≠ 0 and ≠ 255	f

2. Denormalized

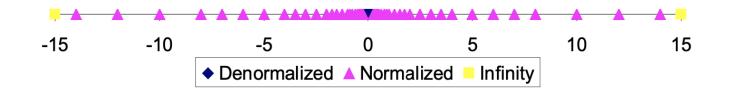
s	0	0	0	0	0	0	0	0	f
								(

3a. Infinity

3b. NaN

s	1 1	1 1	1	1	1	1	1	1	≠ 0	
---	-----	-----	---	---	---	---	---	---	-----	--

- *Really* tiny 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 2³⁻¹-1 = 3



Lecture Recap FP: Rounding Modes

Systems Programming and Computer Architecture

FP Recap: Rounding Modes

Rounding

• Rounding modes (illustrate with CHF rounding)

	CHF 1.40	CHF 1.60	CHF 1.50	CHF 2.50	CHF -1.50
Towards zero	1	1	1	2	-1
Round down (- ∞)	1	1	1	2	-2
Round up (+∞)	2	2	2	3	-1
Nearest Even (default)	1	2	2	2	-2

• 4 Rounding Modes IEEE 754 supports

FP Recap: Round to even Decimal

Closer look at "round-to-even"

- Default rounding mode for IEEE FP
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

Value	Result	Description
1.2349999	1.23	(less than half way)
1.2350001	1.24	(greater than half way)
1.2350000	1.24	(half-way – round up)
1.2450000	1.24	(half way – round down)

FP Recap: Round to even Binary

Rounding binary numbers

- Binary fractional numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...₂
- Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Result
2 ³ / ₃₂	10.00 <mark>011</mark> 2	10.00 ₂	< ½ : down	2
2 ³ / ₁₆	10.00 <mark>110</mark> 2	10.012	> ½ : up	2 ¹ / ₄
2 ⁷ / ₈	10.11 <mark>100</mark> 2	11.002	= ½ : up	3
2 ⁵ / ₈	10.10 <mark>100</mark> ,	10.10,	= ½ : down	2 ½

- Binary equivalent of ".5" (decimal) is ".1000..." (binary)
- Even in binary: means 0 as lsb
- Odd in binary: means 1 as lsb

FP Recap: Rounding

Guard bit: LSB of result -

Round bit: 1st bit removed

Sticky bit	OR of rer	maining bits
------------	-----------	--------------

SYSTEMS @

1.BBGRXXX

Value Rounded Fraction Incr? GRS 128 1.0000000 000 1.000 Ν 13 1.1010000 100 Ν 1.101 17 1.0001000 010 Ν 1.000 19 1.0011000 Υ 1.010 110 138 1.0001010 Υ 011 1.001 63 1.1111100 111 Υ 10.000

Round up Conditions

Trivial Cases (we are not in the middle)

- **R=1,S=1** => Up (as Number is >0,5)
- **R=0, S=_** => Down (as Number is <0,5)

Round to even Cases (we are exactly in the middle)

- **G=1, R=1, S=0** => Up (to make it even, as G=1 means it not even)
- G=0, R=1, S=0 => Down (to keep it even, as G=0 means its even)

FP Recap: Round to even Binary

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Lecture Recap

FP: Operations

Systems Programming and Computer Architecture

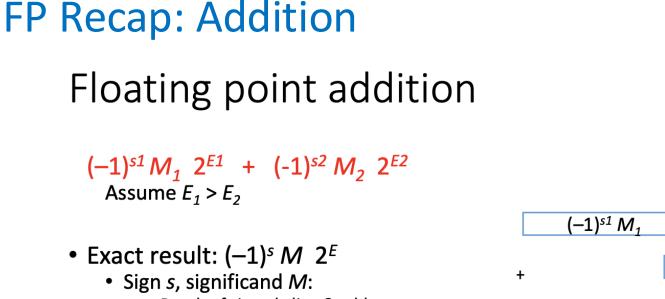
FP Recap: Multiplication

Floating point multiplication

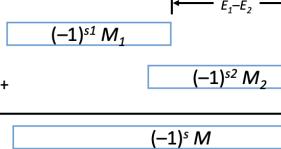
- Exact Result: (-1)^s M 2^E
 - Sign *s*:
 - $s_1^{1} s_2$ • Significand M: $M_1 * M_2$
 - Exponent E: $E_{1} + E_{2}$

$$(-1)^{s1} M_1 2^{E1} \times (-1)^{s2} M_2 2^{E2}$$

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round *M* to fit frac precision
- Implementation
 - Biggest chore is multiplying significands



- Result of signed align & add
- Exponent E: E₁



- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if *M* < 1, shift *M* left *k* positions, decrement *E* by *k*
 - Overflow if *E* out of range
 - Round *M* to fit **frac** precision

FP Operations Remark

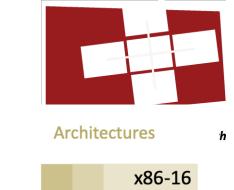
- The float lab is about implementing those
- Highly recommend doing this lab: stuff like this is very likely to appear as a coding exercise in the exam

Lecture Recap SSE3 – Streaming SIMD Extension 3

Systems Programming and Computer Architecture

SSE3 Introduction

- **SSE3** (Streaming SIMD Extensions 3): Part of a family of instruction set **extensions** of x86, to accelerate computation
- **SSE** introduced %xmm registers
- **SSE2** extended %xmm to support both single and double prec.
- **SSE3** added more specialced SIMD instructions
- AVX introduced wider %ymm regs (256 bits)
- AVX-512 extended to 512-bit %zmm regs



	Processors	Ar	chite	ectures	
	8086			x86-1	6
	286				
	386 486 Pentium			x86-3	2
	Pentium MMX			MM.	x
	Pentium III			SS	E
	Pentium 4			SSE.	2
	Pentium 4E			SSE.	3
ime	Pentium 4F	x	86-6	64 / em64	t
	Core 2 Duo			SSE	4

