Exercise Session 11

Computer Architecture and
Systems Programming

Architectural Optimizations
Autumn Semester 2024

=5

Systems @ ETH ziric

Disclaimer m

Systems @ ETH ziric

 Website: n.ethz.ch/~falkbe/
* (Extra) Demos on GitHub: github.com/falkbe
 Kahoots: now on website n.ethz.ch/~falkbe/

* My exercise slides have additional slides (which are not official part of
the course) having a blue heading

* For the exam only the official exercise slides are relevant, if in doubt
always check the ones on the official moodle page

In this session...

Processor Architecture (DDCA)

Code and Compiler Optimisations (Strength reduction, Inlining etc.)
Hardware Optimisation (Loop unrolling, reassociation, etc.)

Exam Questions on Optimisations

Measuring performance: Cycles Per Element (CPE) & friends
Improving p-arch performance pt.1: instruction parallelism
Improving p-arch performance pt.2: data parallelism

Support your local p-arch: compile-time optimizations

Outlook on Assignment 9

Systems @ ETH ziric

Where are we in the course

Systems @ ETH ziric

Recall: how C code runs as a process on CPU

Kernel virtual memory I ?:;;?glreyto
User stack user code
(created at runtime) %rsp
Preprocessor Compiler ~ Assembler Linker Loader ; {pst;?:tker)

Memory-mapped region for
shared libraries

xecutabl
C source | | cpp ccl as Id exe € execve I «— brk
Run-time heap

. Read/write segment Loaded
.C,.h . .S .0 (.data, .bss from
— — the
Read-only segment executable
(.init, .text, .rodata) file
Unused

Where are we in the course n:j

Systems @ ETH ziric

 Know by now: How to write C, how this gets compiled down to an executable
(preprocessor, compiler, assembler, linker and loader)

 Compiler Optimisation Lecture: How to create a faster executable (purely
code based)

 Computer Architecture: How these instructions get executed on hardware,
also possible improvements via better hardware (multiple execution units,

000 etc.)

* Future: Program gets loaded into memory, but what is memory? (Caches,
Virtual Memory); Exceptions, Multicore, Devices

Systems @ ETH ziric

Recap

Processor Architecture

Systems Programming and Computer Architecture

Remark m

Systems @ ETH ziric

* What you will see now goes at times a bit beyond what they
teach you in SPCA: it’s a lot of DDCA but its fundamental to

understand what happens with the assembly language inside
a processor

What you saw in the lecture: seq proc.

Systems @ ETH ziric

Sequential processor stages *

Write back
* Fetch Memory
* Read instruction from instruction memory
* Decode
* Read program registers
Execute
* Execute
* Compute value or address
* Memory
* Read or write data Decode
* Write Back
* Write program registers
. PC Fetch

* Update program counter

What you saw in the lecture: pipelined proc.

Systems @ ETH ziric

. . Write back | [
Pipelined hardware 71— R S
Clock cycle Memory | e
0o 1 2 3 456 78 R MBeh ;3 .
Waiting . . '
instructions . . . ecuts
CINEN
[X O RN XXX X m——
£ s 1 D (I I X X X |
é. Stage 3: Execute & |E & |:| . . . & & Decodd - :c, |
:l:age4: Write-back & & & % l:l . . . & file Wyl
(1 HHBE LD Jeose| in [8 [&] vae |
f—f—t
Completed { D . . 1 T,nslm‘l @
instructions D . Fetch fpr:amo,y neremen
|:| ___________________________________ Sdect e V_v

| F | predPC |
L

Remark

* What you saw until now: x86, an
architecture

* Specified instructions (cmp, jmp, etc.),
how to address memory, addressing
modes etc.

* Now we look at microarchitecture: the
actual implementation of a architecture
(like x86, MIPS, ARM etc.) in hardware

Application
Software

>"hello

world!”

Operating
Systems

Architecture

Micro-
architecture

Logic

Digital
Circuits

Analog
Circuits

Devices

Physics

Remark m

Systems @ ETH ziric

* The processor we are building now is for a different
architecture called MIPS, very similar to x86

* This simply means there are different assembly
instructions, different addressing modes, register
names etc. but the underlying concepts stay the same

Systems @ ETH ziric

Recap
ISAs: Assembly

Systems Programming and Computer Architecture

Remark m

Systems @ ETH ziric

* Before we look at how the code actually gets executed,
lets before see how assembly relates to this

e |t boils down to difference between:

* |SA: abstract model, defining instructions, data types,
registers

* Michroarchitecture: the actual implementation of an
ISA in hardware

 We are going to look at ISA MIPS for the processor | will
build with you here

Instruction Set Architecture

Systems @ ETH ziric

 Examples for ISAs: x86-64, ARM (Advanced RISC Machines), RISC-V,
MIPS, PowerPC, SPARC, Z/Architecture (IBM Mainframes)

x86 [x86-64
ARM

RISC-V

MIPS
PowerPC

SPARC

CISC

RISC

RISC

RISC

RISC

RISC

Desktops, laptops, servers (Intel, AMD)

Mobile devices, embedded systems, some laptops
Open-source processors, research, loT, embedded
Embedded systems, networking devices (less common now)
Older Macs, embedded, some servers

Enterprise servers, scientific computing

Instruction Set Architecture

Systems @ ETH ziric
* ISAs thus define how our assembly code looks (because this is
inherently what an ISA describes): o oroc near
ot It e
 MIPS (LHS), x86 (RHS) pop ecx
ﬂﬁ: EE;: §$¥55t sMyPassword
push ebx
call _strilen
eCx
s11 $t0, $s0, 2 F$t0 = f * 4 emp esi, eax
add $t0, $s6, $t0 # $t0 = &A[f] or eax, eax _
s $tl, $s1, 2 # $t1 =g * 4 toc_400. Shr:-nrt end_proc
add $tl, $s7, $tl1 4 $t1 = &B[g] bush eha
Tw $s0, 0($t0) Ff o= ALF] push sPassword
addi $t2, $t0, 4 add esp. 8
Tw $t0, 0($t2) jnz short loc_4012cc
add $t0, $t0, $s0O ?ﬂ; :ﬁ;;‘tlend_pmc
sw $t0, 0($tl) 10CALEET eax, eax
end_proc:)
pop es5i
pop ebx
pop ebp

retn
endp

Instruction Set Architecture (ISA): MIPS n:j

Systems @ ETH ziric

* Instructions Examples: Left code is high level language (C, C++, Java),
RHS in MIPS

