
Exercise Session 10
Computer Architecture and

Systems Programming

Autumn Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not official
part of the course) having a blue heading

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

In this session...

• Questions Regarding Attacklab
• Lecture Recap Floating Point

• FP Basics
• FP: Normalised, Denormalised, Special Values
• FP: Rounding
• FP: Operations
• SSE3

• Exam Questions on Floating Point

• Recap of floating point

• Preview assignment 8: Floating point

Lecture Recap
Basics

Systems Programming and Computer Architecture

Numeral Systems

• Should be known be now, just a quick reminder

• Very important for fundamental understanding as well as for
other courses (CN Ternary IP Addresses Exam Task)

Basics: Numeral systems (Decimal)

Basics: Numeral systems (Binary)

Basics: Numeral systems Generally

Basics: Numeral systems Generally

• This concept applies to any base b

Basics: Numeral systems Generally

• You can also understand
bad jokes now

FP Recap

FP Recap

• S,M,E refer to
numerical
form

• s, exp, frac
refer to binary
encoding

FP Recap

FP Recap

Lecture Recap
Floating Points in C

Systems Programming and Computer Architecture

FP in C

Rounding of FP in C
From/To Int Float Double

Int - No loss for

small values;

precision loss

for large values

No loss

Float Truncates

fractional part;

overflow for

large values

- No loss

Double Truncates

fractional part;

overflow for

large values

Precision loss

for large/precise

values

-

Lecture Recap
FP: Normalised, Denormalised, Special Values

Systems Programming and Computer Architecture

FP Recap

• There are 3 types of encodings

• 1. Normalised: values in the normal range

• 2. Denormalised: values which are very small

• 3. Special Numbers: Infinity, 0, NaN

FP Recap

• There are 3 types of encodings

• 1. Normalised: values in the normal range

• 2. Denormalised: values which are very small

• 3. Special Numbers: Infinity, 0, NaN

FP Recap: 1. Normalised

• S,M,E refer to
numerical
form

• s, exp, frac
refer to
binary
encoding

FP Recap: 1. Normalised

• Bias=(2^e)-1, for e=8: 127

• E=Exp-Bias  Exp=E+Bias
  Exp=13+127
 =140

FP Recap

• There are 3 types of encodings

• 1. Normalised: values in the normal range

• 2. Denormalised: values which are very small

• 3. Special Numbers: Infinity, 0, NaN

FP Recap: 2. Denormalised

FP Recap

• There are 3 types of encodings

• 1. Normalised: values in the normal range

• 2. Denormalised: values which are very small

• 3. Special Numbers: Infinity, 0, NaN

FP Recap: 3. Special Values

FP Recap: Normalised, Denormalised, Special
Values Graphical

FP Recap

Lecture Recap
FP: Rounding Modes

Systems Programming and Computer Architecture

FP Recap: Rounding Modes

• 4 Rounding Modes IEEE 754 supports

FP Recap: Round to even Decimal

FP Recap: Round to even Binary

• Binary
equivalent of “.5”
(decimal) is
“.1000…” (binary)

• Even in binary:
means 0 as lsb

• Odd in binary:

 means 1 as lsb

FP Recap: Rounding

Round up Conditions
Trivial Cases (we are not in the middle)

• R=1,S=1 => Up (as Number is >0,5)
• R=0, S=_ => Down (as Number is <0,5)

Round to even Cases (we are exactly in the middle)

• G=1, R=1, S=0 => Up (to make it even, as G=1 means it not even)
• G=0, R=1, S=0 => Down (to keep it even, as G=0 means its even)

FP Recap: Round to even Binary

Lecture Recap
FP: Operations

Systems Programming and Computer Architecture

FP Recap: Multiplication

FP Recap: Addition

FP Operations Remark

• The float lab is about implementing those

• Highly recommend doing this lab: stuff like this is very likely
to appear as a coding exercise in the exam

Lecture Recap
SSE3 – Streaming SIMD Extension 3

Systems Programming and Computer Architecture

SSE3 Introduction

• SSE3 (Streaming SIMD Extensions 3):
Part of a family of instruction set
extensions of x86, to accelerate
computation

• SSE introduced %xmm registers
• SSE2 extended %xmm to support both

single and double prec.
• SSE3 added more specialced SIMD

instructions
• AVX introduced wider %ymm regs (256

bits)
• AVX-512 extended to 512-bit %zmm

regs

SSE3 Registers

• General purposes registers: %rax, %rdi, etc.

• Purpose: Integer operations, memory addresses and control flow:
they handle arithmetic computations, pointer manipulation passing
arguments etc.