- General purposes registers: %rax, %rdi, etc.
- **Purpose**: Integer operations, memory addresses and control flow: they handle arithmetic computations, pointer manipulation passing arguments etc.
- **SIMD Registers**: %xmm0, %xmm1, etc.
- **Purpose**: Specialised for floating point computations and SIMD operations
- Why separate registers? We have separate hardware for floating point calculations (Floating point Unit FPU)

SSE3 registers

- All caller saved
- %xmm0 for floating point return value

128 bit = 2 doubles = 4 singles %xmm8 %xmm0 Argument #1 %xmm1 Argument #2 %xmm9 %xmm2 Argument #3 %xmm10 %xmm3 %xmm11 Argument #4 Argument #5 %xmm12 %xmm4 %xmm13 %xmm5 Argument #6 %xmm6 %xmm14 Argument #7 %xmm15 %xmm7 Argument #8

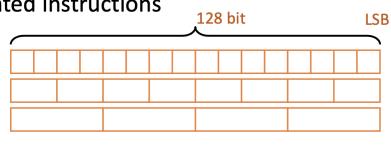
43

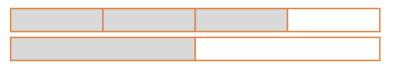
Syste

- Different data types and associated instructions
- Integer vectors:
 - 16-way byte
 - 8-way 2 bytes

SSE3 registers

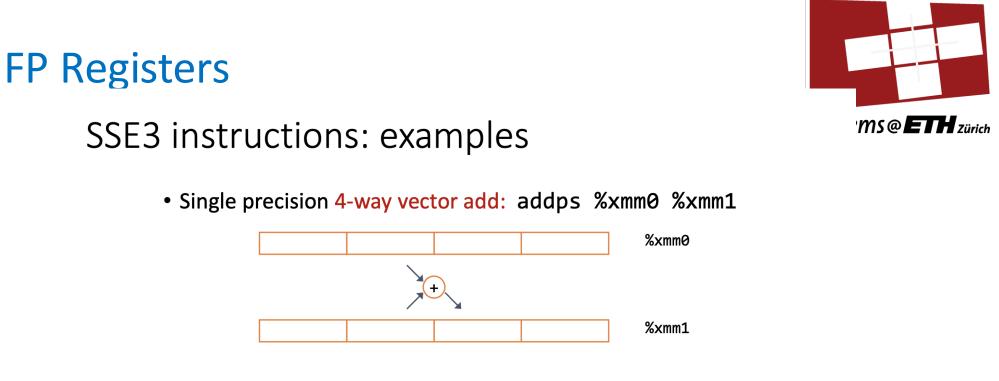
- 4-way 4 bytes
- Floating point vectors:
 - 4-way single
 - 2-way double
- Floating point scalars:
 - single
 - double



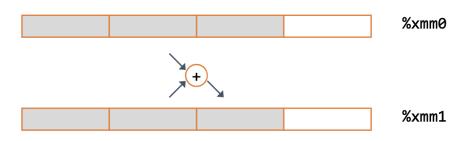




S@ETH Zürich

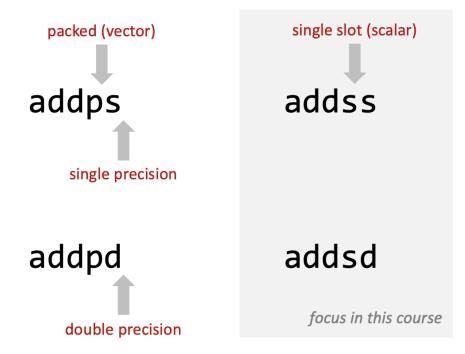


• Single precision scalar add: addss %xmm0 %xmm1



SSE3 instruction names

SSE3 Registers



46

SSE3 basic instructions

	Single	Double	Effect
• Moves:	movss	movsd	D ← S

• Usual operand form: reg \rightarrow reg, reg \rightarrow mem, mem \rightarrow reg

• Arithmetic:

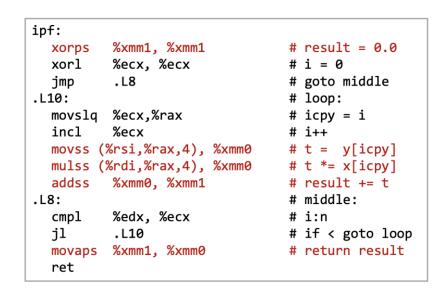
Single	Double	Effect
addss	addsd	$D \leftarrow D + S$
subss	subsd	$D \leftarrow D - S$
mulss	mulsd	$D \leftarrow D \times S$
divss	divsd	$D \leftarrow D / S$
maxss	maxsd	$D \leftarrow max(D,S)$
minss	minsd	$D \leftarrow min(D,S)$
sqrtss	sqrtsd	$D \leftarrow sqrt(S)$

47

x86-64 FP code example

- Compute inner product of two vectors
 - Single precision arithmetic
 - Uses SSE3 instructions

```
float ipf (float x[], float y[], int n)
{
    int i;
    float result = 0.0;
    for (i = 0; i < n; i++) {
        result += x[i]*y[i];
     }
     return result;
}</pre>
```



• **Recall**: SSE3 is simply an **extension** of x86: so it look like x86 you have seen until now with additional instructions

Floating Point Exam Questions HS15 Q6

Systems Programming and Computer Architecture

Remark FP Exam Questions

- In (almost) every exam there are **floating point questions** like the following
- So its worth it to be able to solve them quickly & correctly as they are not hard
- They may come in the form of programming exercises in your case (**do the fp lab!**)

Recall General Format of s,exp,frac

Floating point representation (recap from Digital Circuits?)