* First Part: called mnemonic indicates what to perform, operation is
performed on b,c the source operands and stored in the destination
operand

Code Example 6.1 ADDITION

High-Level Code MIPS Assembly Code

a=b+c; add a, b, c

Instruction Set Architecture (ISA): MIPS n:j

Systems @ ETH ziric

 The machine (michroarchitecture) provides “registers”, things were we
can store stuff: we can access them with S in MIPS, with % in x86 => we
have 32 registers in mips

Code Example 6.5 TEMPORARY REGISTERS

High-Level Code MIPS Assembly Code
a=b+c-d; #3$s0=a, $sl=b, $s2=c, $s3=d

sub $t0, $s2, $s3 #Ft=c-d
add $s0, $s1, $tO ffa=b+t

Instruction Set Architecture (ISA): MIPS

Systems @ ETH ziric

* Since we only have limited

Word
number of registers: also have Address bata
memory which we can access :) :
(Stack, Heap in x86) 00000003 (4 O F 30 7 8 8 Word 3

00000002 |01 EE2 8 4 2| Word2
00000001 |F2 F 1 ACO 7| Word 1
00000000 |[ABCDEF 7 8] Word0

Code Example 6.6 READING WORD-ADDRESSABLE MEMORY

Assembly Code

This assembly code (unlike MIPS) assumes word-addressable memory
Tw $s3, 1($0) # read memory word 1 into $s3

Instruction Set Architecture (ISA): MIPS n:j

Systems @ ETH ziric

* Assembly is for humans to read: but machines only understand
machine code: need to bring assembly into machine language

* ldea: encode all instruction as words that can be stored in memory, all
32bit

 MIPS has 3 type of Instructions: R-type, I-type, J-type (Register,
Immediate, Jump)

Instructlon Set Architecture (ISA): MIPS —

R-type (Register type): uses 3 registers as operands, 2 as source 1 as
destination

e QOperation to be performed is encoded in “op” and “funct” field: all R-type
instr. Have opcode=0 and funct is 32 for add and 34 for substract

 Operands encoded inrs, rt and rd (rs and rt source, rd dest)

R-type
Figure 6.5 R-type machine

op rs rt rd |shamt| funct instruction format
6 bits 5bits 5bits 5bits 5 bits 6 bits

Assembly Code Field Values Machine Code
op rs rt rd shamt funct op rs rt rd shamt funct
add $s0, S$sl, $s2 0 17 18 16 0 32 000000 [10001|10010{10000{00000(100000 (0x02328020)
sub $t0, $t3, $tb 0 11 13 8 0 34 000000 (0101101101 (01000{00000|100010| (0x016D4022)
6 bits 5bits 5bits 5bits 5bits 6 bits 6 bits 5bits 5bits 5bits 5bits 6 bits

Figure 6.6 Machine code for R-type instructions

Instruction Set Architecture (ISA): MIPS

Systems @ ETH ziric

* |-type instructions: different interpretation of the bits but conceptually

the same
I-type . . -
Figure 6.8 I-type instruction
op rs rt imm format
6 bits 5 bits 5 bits 16 bits
Assembly Code Field Values Machine Code
op rs rt imm op rs rt imm
addi $s0, $sl, 5 8 17 | 16 5 001000 [10001{10000| 0000 0000 0000 0101 | (0x22300005)
addi $t0, $s3, -12| 8 19 | 8 -12 001000 [10011(01000| 1111 1111 1111 0100 | (0x2268FFF4)
1w $t2, 32($0) 35 0 10 32 100011 |00000|01010| 0000 0000 0010 0000 | (0x8COA0020)
sw $sl, 4(stl) 43 9 17 4 101011 |01001{10001| 0000 0000 0000 0100 | (0xAD310004)
6 bits 5 bits 5 bits 16 bits 6 bits 5 bits 5 bits 16 bits

Figure 6.9 Machine code for I-type instructions

Instruction Set Architecture (ISA): MIPS

Systems @ ETH ziric

 Now we can store an entire program in memory

Assembly Code Machine Code Stored Program

1w st2, 32($0) 0x8CO0A0020 /Address Instructions)
add $s0, $sl, $s2 0x02328020 : :
addi $t0, $s3, -12 0x2268FFF4
sub $t0, $t3, $t5 0x016D4022

0040000C (016 D40 22
00400008 226 8FFFA4
00400004 02328020
00400000 8CO0AO0O0 20(«—PC

: | |
- ' y

Main Memory

Systems @ ETH ziric

Recap

Michroarchitecture: Single Cycle Processor

Systems Programming and Computer Architecture

Michroarchitecture n:j

Systems @ ETH ziric

* Microarchitecture: specific arrangement of ALUs, FSMs, Memories etc.