• SIMD Registers: %xmm0, %xmm1, etc.

• Purpose: Specialised for floating point computations and SIMD
operations

• Why separate registers? We have separate hardware for floating
point calculations (Floating point Unit FPU)

SSE3 Registers

SSE3 Registers

FP Registers

SSE3 Registers

SSE3 Registers

SSE3 Registers

• Recall: SSE3 is simply an extension of x86: so it look like x86
you have seen until now with additional instructions

Floating Point Exam Questions
HS15 Q6

Systems Programming and Computer Architecture

Remark FP Exam Questions

• In (almost) every exam there are floating point questions like
the following

• So its worth it to be able to solve them quickly & correctly as
they are not hard

• They may come in the form of programming exercises in your
case (do the fp lab!)

Recall General Format of s,exp,frac

HS15 Question 6

HS15 Question 6

Remark FP Exam Questions

• Ill solve some as an example: then you can solve some on your
own and we can compare

• FP is not hard: once you converted 2-3 fps you grasped the
concept and thus are easy points in the exam

HS15 Question 6

HS15 Question 6

HS15 Question 6

Try the next one on your own!

HS15 Question 6

Remark FP Exam Questions

• The rest work analogous, i.e. once you know the formulas and
how to calculate its trivial (i.e. easy points in the exam)

Floating Point Exam Questions
HS19 Q11

Systems Programming and Computer Architecture

HS19 Question 11

HS19 Question 11

• You need to know the layout of Sign, Exponent, Mantissa

• Also that there is always one sign bit

HS19 Question 11

HS19 Question 11

HS19 Question 11

HS19 Question 11

HS19 Question 11

HS19 Question 11

HS19 Question 11

HS19 Question 11

Floating Point Exam Questions
HS17 Question 3

Systems Programming and Computer Architecture

HS17 Question 3

HS17 Question 3

HS17 Question 3

HS17 Question 3

HS17 Question 3

HS17 Question 3

• Do not calculate anything!

• By the bit representation we know it must be -0

HS17 Question 3

HS17 Question 3

• Sign=0 (obvious)

• Normalised means implied leading 1 => to get 1.0 we need frac=0

• E=exp-bias (normalized), we want E to be 0, so this implies exp=bias
=> exp=7, i.e. exp=0111

HS17 Question 3

HS17 Question 3

Q&A

Questions about the Attacklab ?

Floating point

Recap for the Assignment

83

Floating Point Representation

s exp frac

1 8 23 float
1 11 52 double

Numerical Form
“Scientific Notation”

Sign S ∈ {0,1}
Exponent E

Mantissa M ∈ [1.0, 2.0)

F = (-1)S · M · 2E

Encoding
“Bit Pattern”

Sign S ∈ {0,1}
exp ~E

frac ~M

84

Casting

Integer Types

• What happens here?

Floats

What happens here?

85

1. unsigned int foo;
2. long bar = (long) foo;

1. int i;
2. long long l;
3. float f;
4. double d;

1. i = (int) f;
2. i = (int) d;
3. f = (float) d;
4. d = (double) i;
5. d = (double) f;

OK.
int must fit in a long

Floats <-> Integers

• Casting between floats, doubles and integers
generally changes the bit representation!

86

1. int i = 0xABCDABCD;
2. float f = (float) i;
3.
4. int *i2 = (int *) &f;
5.
6. printf(“%x, %x”, i, *i2);
7.
8. // Prints abcdabcd, cea864a8

Floats <-> Integers

87

From To Description

double/float

float f1 = 1.12345;
float f2 = 1.999999;

int

(int) f1 == ?
(int) f2 == ?

Truncate the fractional part.

Out of range, NaN , inf

-> Default handler assigns

INT_MIN.

int

long long l1=0x7FFFFFFFFFFFFFFF;
long long l2=0xFFFFFFFF;

double

double d1 = (double) l1;
double d2 = (double) l2;

exact conversion if integral value

is max 54 bits
l1 == (long long) d1;
l2 == (long long) d2;

int float round using rounding mode

Floats <-> Integers

88

float f2 = 1.50f;
float f3 = 1.50f;

printf("%f", f2+f3);
printf("%i", (int)(f2+f3));
printf("%i", (int)f2 + (int)f3);

f2 + f3 == 3.00000
(int)(f2 + f3) == 3
(int)f2 + (int)f3 == 2

Casting

• What happens here?