• Numerical form:

 $(-1)^{s}.M.2^{E}$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB (Most Significant Bit) s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Question 6

[16 points]

Consider the following 8-bit floating point representation based on the IEEE floating point format:

- There is a sign bit in the most significant bit.
- The next 3 bits are the exponent. The exponent bias is $2^{3-1} 1 = 3$.
- The last 4 bits are the fraction.
- The representation encodes numbers of the form: $V = (-1)^s \times M \times 2^E$, where M is the significant and E is the exponent.

The rules are like those in the IEEE standard (i.e. normalized and denormalized numbers, and the same representation of 0, infinity, and NAN).

Fill in the table below for this format. Here are the instructions for each field:

- Binary: The 8 bit binary representation.
- **M**: The value of the significand. This should be a number of the form x or $\frac{x}{y}$, where x is an integer, and y is an integral power of 2. Examples include 0, $\frac{3}{4}$.
- E: The integer value of the exponent.
- Value: The numeric value represented by the number.

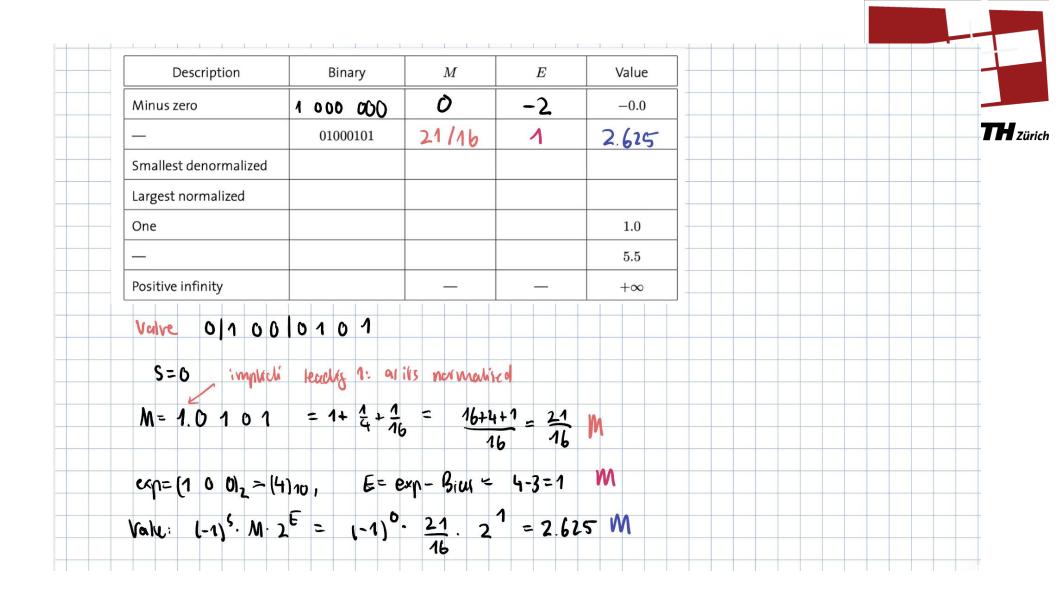
Note: you need not fill in entries marked with "---".

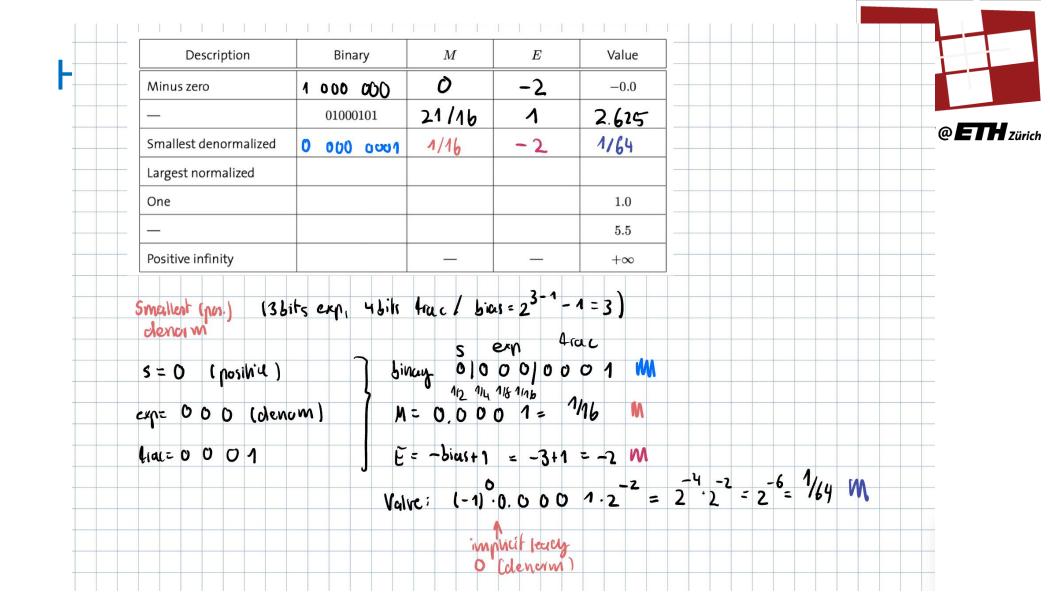
Description	Binary	M	E	Value
Minus zero				-0.0
_	01000101			
Smallest denormalized				
Largest normalized				
One				1.0
_				5.5
Positive infinity				$+\infty$

Remark FP Exam Questions

- Ill solve some as an example: then you can solve some on your own and we can compare
- **FP is not hard**: once you converted 2-3 fps you grasped the concept and thus are easy points in the exam