* One ISA Like MIPS can have many different microarchitectures with
different performance, cost and complexity

* All run the same programs since all architectures share the same
“language” (ISA) but they can vary in cost, performance and complexity

Type of Processors n:j

Systems @ ETH ziric

* Single Cycle: executes an entire instruction in one cycle
e Easy to explain, simple control
* Cycle time is limited by the slowest instruction

* Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

* Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

* All commercial high-performance processors use pipelining today

Type of Processors n:j

Systems @ ETH ziric

* Single Cycle: executes an entire instruction in one cycle
e Easy to explain, simple control
* Cycle time is limited by the slowest instruction

* Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

* Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

* All commercial high-performance processors use pipelining today

Single Cycle Processor n:j

Systems @ ETH ziric

* Divide microarchitecture in: datapath and controlpath

* Datapath: operates on words of data (here 32bit): contains memories,
registers, ALUs

* Controlpath: Recieves the current instruction from datapath and tells
the datapath how to execute the instruction: selects multiplexer select,
register enable, memory write signal

Single Cycle Processor

Cll.K
32 32 _é? A RD
Instruction
Memory

o

A3
WD3

Register
File

Assembly Code
1w $t2, 32($0)
add $s0, sl, ss2
addi $t0, $s3, -12
sub $t0, $t3, $t5

Machine Code
0x8CO0A0020
0x02328020
0x2268FFF4
0x016D4022

32

Figure 7.1 State elements of MIPS processor

Stored Program

a Address Instructions)

.

. | : I
0040000C |01 6 D4022
00400008 |22 6 B8FF F 4
00400004 02328020

8C0AO00 20|+

— PC

/

Main Memory

Instruction memory: Holds the instructions (movq %rbp, %rsp, encoded in bit i.e. 0/1s)

Data memory: holds data

Program Counter PC (%rip in x86): contains address of the instruction to be executed:

Ziirich

Single Cycle Processor H

Systems @ ETH ziric

* Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

* |-type

* Lw (load woard)

e Sw (store woard)
e R-type (binary ops: add, sub, ...)
 Beq instruction (beq, bne, ..)

Single Cycle Processor

Systems @ ETH ziric

CLK CLK
ClLK \I/ | \I/ |
oc[NPC Instr | ,7 WES o0 WE
- A RD —3»
Instruction | Ao RD2] AD tHD [
Memory ata
— A3 . Memory
—| wp3 Hegllster — wp
File

* PC register contains instruction to execute: fetch instruction (read it)

I-type

op rs rt imm
6bits 5bits 5 bits 16 bits

Figure 6.8 I-type instruction
format

lw $t2, 32($0) 35 0 10 32 100011 |00000/01010| 0000 0000 0010 0000 | (0x8COA0020)

Single Cycle Processor

Systems @ ETH ziric

25:21

Instr |—P +

* Read source register containing the base address in register file($0): specified in “rs”
field, i.e. Instr 25:21

I-type)
Figure 6.8 I-type instruction
6 bits 5bits 5 bits 16 bits

lw $t2, 32(%0) 35 0 | 10 32 100011 |00000(01010| 0000 0000 0010 0000 | (0x8CO0A0020)

Single Cycle Processor

Systems @ ETH ziric

15:0 Signimm)

Sign Extend

* Lw instruction also needs offset (here 32): offset is 16-bit immediate, needs to be
sign extended to 32 bits: Immediate is in bits 15:0

I-type)
Figure 6.8 I-type instruction
6 bits 5bits 5 bits 16 bits

lw $t2, 32($0) 35 0 | 10 32 100011 [00000|01010{ 0000 0000 0010 0000 | (0xBCOA0020)

1w

Single Cycle Processor

ALUControls.g
010

Signlmm

Figure 7.5 Compute memory address

Zero

ALUResult

S

* Now we need to add sign extended offset (32) to base address (S0):

s$t2,

32($0)

I-type
Figure 6.8 I-type instruction
op rs rt imm format
6 bits 5bits 5 bits 16 bits
35 0 10 32 100011 (00000|01010(0000 0000 0010 0000

Systems @ ETH ziric

(0x8C0A0020)

Single Cycle Processor

1w

s$t2,

32($0)

RegWrite

i1

20:16

ReadData

Figure 7.6 Write data back to register file
Read data from memory, and load it into the second register which is specified in
“rt” i.e. bits 20:16

I-type
Figure 6.8 I-type instruction
op rs rt imm format
6 bits 5bits 5 bits 16 bits
35 0 10 32 100011 (00000|01010(0000 0000 0010 0000

Systems @ ETH ziric

(0x8C0A0020)

Single Cycle Processor

Systems @ ETH ziric

CLK
PCy ™ pC

PCPlus4
4
Figure 7.7 Determine address of next instruction for PC

 |nstruction has been executed: to fetch next instruction we need to increment
instruction pointer (here PC, in x86 %rip) by 4

I-type)
Figure 6.8 I-type instruction
6 bits 5bits 5 bits 16 bits

lw $t2, 32($0) 35 0 | 10 32 100011 [00000|01010{ 0000 0000 0010 0000 | (0xBCOA0020)

Single Cycle Processor H

Systems @ ETH ziric

* Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

* |-type

* Lw (load woard)

 Sw (store woard)
e R-type (binary ops: add, sub, ...)
 Beq instruction (beq, bne, ..)

Single Cycle Processor

MemWrite SyStemS @ETH zivich
r

20:16

WriteData

>

Figure 7.8 Write data to memory for Sw instruction

* Processor can already calculate address (SEXT, add register to immediate)

* Sw reads second regj_%crgr from register file (A2); add path to write it to memory

Figure 6.8 I-type instruction
op rs rt imm format
6 bits 5bits 5 bits 16 bits

sw $sl, 4($tl) ‘ 43 ‘ 9 ‘17‘ 4 ‘ ‘101011‘01001‘10001‘0000000000000100‘(0xADS10004)

Single Cycle Processor H

Systems @ ETH ziric

* Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

* |-type

* Lw (load woard)

e Sw (store woard)
* R-type (binary ops: add, sub, ...)
 Beq instruction (beq, bne, ..)