89

1. int i;
2. long long l;
3. float f;
4. double d;

1. i = (int) f;
2. i = (int) d;
3. f = (float) d;
4. d = (double) i;
5. d = (double) f;

(1) Truncate fractional part, assign TMin/TMax if
integral part under-/overflows int

(2) same as (1)

(3) Loss of precision and float is set to +/-inf if
exponent of double does not fit in exponent of float

(4) No loss, every (32-bit) int can be represented
exactly as double.

(5) No loss of precision. C standard guarantees that
every float can be represented exactly as a double.
(only tricky for denormalized values)

Normalized / Denormalized
• Normalized: exp != {000…0, 111…1}

– Good for bigger values

– Not equi-spaced

• Denormalized number: exp == 000…0

– Good for very small values

– Equi-spaced [-δ + eps, δ - eps], δ=smallest normalized number

– zero

90

DenormalizedNormalized Normalized

F=(-1)S·M·2E S exp frac

Normalized / Denormalized
• Denormalized not a number: exp == 111…1

– +/- infinity if frac = 000…0

– NaN else

91

F=(-1)S·M·2E S exp frac

91

DenormalizedNormalized Normalized

Exponent

• Must be able to have negative exponents -> encode as
biased value
– exp = E + bias

• bias = 2e-1 - 1:
– For Single precision?
– For Double precision?

• Normalized: exponent never all zeros nor all ones

92

NORMALIZEDF=(-1)S·M·2E S exp frac

We will see in a

few slides why we

subtract 1 here

Significand

• In binary: M ∈ [1.0, 2.0)

• The encoding always assumes a leading 1

• Remove it to save one bit!

• What are the max and min values for the significand?

93

NORMALIZEDF=(-1)S·M·2E S exp frac

Exponent

• Express values very close to 0:
exponent must be as negative as possible

• Exp is all zero and the exponent is evaluated as

– exp = -bias + 1

94

DENORMALIZEDF=(-1)S·M·2E S exp frac

Significand

• We are close to zero: M ∈ [0.0, 1.0)

• The encoding always assumes a leading 0

• Remove it to save one bit!
(like with the 1 in normalized case)

95

DENORMALIZEDF=(-1)S·M·2E S exp frac

Special Values
Sign Fraction Exponent Description

000…0 111…1 Infinity (+ / -)

operation overflows

!= 000…0 111…1 Not-a-Number (NaN)

No numeric value

sqrt(-1)

0 000…0 000…0 Zero (like integer 0)

1 000…0 000…0 Minus 0

96

F=(-1)S·M·2E S exp frac

-0 ?

In IEEE arithmetic, it is natural to define log 0 = -∞ and log x
to be a NaN when x < 0. Suppose that x represents a small
negative number that has underflowed to zero. Thanks to
signed zero, x will be negative, so log can return a NaN.
However, if there were no signed zero, the log function
could not distinguish an underflowed negative number from
0 and would therefore have to return -∞.

97

Tiny floating point example

• 8-bit floating point representation
– the sign bit is in the most significant bit.
– the next four bits are the exponent, with a bias of 24−1 = 7.
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4 3
The exam usually
has a question on

tiny floats

98

F=(-1)S·M·2E S exp frac

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

F=(-1)S·M·2E S exp frac

Creating a floating point number

• Steps
– Normalize to have leading 1
– Round to fit within fraction
– Postnormalize to deal with effects

of rounding

• Case study
– Convert 8-bit unsigned numbers to

tiny floating point format

s exp frac
02367

Value Binary

128 10000000

13 00001101

17 00010001

19 00010011

138 10001010

63 00111111

F=(-1)S·M·2E S exp frac

Normalize
Requirement

– Set binary point so that numbers of form 1.xxxxx

– Adjust all to have leading one

• Decrement exponent as shift left
Value Binary Fraction Exponent

128 10000000 1.0000000 7

13 00001101 1.1010000 3

17 00010001 1.0001000 4

19 00010011 1.0011000 4

138 10001010 1.0001010 7

63 00111111 1.1111100 5

F=(-1)S·M·2E S exp frac

s exp frac
02367

Rounding

Rounding:

Round = 1, Sticky = 1

 ⇒ up if > 0.5

Round = 1, Sticky = 0, Guard = 1

 ⇒ round to even

1.BBGRXXX
Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: bitwise OR of remaining bits

Value Fraction GRS Incr? Rounded

128 1.0000000 000 N 1.000

13 1.1010000 100 N 1.101

17 1.0001000 010 N 1.000

19 1.0011000 110 Y 1.010

138 1.0001010 011 Y 1.001

63 1.1111100 111 Y 10.000

F=(-1)S·M·2E S exp frac

Postnormalize

Value Rounded Exp Adjusted Result

128 1.000 7 128

13 1.101 3 13

17 1.000 4 16

19 1.010 4 20

138 1.001 7 144

63 10.000 5 1.000/e=6 64

Issue:
Rounding may have caused overflow

Shift right once & increment exponent

F=(-1)S·M·2E S exp frac

A possible Exam Question

104

• You have an 8 bit floating point representation with
3 fraction bits.