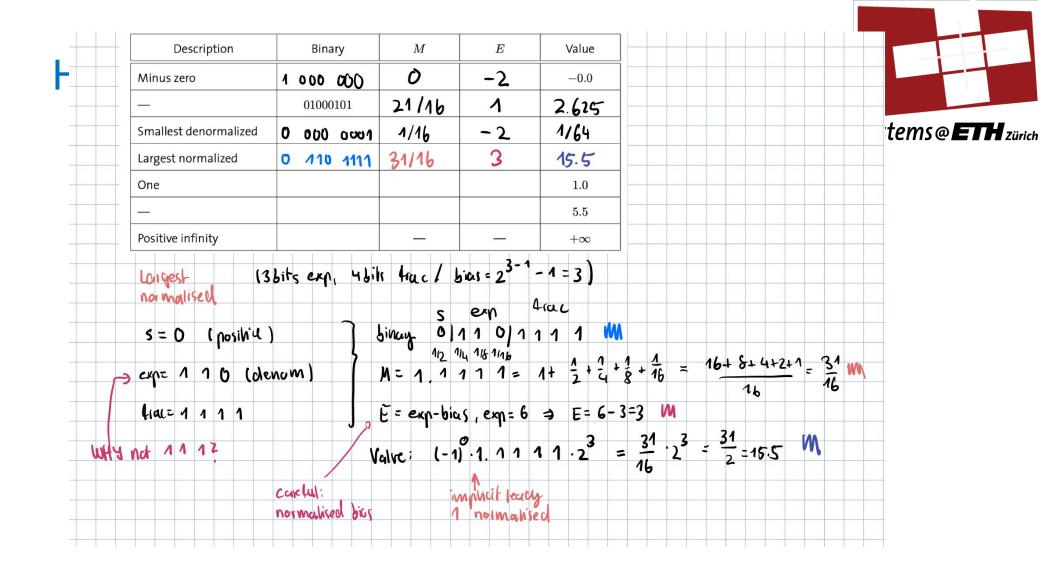
	Description	Binary M			Ε			Va	ue	
-	Minus zero	1 000 000 0			-2	2		-().0	
	—	01000101								
	Smallest denormalized									ms@L
	Largest normalized									
	One							1	.0	
								5	.5	
	Positive infinity				-	-		+	∞	
	Minus Zero	(3 bits exp. 4 bils tru	ic l	b	icus	= 2	3-1.	- 1	= 3	3)
								3		
-	S = 1 (nega	Nia) Jinay	5	5	e ۱0	n 0	4 0 c) C	0	> WM
	5 - 1 (nega				5 0					
	exp= 000	Ma	0,0) (0	0	= (0		
	fial= 0 0 00)	-bia		1		211			2 M
		J L -								
		Valve :	_(- 1)	5.0	. C	00	0	• 2	$2^{-2} = -0.0$
			-		1	cit.	ency			
					n fivi		, crm	1		





Try the next one on your own!

Description		Bina	ary	M	E	Value
Minus zero	1	000	000	Ò	-2	-0.0
_		01000)101	21/16	1	2.625
Smallest denormalized	0	000	0001	1/16	-2	1/64
Largest normalized						
One						1.0
—						5.5
Positive infinity					_	$+\infty$



Remark FP Exam Questions

• The rest work analogous, i.e. once you know the formulas and how to calculate its **trivial** (i.e. easy points in the exam)

Floating Point Exam Questions HS19 Q11

Systems Programming and Computer Architecture

Question 11

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format. 5 bits are used for the fractional part, and 4 bits to represent the exponent.

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S for sign, **M** for mantissa, or **E** for exponent.

(2 points)

[16 points]

Question 11

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits to represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

(2 points)

[16 points]

- You need to know the layout of Sign, Exponent, Mantissa
- Also that there is always one sign bit

S E E E E M M M M

Question 11

[16 points]

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits to represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

(2 points)

The **bias** for this format is 7. Explain why.

(2 points)

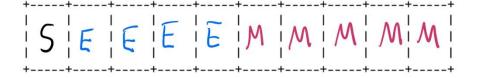
Question 11

[16 points]

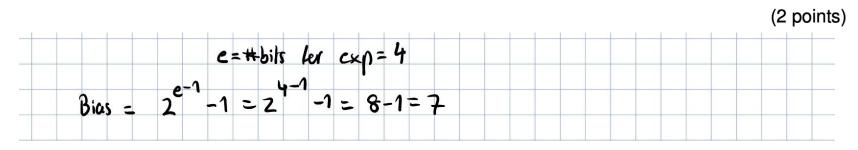
Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits to represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

(2 points)



The **bias** for this format is 7. Explain why.



The **bias** for this format is 7. Explain why.

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits o represent the exponent Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S for sign, M for mantissa, or E for exponent. (2 points)	Question 11	[16 points]
for sign, M for mantissa, or E for exponent. (2 points)	bits are used for the fractional part and 4 bits o represe	ent the exponent
		,

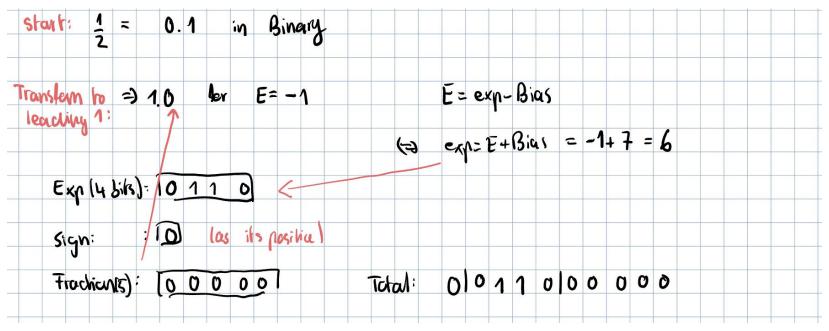
ch

How is the real number 1/2 represented in binary in this system? Show your working.