Single Cycle Processor

Systems @ ETH ziric
Reghst ALuSre ALUGontrol, vemores e Register File: reads two
registers, ALU performs
operation on these 2
ALUResult 1 .
_ Srcs registers
—>
> * Need MUX to choose
between SEXT and 2"
. WriteRega.o ! Reg (RDZ)

* Need MUX to choose
whether to write to
memory (sw,lw) or to
register

* Register to write to
specified by “rd” 15:11

R-type (for sw it was specified

by “rt” 20:16 => MUX)

Result

Figure 7.9 Datapath enhancements for R-type instruction

op rs rt rd [shamt| funct
6 bits 5bits b5bits 5bits 5 bits 6 bits
op rs rt rd shamt funct op rs rt rd shamt funct

add $s0, $s1, ss2| O 17 | 18 | 16 | 0 | 32 000000 [10001|10010{10000/00000| 100000 | (0 x 02328020)

Single Cycle Processor H

Systems @ ETH ziric

* Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

* |-type

* Lw (load woard)

e Sw (store woard)
e R-type (binary ops: add, sub, ...)
 Beq instruction (beq, bne, ..)

Single Cycle Processor

Systems @ ETH ziric
PCsro
Brancr * Branch instruction:
. rore compares two
registers, if they are
equal adds the branch
offset to the PC

a ’—‘ e o Offset stored in

immediate field:

Figure 7.10 Datapath enhancements for beq instruction 15:0, gets SEXT and
added to PCif chosen
to branch

Single Cycle Processor

MemtoReg
Control [}) mWwrite
Unit B h
ranc
ALUControly.q -D_ PCSrc
31:26
Op ALUSrc
5:0
Funct RegDst
egWrite
JT g
CLK CLK
CLK | |
21 Y WE3 ~L__ Z N WE
25:21 rcA -, £Ero
PC A RD LInstr A1l RD1 S 0
D| ALUResult A RD ReadData 1
Instruction 20:16 = = &'
Memory A2 RD2 0 |SrcB Data
A3 1 | — . Memory
Register WriteData
WD3 / WD
File
20:16 "'(‘j
15:11 1
B WriteRega.o
~ . PCPlus4 o
ignlmm
. <<2
4 s Sign Extend PCBranch

+

Result

Figure 7.11 Complete single-cycle MIPS processor

Systems @ ETH ziric

F\MemtoReg 0000000000000 ieeeesscscscsssesescscscccscscscscnscsenesnenna
Control N . ~
T [MemWwrit .
unie HemPte : Control
] ALUControlo PCSre : s)
ﬂ Op ALUSrc . Unlt MemtOREQ
" Funct |RegDst e .
Tgwme . —— MemWrite
ok oK : — Branch
CLK I I : .
Instr =2 A WE3 RD1 SrcA WE D :OpCOdQSO Maln ALUSI’C
- A RD [ol ALuResuit ReadData . D d ——
Instruction 2016 I = A RD 1 ¢ ecoaqer
— A2 RD2 0]sreB Data -
Memory : RegDst
C\Igos Register ! WriteData ::‘!I;mory ' .
— File | : — RegWrite
1 c L]
15:11 !ﬂ—‘ '
PCPlus4 WriteRoges ALUOp, .o
4 ‘ . PCBranch

Decoder ALUControl,.

Result i FunCtSZO

Figure 7.11 Complete single-cycle MIPS processor

__

RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 10 Figure 7.12 Control unit internal
Tw 100011 1 0 1 0 0 1 o structure
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

e Recall: different instructions have different opcodes
* Opcodes decide which signals to give
* Lw/sw: MemToReg=1; Add/sub: MemToReg=0 etc.

Systems @ ETH ziric

Recap

Michroarchitecture: Pipelined Processor

Systems Programming and Computer Architecture

Type of Processors n:j

Systems @ ETH ziric

* Single Cycle: executes an entire instruction in one cycle
e Easy to explain, simple control
* Cycle time is limited by the slowest instruction

* Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

* Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

* All commercial high-performance processors use pipelining today

Pipelined processor m

Systems @ ETH ziric

Idea: subdivide single-cycle processor into 5 pipeline stages: then we can
execute instruction simultaneously, one in each stage

 Since each stage has 1/5 of the entire logic: clock frequency is almost five
times faster, ideally: latency unchanged, but throughput 5x higher

Call stages: 1. Fetch, 2. Decode, 3. Execute, 4. Memory, 5. Writeback
* 1. Fetch: processor reads instruction from instruction memory

e 2. Decode: Processor reads source operands from register file and decodes
instruction to procdue control signals

* 3. Execute: ALU computation
e 4. Memory: Read/Writes to memory
* 5. Writeback: Processor writes results to register file

Pipelined processor

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
InStr I | I 1 I I | I I I I) I I I 1) I | I
- Time (ps)
’ Fetch Decode | Execute Memory Write
Instruction |Read Reg ALU Read/Write Reg
5 Fetch Decode | Execute Memory Write
Instruction | Read Reg ALU Read/Write | Reg
(a)
Instr
1 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
5 Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
3 Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read/Write | Reg

(b)

Figure 7.43 Timing diagrams: (a) single-cycle processor, (b) pipelined processor

Systems @ ETH ziric

Pipelined processor

lw S$s2,

add $s3,

sub $s4,

and $s5,

sw $s6,

or §s7,

Systems @ ETH ziric

1 2 3 4 5 6 7 8 9 10

>

Time (cycles)

S0
$tl = <
$s1 <
o1, $s5 ol o TR o e
$t5 o
$51M] N $s6
= St3M 7
563, sea] [B[

Figure 7.44 Abstract view of pipeline in operation

« Example of what happens in Cycle 6: OR is being fetched from IM; Ssi
is being read from the register file in SW instruction; ALU computes St5
AND St6 in AND instruction etc.