– Give the floating point representations of
• 144

• 64

– Is the conversion exact?

F=(-1)S·M·2E S exp frac

Addition (normalized)

• Signed align and add (Assume E1 > E2)

– Shift the first operand by the difference of their
exponents

– Add the M and s bits

• shift and adjust exponent until M ∈ [1.0, 2.0)

• Round

• Post-Normalize
105

F=(-1)S·M·2E S exp frac

Multiplication (normalized)

106

• F = (-1)S1 ⊗ S2 *(M1*M2) * 2E1+E2

(⊗ denotes XOR)

• M = M1 * M2

• S = S1 ⊗ S2

• E = E1 + E2

• shift and adjust exponent until
M ∈ [1.0, 2.0)

• Round M to fit fraction
bits

• Post-normalize and

check if exponent still
in range

F=(-1)S·M·2E S exp frac

107
http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

F=(-1)S·M·2E S exp frac

http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

108
http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

F=(-1)S·M·2E S exp frac

http://meseec.ce.rit.edu/eecc250-winter99/250-1-27-2000.pdf

109

If you are really interested in further knowledge
about floating-point have a look at the following
reprint of the paper:

What Every Computer Scientist Should Know About
Floating-Point Arithmetic by David Goldberg,
published 1991 in Computing Surveys

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Assignment 08

Floating Point

110

Part 1: Pen & Paper exercise

• Conversion of Decimal to IEEE floating point
numbers

• Checks basic understanding of floating point
numbers

111

Part 2: Now it’s your turn!

• Implement your floating point handler in C!

– No use of floats/doubles

– Use the given skeleton

112

Your float_t

• You will represent the float as a struct

• Challenge: Can you use bit fields for this and simply
cast the pointer?

113

1. typedef struct float_t {
2. uint8_t sign;
3. uint8_t exponent;
4. uint32_t mantissa;
5. };

https://www.geeksforgeeks.org/bit-fields-c

https://www.geeksforgeeks.org/bit-fields-c

Conversion

• The only time you are allowed to use floats is when
you convert them to/from your float_t

114

1. float_t fp_encode(float x);

1. float fp_decode(float_t x);

A possible strategy for testing

• Create some float numbers and convert them into your float_t.
– Choose some “regular” numbers
– Don’t neglect the corner cases

• Denormalized
• NaN
• Inf
• -0

• Perform some additions, multiplications, negations using your
implementation

• Convert the results back to float and compare
115

Simple Example Test

116

1. void main() {
2. float f1 = 1.123;
3. float f2 = 550;
4. float f3;
5. float_t ft1 = fp_encode(f1);
6. float_t ft2 = fp_encode(f2);
7. float_t ft3;
8.
9. f3 = f1+f2;
10. ft3 = fp_add(ft1, ft2);
11.
12. assert(f3 == fp_decode(ft3));
13.}

Systems Programming and Computer Architecture 117

Have a nice week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Q&A
	Slide 83: Floating point
	Slide 84: Floating Point Representation
	Slide 85: Casting
	Slide 86: Floats <-> Integers
	Slide 87: Floats <-> Integers
	Slide 88: Floats <-> Integers
	Slide 89: Casting
	Slide 90: Normalized / Denormalized
	Slide 91: Normalized / Denormalized
	Slide 92: Exponent
	Slide 93: Significand
	Slide 94: Exponent
	Slide 95: Significand
	Slide 96: Special Values
	Slide 97: -0 ?
	Slide 98: Tiny floating point example
	Slide 99
	Slide 100: Creating a floating point number
	Slide 101: Normalize
	Slide 102: Rounding
	Slide 103: Postnormalize
	Slide 104: A possible Exam Question
	Slide 105: Addition (normalized)
	Slide 106: Multiplication (normalized)
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Assignment 08
	Slide 111: Part 1: Pen & Paper exercise
	Slide 112: Part 2: Now it’s your turn!
	Slide 113: Your float_t
	Slide 114: Conversion
	Slide 115: A possible strategy for testing
	Slide 116: Simple Example Test
	Slide 117