The **bias** for this format is 7. Explain why.

Question 11	[16 points]
Consider a floating point format which uses 10 bits but of bits are used for the fractional part and 4 bits to represent Sketch the format of this number as bits, with the most signate	nt the exponent
for sign, M for mantissa, or E for exponent.	(2 points)
SEEEEMMM	MM

How is the real number 1/2 represented in binary in this system? Show your working.



The **bias** for this format is 7. Explain why.

Question 11

[16 points]

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits o represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

(2 points)

ch

What real number is represented by the binary value 1111000000 in this system? Show your working

(4 points)

The **bias** for this format is 7. Explain why.

[16 points]

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits to represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as S for sign, M for mantissa, or E for exponent.

(2 points)

ch

What real number is represented by the binary value 1111000000 in this system? Show your working

Given	^;	1	11	1	1	0	10	0	0	U	0																						
Sig	jn:	1	=)	Ŷ	ega	w'u																											
ex	p:	(1	1	1	0) ₂	5		(11	1)1	D		Ð		E	- e	-zp-	Bic	ıs	දා)	E	- 1	4-	7:	=7							
Ma	nr Miss	n	(0	0	U	0	01	٤																									
	Nun	neni	eul	Fe	nm.		('	<mark>مار</mark>	Ņ	۱.	2	-																					
					Ð		[-'	1)1	•	1.	C	U	U	σ	0	•	2	7	:	-	. 2	7	2	- 1	28								
									ίvì	np.v	icit		le	roli	٨g	1	10	as	ex	ρ ‡	11	1	, (en	+(000	Ţ	no	m	Nie	ud)		

The **bias** for this format is 7. Explain why.

 Question 11
 [16 points]

 Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits o represent the exponent

 Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

 (2 points)

What number in this system is represented by the smallest negative denormalized value?

Give your answer as a decimal number, and show your working.

(4 points)

ch

The **bias** for this format is 7. Explain why.

Question 11

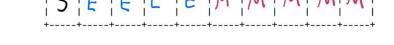
[16 points]

Consider a floating point format which uses 10 bits but otherwise follows IEEE standard format 5 bits are used for the fractional part and 4 bits o represent the exponent

Sketch the format of this number as bits, with the most significant bit on the left. Mark each bit as **S** for sign, **M** for mantissa, or **E** for exponent.

(2 points)

ch



What number in this system is represented by the smallest negative denormalized value?

Give your answer as a decimal number, and show your working.

Wa	nt	Sm	all	ett	, n	eg.	d	enc	M		1	neg	ヨ	S=	- 1	,	-	de	nor	M=	•	ex	1=	0	0	0	0									
		s			exn			٥	1a ('sr	nal	cst	ne	Y"	iļ	-	çro	ii 1	-	1	1	1	1	1											
Va	lvei	1] 0				11				1																							_		
E	(Je	nom	÷ (۱	-	-Bi	us ·	+1	2	-	·7·	1 1	<u> </u>	- 6																							
			(•	- 1)	1	0	1	1	1	1	1	. ;	- 6 2	-		-	1.	(1 z	ł	<u>1</u> 4	.	1 8 +	1 16	+	1/32) .	ź	6	2	- 0	. 6)6B	75	· 2	- 6	
						1	im(nhic	it	ŀ	edo	4	U	0.5	i	15	de	Mon	_			-														

Floating Point Exam Questions HS17 Question 3

Systems Programming and Computer Architecture

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

What is the bias for this format?

(2 points)

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

What is the *bias* for this format?

(2 points)

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

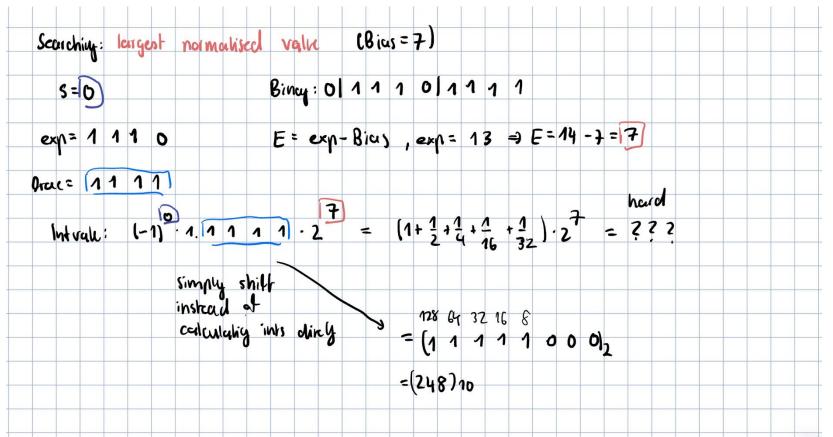
What integer is the largest positive normalized value below infinity?

Give your answer as a decimal number, and show your working.

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

What integer is the largest positive normalized value below infinity?

Give your answer as a decimal number, and show your working.



Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

What real number is represented by the binary value 100000000 in this system? Show your working

(2 points)

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

What real number is represented by the binary value 100000000 in this system? Show your working (2 points)

- Do not calculate anything!
- By the bit representation we know it must be **-0**

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]

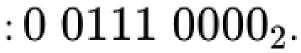
How is the real number 1 represented in binary in this system? Show your working.

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]

How is the real number 1 represented in binary in this system? Show your working.