CLK CLK
CLK |]
25:21 WE3 SrcA \L Zero WE
0]ect™|pc] , RD Instr A RD1 0
1 =) ALUResult A RD ReadData 1
Instruction 2016 RD2 3 — 2
Memory SrcB Data
A3 1 | —) Memory
Register WriteData
wD3 g WD
File ~L
2016 0] [WriteRega.
15:11 ;
L
PCPlus4
Signlmm
4 15:0 E f <<2
Sign Extend + PCBranch
Result
: cix
CLK by ALUOUIW
CLK CLK CiLK CLK :
CLK 4’7 o | 4’7 é L
¥ 25:21 WE3 ¥ SrcAE . |ZeroM WE H
A RDHiHostl Al RD1 = E :
: >3 ¢ |ALUOutM A ro U ¢ | ReadDataw
Instruction | | : 20:16) 4, RD2) =[1: :
Memory i SrcBE Data :
E A3 i ; L i t |wiiteDatam Memory :
: WD3 Fleg_lster ; WriteDataE ; WD :
' File ' RE . .
2018 e ?JL| WriteRegE., H
: 15:11 : J ' :
H H 1 : H
SignlmmE
150 =<2 PCBranchM
: i +H :
PCPlus4F : PCPlusdD : PCPlus4E : :
= - = -
: i : ResultwW
Fetch Decode Execute Memory i Writeback

(b)

Figure 7.45 Single-cycle and pipelined datapaths

Pipelined processor: chop single processor in 5 stages

Systems @ ETH ziric

* Bank of flip
flops hold the
intermediate
values

Pipelined processor

PCPlus4F

A RD

Instruction
Memory

CLK

InstrD

CLK CLK CLK
~—\ |RegWriteD é RegWriteE 6 RegWriteM & RegWriteW
c?;:‘t.';m MemtoRegD MemtoRegE MemtoRegM MemtoRegW
i
MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
31:26
Op ALUControD| | ALUControlE,, PCSrcM
5:0
Funct ALUSrcD ALUSrcE
RegDstD RegDstE
\ / — ALUOutw
CLK | CLK
o) - |
25:21 WE3 SrcAE ZeroM WE
A1 RD1 H = 3
ALUOQutM ReadDataW
20:16 I~ >§ - A RDH 1
A2 RD2 H 0]srcBE Data
s R 1 WriteDatan | emery
egister WriteDataE riteDatal
wp3 "¢9 WD
File
20:16 RIE =)) i
0 WriteRegE..o WriteRegM,.o WriteRegW,.o
15:11 RdE 1
/
15:0 . u - <<2
Sign Extend SignlmmE . PCBranchM
PCPlus4D PCPIlus4E
ResultW

Figure 7.47 Pipelined processor with control

Systems @ ETH ziric

Pipelined processor n:j

Systems @ ETH ziric

* Pipelined processors have higher throughput: but there are some things
to be cautious about: data hazards

* When multiple instructions are handled concurrently: if one instruction
is dependent on the result of another which has not yet completed, we
have a hazard

Pipelined processor

1 2 3 4 5 6 7 8

Systems @ ETH ziric

L

Time (cycles)

$s2M 7 =

0
add $s0, $s2, $s3 |IMPX HRF[sss E+= oM i/ .

M &2y
and $t0, $s0, s$sil M 22] RF st :87 !D || [FE0f g

M 4 ol vstl
or $tl, $s4, $s0 M 2 | RE o E|I TDM_ RF

o[Jssov N $t2
sub $t2, $s0, $s5 M =2 HI RF [ss5 :B— —I—DM— RF

Figure 7.48 Abstract pipeline diagram illustrating hazards

* RAW hazard: add instructions writes result into $SsO at first half of cycle3, but
and instruction reads $s0 on cycle3 obtaining the wrong value

Pipelined processor n:j

Systems @ ETH ziric

* There are 2 solutions for data hazards

* 1. Forwarding: result from memory or writeback stage is “forwarded” to
a dependent instruction in the execute stage

2. Stalling: stall the pipline, i.e. hold up operation until the data is
available

 Sometimes we need to combine forwarding with stalling, if even
with forwarding we don’t have enough time

Pipelined processor: 1. Forwarding

1 2 3 4 5 6 7 8
-
Time (cycles)
$s2 ™] < 0
add $s0, $s2, $s3 |M [P U RF[sss :B_ pM|_| [$s0f=F
] $s0) 5t
and $t0, $s0, $sl M (22l {| RE [ss1 e DM_r RE
[~ $s4d 7 vstl
or DM
or $tl, $s4, $s0 M _-[RF ssoi@ _T _— RF
$s0 = 5
sub $t2, $s0, $s5 M 222 H RE $55]:B_ _I_DM se2f o

Figure 7.49 Abstract pipeline diagram illustrating forwarding

* In cycle4, $s0 is forwarded from the memory stage of the add
instruction to the Execute stage of the dependent AND instruction

Systems @ ETH ziric

Pipelined processor n:j

Systems @ ETH ziric

* There are 2 solutions for data hazards

* 1. Forwarding: result from memory or writeback stage is “forwarded” to
a dependent instruction in the execute stage

2. Stalling: stall the pipline, i.e. hold up operation until the data is
available

 Sometimes we need to combine forwarding with stalling, if even
with forwarding we don’t have enough time

Pipelined processor: 2. Stalling w/ forwading

1 2 3 4 5 6 7 8

Systems @ ETH ziric
- |w instruction

Time (cycles)

v ss0, sois0) [P} Bl received data from

. fgcl)‘ljlblegl " st memory at end Of
and $t0, $s0, ssl M f2d |-| RF |ss1]ul—D —| RF

DM{ | [St2igr

o]
=
)
m
u |ou
=EES

r
or Stl, $s4, S$sO IM _T

[~ instruction needs
Sub SEB. $e0. se3 .]{i B that data as a source

Figure 7.51 Abstract pipeline diagram illustrating trouble forwarding from |w Ope ra nd at the
1 2 3 4 5 6 7 8 9 beglnnlng Of CyC|e4
»
Time (cycles)
$0 o
lw $s0, 40($0) M | RE [0 j:B— pm|_| [ss0 RF .
e e Solution: stall
and $t0, $s0, $s1 IM and]{ RF |ss1| H| RF [ssal —I—DM— $t0fr . .
—EE{ pipeline and then
X $s4M™
or $tl, $s4, $s0 M °r] IM P HIRRg <o |]TDM Stlipr
1= forward
Stall N VDU
sub $t2, $s0, $s5 M (=22 | RE $s5]:B— DM St21RF