- Sign=0 (obvious)
- Normalised means implied leading 1 => to get 1.0 we need frac=0
- E=exp-bias (normalized), we want E to be 0, so this implies exp=bias => exp=7, i.e. exp=0111



Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

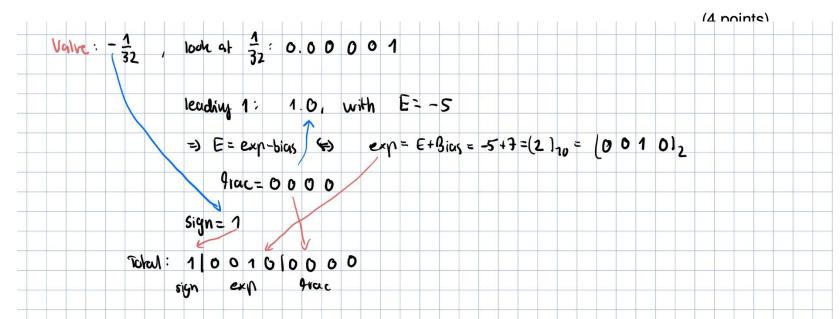
[continued]

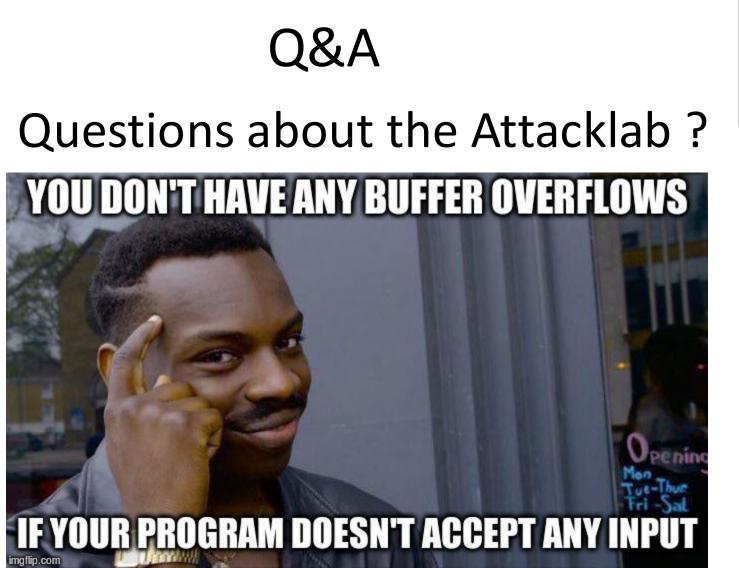
How is the real number -1/32 represented in binary in this system? Show your working.

Consider a floating point format which uses 9 bits but otherwise follows IEEE standard format. 4 bits are used for the fractional part, and 4 bits to represent the exponent.

[continued]

How is the real number -1/32 represented in binary in this system? Show your working.





Floating point

Recap for the Assignment

Floating Point Representation

Numerical Form "Scientific Notation"

Sign $S \in \{0,1\}$ ExponentEMantissa $M \in [1.0, 2.0)$

 $\mathsf{F} = (-1)^{\mathsf{S}} \cdot \mathsf{M} \cdot 2^{\mathsf{E}}$

Encoding "Bit Pattern"

Sign $S \in \{0,1\}$ exp $\sim E$ frac $\sim M$ sexpfracfrac182311152

Casting

Integer Types

What happens here?
1. unsigned int foo;
2. long bar = (long) foo;

OK. int must fit in a long

Floats

What happens here?

- 1. int i;
- 2. long long l;
- 3. float f;
- 4. double d;
- 1. i = (int) f; 2. i = (int) d; 3. f = (float) d; 4. d = (double) i; 5. d = (double) f;

Floats <-> Integers

 Casting between floats, doubles and integers generally changes the bit representation!

```
1. int i = 0xABCDABCD;
2. float f = (float) i;
3.
4. int *i2 = (int *) &f;
5.
6. printf("%x, %x", i, *i2);
7.
8. // Prints abcdabcd, cea864a8
```



Floats <-> Integers

From	То	Description **
<pre>double/float float f1 = 1.12345; float f2 = 1.999999;</pre>	<pre>int (int) f1 == ? (int) f2 == ?</pre>	Truncate the fractional part. Out of range, NaN , inf -> Default handler assigns <i>INT_MIN</i> .
<pre>int long long l1=0x7FFFFFFFFFFFF; long long l2=0xFFFFFF;</pre>	<pre>double double d1 = (double) l1; double d2 = (double) l2;</pre>	
int	float	round using rounding mode

Floats <-> Integers

float f2 = 1.50f;
float f3 = 1.50f;

```
printf("%f", f2+f3);
printf("%i", (int)(f2+f3));
printf("%i", (int)f2 + (int)f3);
f2 + f3 == 3.00000
(int)(f2 + f3) == 3
(int)f2 + (int)f3 == 2
```

Casting

• What happens here?

1. int i;

- 2. long long l;
- 3. float f;
- 4. double d;

1. i = (int) f; 2. i = (int) d; 3. f = (float) d; 4. d = (double) i; 5. d = (double) f; (1) Truncate fractional part, assign TMin/TMax if integral part under-/overflows int

(2) same as (1)

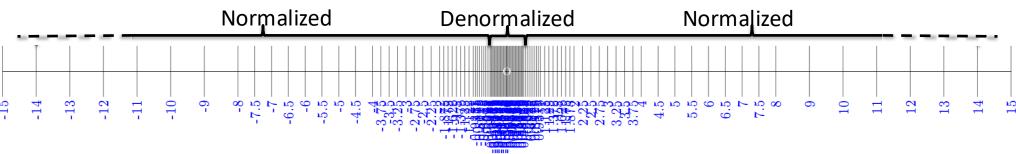
(3) Loss of precision and float is set to +/-inf if exponent of double does not fit in exponent of float

(4) No loss, every (32-bit) int can be represented exactly as double.