Figure 7.52 Abstract pipeline diagram illustrating stall to solve hazards

Pipelined processor H

Systems @ ETH ziric

* A piplined processor with stalling, forwading etc. and all control units
implemented then looks like the following

Pipelined processor

CLK CLK CLK
>\ | RegWriteD %7 RegWriteE 67 RegWriteM 6 RegWriteW
MemWriteD MemWriteE MemWriteM
ALUControlD,,, ALUControlE,,
31:26
Op ALUSrcD ALUSICE
5:0
Funct RegDstD RegDstE
BranchD
— |
CLK CLK Equalp[™—POSeD — CLK
CLK 6 o) = -]
25:21 WE3 SIcAE WE
0] pc PCF| A RD H InstrD [—— A1 RD1 0 80
—t 1 Instructi 1 __Lw >3 ALUOUtM A RD H ReadDataW
nstruction 20:16
memory | A2 AD2 0] & EET Data
A3 . _-IJJ_ 1110 1 . memory
WD3 Re?i::ter T WriteDataE WriteDataM WD :
25:21 RsD RsE ALUOUtW Ij—
- RtD RtE ~
2016 Cj WriteRegE, o WriteRegM,, (WriteRegW,,
15:11 RdE RdE ﬂ I
: SignimmD SignimmE
15:0 Ign
4 extend
<<2
= +
PCPlus4F mol PCPlus4D e
= -
ol - — —
N PCBranchD
ResultW
m|m m|m = § o] o)
o|o oo 2 3| @]
o 2|2 2|2 2|8 z|e <
» ® B 3@ u 3|3 gz BN =
g ¢ B : 28 3k HE
l [S] o 0|0 m m[m ‘| 2| < =
Hazard unit

Figure 7.58 Pipelined processor with full hazard handling

Systems @ ETH ziric

L=

Systems @ ETH ziric

Recap

Advanced Processor Architecture Paradigms

Superscalar Processors, Out of Order Execution, Multithreading,
Fine Grained Multithreading, SIMD and VLIW

Systems Programming and Computer Architecture

Superscalar Processor and Oo0O Execution n:j

Systems @ ETH ziric

* Superscalar architecture refers to a processor that can issue and
execute multiple instructions simultaneously using multiple exueciton

units (multiple ALUs, FPUs tec.) to allow for parallelism at the
instruction level

* Note: All processors today are pipelined and superscalar

Superscalar Processor
and Oo0O Execution

e Out of Order (000)
Execution: Instructions are
being fetched and decoded in
program order, but we can
execute them out of order

e Write in Order: To allow for
correct exceptions etc.

 Example: If ADD stalls, we can
still execute MUL and SUB as
they are indepdentn

1. ADD R1, R2, R3 ; Needs result of an earlier instruction
2. MUL R4, R5, R6 ; Independent
3. SUB R7, R8, R9 ; Independent

Out Of Order

R B

In Order

> I-Cache

v

Branch
Predict

Fetch Unit

v

Y

Decode/Rename

Dispatch

] L1 Instruction Buffer

vy |

] — Reservation Stations

IR

Int Int FP FP

L/S L/S

I |

A|TA

Reorder Bufferl 111 []

Write Buffer e

D-Cache

FI"'OI"It End Instruction
cacheTag| L1 Instruction Cache

Branch HOP Cache 32KB 8-Way Instruction
Predicition Tag TLB

16 Bytes

A Real Processor * Real Processor Arch

 Abstract Processor LLEL]

Instruction Queue
(40, 2x20 entries)

Ziirich

? 5 |A Instructions
> I-Cache
4-Way Decode
(Micro-Fusion & Macro-Fusion)
B h y MicroCode]]]]
ranc q Complex|| Simple Simple Simple
— P o - FetCh Unlt ROM Decoder || Decoder || Decoder || Decoder
) redict
-E ‘ A Fl:;t:;PS 4 Fused uOPs
O IZD':I:\ Instruction Buffer :
c v LOP Cache / | Allocation Queue (56, 2x28 uops) |
Decode/Rename (1.5k HOPs; 8-Way)| 32 Bytes [_—
DiSpatch R /All te / Reti t
ename / Allocate / Retiremen R—
* Y — ReOrder Buffer (192 entries) l
v v g g 5 g 5 g 5 s
_ I - o [Reservation Stations EEGRRE
) — — Unified Reservation Station (RS)
© nteger sical Register Fle (60 entries) ‘ector sical Register Fle
5 D oo O e e Tl e ;
Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7 - o5
5 7 o 0o Lﬁﬁ—'ﬁ—“—!—”ﬁﬁ—”ﬁ“ﬁ 5 ag | e
= | | . ' g ; 3 1
© | || | Ol
\\f i
\ A
1 v
_ Reorder Buffer T T T
[} \J Store Buffer & Forwarding
© Reti (42 entries)
o etre y 32B/Cycle store
=
- \
\ Write Buffer [T T+ » D-Cache 11 Data Cacha |EEE]
Load Buff 32KB 8-Wa J
Syst 2x32B/Cycle load (‘732 e"tufieg . ——
\
Memory |

Multithreading

Systems @ ETH ziric
 Normal multithreading: If one Recall: Fine-Grained Multithreading: Basic Idea
process (or thread) does a memory ——
instruction which takes time, start Be== N
executing instructions of another = »
process instead (to bridge the SiEanimm)
waitingtime) [Nl Ble eibrmed w11 L
* Fine Grained Multithreading |

(FGM): Every cycle we put a
i n St rU Ct |O n frO m a d |ffe re nt t h rea d Each pipeline stage has an instruction from a different, completely-independent thread

| n th e p rO Ce SSOF We need a PC and a register file for each thread + muxes and control