(5) No loss of precision. C standard guarantees that every float can be represented exactly as a double. (only tricky for denormalized values)

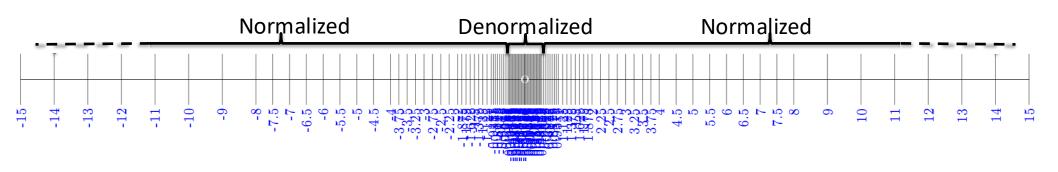
Normalized / Denormalized

- Normalized: exp != {000...0, 111...1}
 - Good for bigger values
 - Not equi-spaced
- Denormalized number: exp == 000...0
 - Good for very small values
 - Equi-spaced [- δ + eps, δ eps], δ =smallest normalized number



Normalized / Denormalized

- Denormalized not a number: exp == 111...1
 - +/- infinity if frac = 000...0
 - NaN else



NORMALIZED

- Must be able to have negative exponents -> encode as biased value
 - $\exp = E + bias$

We will see in a few slides why we subtract 1 here

- bias = 2^{e-1} 1:
 - For Single precision?
 - For Double precision?
- Normalized: exponent never all zeros nor all ones

Significand

NORMALIZED

• In binary: $M \in [1.0, 2.0)$

• The encoding always assumes a leading 1

• Remove it to save one bit!

• What are the max and min values for the significand?

Exponent

DENORMALIZED

• Express values very close to 0: exponent must be as negative as possible

Exp is all zero and the exponent is evaluated as
 – exp = -bias + 1

Significand

DENORMALIZED

• We are close to zero: $M \in [0.0, 1.0)$

• The encoding always assumes a leading 0

• Remove it to save one bit! (like with the 1 in normalized case) F=(-1)^S·M·2^E S exp frac

Special Values

Sign	Fraction	Exponent	Description
	0000	1111	Infinity (+ / -) operation overflows
	!= 0000	1111	Not-a-Number (NaN) No numeric value sqrt(-1)
0	0000	0000	Zero (like integer 0)
1	0000	0000	Minus 0

-0?

In IEEE arithmetic, it is natural to define log $0 = -\infty$ and log x to be a NaN when x < 0. Suppose that x represents a small negative number that has underflowed to zero. Thanks to signed zero, x will be negative, so log can return a NaN. However, if there were no signed zero, the log function could not distinguish an underflowed negative number from 0 and would therefore have to return $-\infty$.

Tiny floating point example

s exp frac 1 4 3

- 8-bit floating point representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of $2^{4-1} = 7$.
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

The exam usually has a question on tiny floats

rich

F=(-1) ^S ⋅M·2	E S exp frac	s exp	frac	Ε	Value		
		-		C	0		
	Denormalized	0 0000		-6	0		
		0 0000	001	-6	1/8*1/64	= 1/512	closest to zero
		0 0000	010	-6	2/8*1/64	= 2/512	
		•••					
		0 0000	110	-6	6/8*1/64	= 6/512	
		0 0000	111	-6	7/8*1/64	= 7/512	largest denorm
		0 0001		-6	8/8*1/64		smallest norm
	e e Normalized	0 0001		-6	9/8*1/64	•	
			001	Ū	2,0 2,01	-,	
		 0 0110	110	-1	14/8*1/2	- 11/16	
						-	
		0 0110		-1	15/8*1/2	-	closest to 1 below
		0 0111	000	0	•	= 1	
	numbers	0 0111	001	0	9/8*1	= 9/8	closest to 1 above
		0 0111	010	0	10/8*1	= 10/8	
	-	0 1110	110	7	14/8*128	= 224	
		0 1110	-	7	15/8*128		largest norm
		0 1111		n/a	inf		0

Creating a floating point number

6

S

exp

- Steps •
 - Normalize to have leading 1
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding
- Case study
 - Convert 8-bit unsigned numbers to tiny floating point format

Value	Binary
128	10000000
13	00001101
17	00010001
19	00010011
138	10001010
63	00111111

2

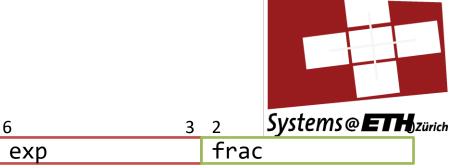
3

Normalize

7

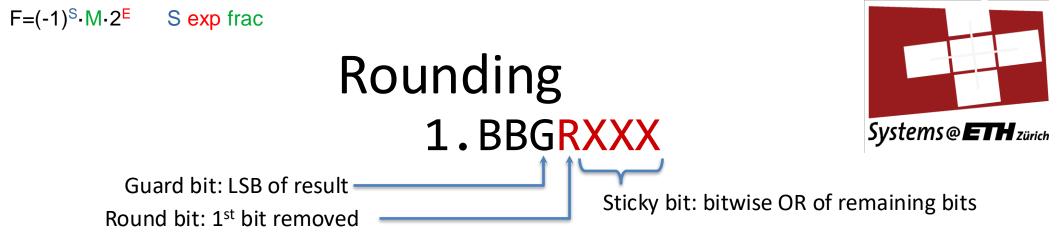
S

Requirement



- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5



Rounding:

Round = 1, Sticky = 1 \Rightarrow up if > 0.5

Round = 1, Sticky = 0, Guard = 1 \Rightarrow round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	Ν	1.000
13	1.1010000	100	Ν	1.101
17	1.0001000	010	Ν	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue:

Rounding may have caused overflow Shift right once & increment exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		144
63	10.000	5	1.000/e=6	64

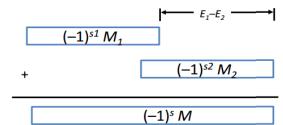
A possible Exam Question

- You have an 8 bit floating point representation with 3 fraction bits.
 - Give the floating point representations of
 - 144
 - 64
 - Is the conversion exact?