SIMD and VLIW

* SIMD (Single Instruction
Multiple Data): Single
Instruction Multiple
Data, i.e. one instruction
but we operate on
multiple data elements

e Called array and vector
processing

Systems @ ETH ziric

SIMD Array Processing vs. VLIW

= Array processor: Single operation on multiple (different) data elements

8

rograml
g 4" add VR, VR, 1

ounter

VLEN =4

add VR[0).VR[0],1 add VR[1],VR[1],1 add VR[2].VR[2],1 add VR[3],VR[3].1

Instruction
Execution

PE

1= s ==

SIMD and VLIW

 SIMD Example:
AVXV?2, i.e.
operation on
vectors

* Single Instruction
(vaddsd)
Multiple Data
(8 ints; 4 doubles)

=g

AVX2 SIMD operations (256-bit vectors)

* Single precision
glep vaddsd %ymm@, %ymml, %ymml

%ymmo

N ~ ~ ~ ~ ~

BB R R R R R

* Double precision ~ Vaddpd %ymm@, Zymml, Xymml

R PR R

Z%ymm1

%ymmo

%ymm1

’Ziin'ch

SIMD and VLIW

Svstems @ ETH ziricn

SIMD Array Processing vs. VLIW

* VLIW (Very Long
Instruction Word):

« VLIW: Multiple independent operations packed together into a “long inst.”

Instead of

processing just one
instruction at the

mov ré.r2
-

mul r7.r8.r9

rogra
'l add r1.r2.r3 I load r4.r5+4
ounter

PC; take multiple
(long instruction bl
word)

e

PE

E

PE

L=

Systems @ ETH ziric

Recap

How does all this relate to what you have seen in the
lecture?

Systems Programming and Computer Architecture

What you saw in the lecture: seq proc.

Systems @ ETH ziric

Sequential processor stages *°

Write back

* Fetch Memory
* Read instruction from instruction memory

* Decode
* Read program registers
* Execute
* Compute value or address

* Memory
* Read or write data Decode

* Write Back

* Write program registers

° PC Fetch

* Update program counter

Execute

* You should now understand this processor design diagran;: the 5 stages for the
sequential processor

What you saw in the lecture: pipelined proc.

Systems @ ETH ziric
. . Write back | [
Pipelined hardware 7 B W
el - | Data
Clock cycle Memary G e o
01 2 3 4 5 6 7 8 -
[(M l—l—-:l—[o | [el]
Waiting . . cc ALU
instructions . . . Execut A (A
CNENE
N T X
% Stage 2: Decode @ }x{ D . - . & ’X‘ &
g. Stage 3: Execute & % g |:| . . . g &
Stage 4: Write-back & & g |:| . . . @
[ENN
Completed I:l . .
instructions |:| .
L]

* You should also understand what pipelining is, why its useful, and how
this works inside the processor

What you saw in the lecture: data hazards

Systems @ ETH ziric

Recall: Data hazards

* Data dependencies for instruction j following instruction i

* Read after Write (RAW) (true dependence)
* Instruction j tries to read before instruction j tries to write it

(+ Write after Write (WAW) (output dependence))
* Instruction j tries to write an operand before i writes its value Can avoid hazard with
* Write after Read (WAR) (anti dependence) register renaming
* Instruction j tries to write a destination before it is read by i

* No such thing as a Read after Read (RAR) hazard since there is never a
problem reading twice

* You should also understand what pipelining is, why its useful, and how this
works inside the processor; but also what kind of hazards appear and why

Systems @ ETH ziric

Recap

Possible Compiler and Code Optimisations

Systems Programming and Computer Architecture

Code Optimisations

1. Compiler Flags

* 2.Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=5

Systems @ ETH ziric

Code Optimisations

* 1. Compiler Flags

* 2.Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=5

Systems @ ETH ziric

Code Optimisations n:j

Systems @ ETH ziric

Optimizing compilers

* Use optimization flags,
default can be no optimization (-00)!

* Good choices for gcc:
-02, -03, -march=xxx, -m64

* Try different flags and maybe different
compilers

* icc is often faster than gcc

Code Optimisations

Systems @ ETH ziric
Optimizing compilers

* Compilers are good at: mapping program to machine
* register allocation
* code selection and ordering (scheduling)
* dead code elimination
* eliminating minor inefficiencies
* Compilers are not good at: improving asymptotic efficiency

* up to programmer to select best overall algorithm
* big-O savings are (often) more important than constant factors

* but constant factors also matter
* Compilers are not good at: overcoming “optimization blockers”

* potential memory aliasing
» potential procedure side-effects

Code Optimisations

e 1. Compiler Flags

» 2. Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=a=

Systems @ ETH ziric

Code Optimisations

Code motion

* Reduce frequency with which
computation is performed
* If it will always produce same result
* Especially moving code out of loop

* Sometimes also called
precomputation

void set_row(double *a, double *b,

{

long i, long n)

long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[j];

long j;

int ni = n*i;
for (j = 0; j < n; j++)
a[ni+j] = b[3j];

Systems @ ETH ziric

Code Optimisations

1. Compiler Flags

* 2.Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=g=

Systems @ ETH ziric

Code Optimisations

Systems @ ETH ziric

Strength reduction

* Replace costly operation with simpler one
 Usually more specialized ("less strong")
* Prior example: Shift/add instead of multiply or divide

16*x — x<<4

int ni = 0;
for (i =0; i < n; i++) { for (i =0; i < n; i++) {
for (J =8; j < n; j++) { for (3 =0; j < n; j++) {
aln*i + 31 = bI31; » alni + 31 = b[3];
} }
} ni += n;

Code Optimisations

e 1. Compiler Flags

e 2. Code Motion / Precomputation
e 3. Strength Reduction

e 4, Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=a=

Systems @ ETH ziric

Code Optimisations

Share common subexpressions

* Reuse portions of
expressions

* Compilers are not
always good at
exploiting arithmetic
properties

e GCC will do this with
-01

3 mults: i*n, (i—1)*n, (i+1)*n

/* Sum neighbors of i,j */

up = val[(i-1)*n + j 1];
down = val[(i+l)*n + j 1];
left = wval[i*n + j-11;
right = val[i*n + j+1];

sum = up + down + left + right;

leag 1(%rsi), %rax # i+l

leag -1(%rsi), %r8 # i-1

imulgq %rcx, %rsi # i*n

imulg %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addqg %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