Addition (normalized)

- Signed align and add (Assume E1 > E2)
 - Shift the first operand by the difference of their exponents
 - Add the M and s bits

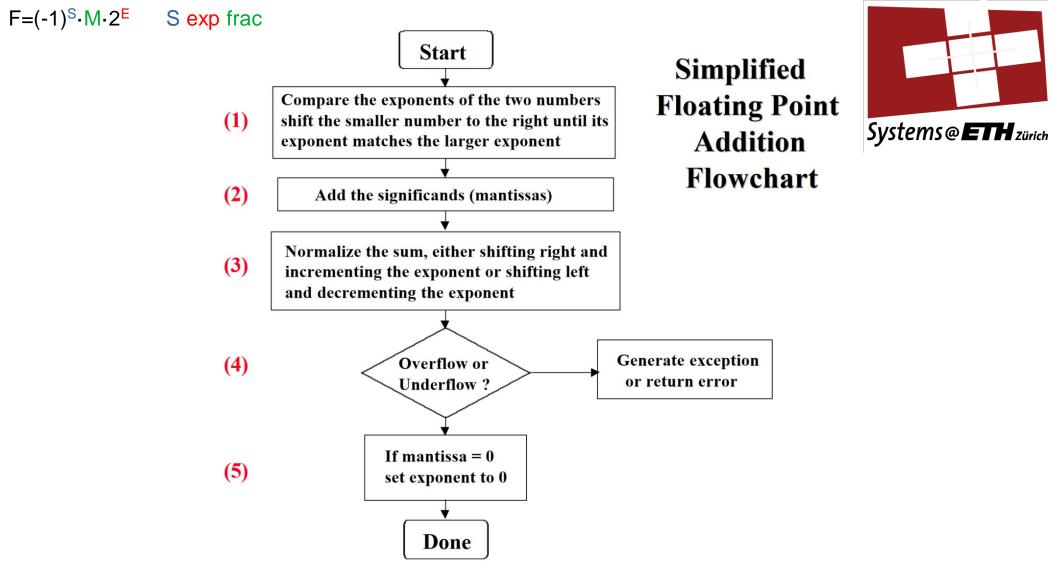
- Round
- Post-Normalize

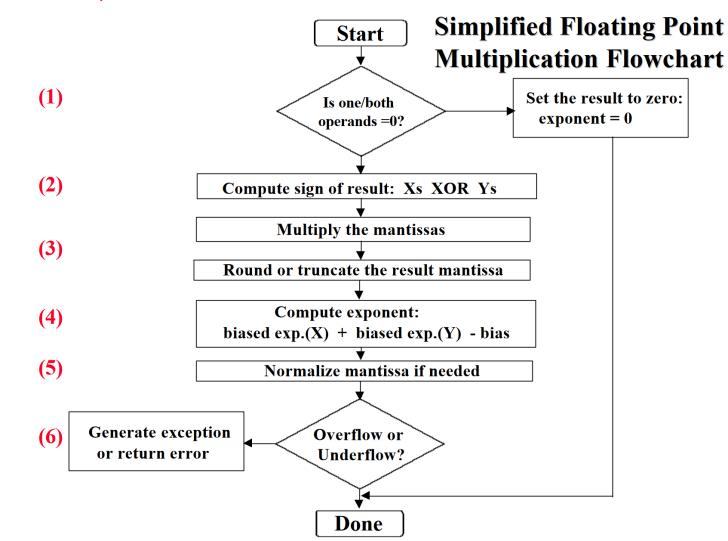


Multiplication (normalized)

- $F = (-1)^{S1 \otimes S2} * (M1^*M2) * 2^{E1+E2}$ (\otimes denotes XOR)
- M = M1 * M2
- S = S1 ⊗ S2
- E = E1 + E2
- shift and adjust exponent until
 M ∈ [1.0, 2.0)

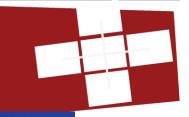
- Round M to fit fraction
 bits
- Post-normalize and check if exponent still in range





If you are really interested in further knowledge about floating-point have a look at the following reprint of the paper:

What Every Computer Scientist Should Know About Floating-Point Arithmetic by David Goldberg, published 1991 in Computing Surveys



Assignment 08

Floating Point

Part 1: Pen & Paper exercise

 Conversion of Decimal to IEEE floating point numbers

 Checks basic understanding of floating point numbers

Part 2: Now it's your turn!

• Implement your floating point handler in C!

No use of floats/doubles

- Use the given skeleton

Your float_t

- You will represent the float as a struct
 - 1. typedef struct float_t {
 2. uint8_t sign;
 3. uint8_t exponent;
 4. uint32_t mantissa;
 5. };

• Challenge: Can you use bit fields for this and simply cast the pointer?

Conversion

 The only time you are allowed to use floats is when you convert them to/from your float_t

1. float_t fp_encode(float x);

1. float fp_decode(float_t x);

A possible strategy for testing

- Create some float numbers and convert them into your float_t.
 - Choose some "regular" numbers
 - Don't neglect the corner cases
 - Denormalized
 - NaN
 - Inf
 - -0
- Perform some additions, multiplications, negations using your implementation
- Convert the results back to float and compare

Systems@ =TH zürich

```
1. void main() {
2.
     float f1 = 1.123;
3.
     float f_2 = 550;
4.
   float f3;
     float_t ft1 = fp_encode(f1);
5.
6. float_t ft2 = fp_encode(f2);
7.
     float t ft3;
8.
9.
    f3 = f1+f2;
10.
      ft3 = fp add(ft1, ft2);
11.
     assert(f3 == fp_decode(ft3));
12.
13.
```

Simple Example Test

Have a nice week!