1 mult: i*n
int inj
up =

down

left
right =
sum = up

imulq
addq
movq
subq
leaq

= i*n + j;

val[inj - n];

val[inj + n];

val[inj - 1];

val[inj + 1];

+ down + left + right;

i*n
i*n+j

%rcx, %rsi
%rdx, %rsi
%rsi, %rax i*n+j

%rcx, %rax i*n+j-n
(%rsi,%rcx), %rcx # i*n+3j+n

H H HH

-

Systems @ ETH ziric

Code Optimisations

1. Compiler Flags

* 2.Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=5

Systems @ ETH ziric

Code Optimisations

Systems @ ETH ziric

Why couldn’t compiler move strlen out of
inner loop?

* Procedure may have side effects
* Function might not return same value for given arguments
* Could depend on other parts of global state
* Procedure lower could interact with strlen static int lencnt = @;

B T R Y S PR

void lower(char *s)
{
int i;
for (i = 0; i < strlen(s); i++) {
if (s[i] >= 'A' && s[i] <= 'Z' f
s[i] -= ('A" - "a"); -

void lower2(char *s)

{

int i;
int len = strlen(s);

}
}
}

* Move call to strlen outside of loop

}

for (1 =0; i < len; i++) {
if (s[i] >= 'A" && s[i] <= 'Z") {
s[i] -= ("A" - '"a");
}
}

* Since result does not change from one iteration to another

Code Optimisations

e 1. Compiler Flags

e 2. Code Motion / Precomputation
e 3. Strength Reduction

e 4. Common Subexpressions

* 5. Procedure Calls

* 6. Memory Aliasing (Restrict)

=a=

Systems @ ETH ziric

Code Optimisations

Systems @ ETH ziric

Optimization Blocker: Memory Aliasing

* Two different memory references specify single location

* Easy to have happenin C
* Since allowed to do address arithmetic
* Direct access to storage structures

* Get in habit of introducing local variables
* Accumulating within loops
* Your way of telling compiler not to check for aliasing

Code Optimisations
Possible aliasing

* Memory accessed
= compiler assumes possible side effects

/* Sum rows of n x n matrix a and store in vector b */
void sum_rowsl(double *a, double *b, long n) {

long i, j;
for (1 =0; i < n; i++) {
b[i] = o;

for (j = 8; j < n; j++)
b[i] += a[i*n + j];

double A[9] =
{ e) 1) 2)
41 8) 16})
32, 64, 128};

double B[3] = A+3;

sum_rows1l(A, B, 3);

In memory, we have...

ex7fffbeoofs6e | A[Q] 0
ox7fffbe9efs6s| A[1] 1
ex7fffbeoefs7e| A[2] 2
ex7fffbeoefs7s| A[3] 4
ex7fffbeoefsse | A[4] 8
ex7fffbe9ofsss | A[5] 16
ex7fffbeoefson | A[6] 32
ex7fffbeoefsos| A[7] 64
ex7fffbe9efsae | A[8] 128

Value of B:

init: 1[4, 8, 16]

45

B[@]
B[1]
B[2]

Systems @ ETH zuic

* |Issue here: A, B might point to the same region, cant do scalar
replacement (local accumulation)

Systems @ ETH ziric

Code Optimisations

How to remove aliasing

* Scalar replacement:

* Copy array elements that are reused

into temporary variables

* Assumes no memory aliasing
(otherwise possibly incorrect)

/* Sums rows of n x n matrix a
and stores in vector b */

void sum_rows2(double *a, double *b, long n) {

long i, J;
for (1 = 0; i < n; i++) {

double val = 0;

for (j = 9; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

}

sum_rows2 inner loop
.L66:

addsd (%rcx), %xmm@ # FP Add

addq $8, %rcx
decq %rax
jne .L66

Solution: either do it explicitly yourself

Systems @ ETH ziric

Code Optimisations

restrict keyword: a hint to the compiler

/* Sums rows of n x n matrix a
and stores in vector b */
void sum_rowsl(double restrict *a, double restrict *b, long n) {

long i, j;
for (1 =0; i <n; i++) {
b[i] = @;

for (j = @; j < n; j++)
b[i] += a[i*n + j];

}

}

C99 introduces restrict keyword for pointer declarations

op

2

restrict tells the compiler that for the lifetime of this pointer, no other pointer will

be used to access the “object” to which it points

Tells the compiler not to worry about memory aliasing = enables more optimizations
If the user violates this and passes a pointer that aliases, get undefined behavior

* Solution: or tell the compiler he can do it

Systems @ ETH ziric

Systems @ ETH ziric

Recap

Hardware Optimisations

Systems Programming and Computer Architecture

Code Optimisations m

Systems @ ETH ziric

1. Loop unrolling 2x1
e 2. Loop unrolling 2x1 with reassociation
* 3. Vector Instructions

Code Optimisations ::;

Systems @ ETH ziric

1. Loop unrolling 2x1
e 2. Loop unrolling 2x1 with reassociation

3. Vector Instructions

Loop unrolling

Loop Unrolling (2x1)

* Perform 2x more
useful work per
iteration

void unroll2a_combine(struct vec *v, data_t *dest)

{

long length = vec_length(v);
long limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
long i;
/* Combine 2 elements at a time */
for (i =0@; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {
X = X OP d[i];
}

*dest = x;

Systems Programming 2023 Ch. 16: Architecture and Optimization

Load two values, instead of just 1

Systems e ETH zuna

Systems @ ETH ziric

Loop unrolling

Systems @ ETH ziric

Effect of Loop Unrolling

Y Helps integer add Integer Double FP
* Achieves latency bound

e Others don’t improve. Why?
* Still sequential dependency

X = (x OP d[i]) OP d[i+1];

Can we do better?

* Load two values, instead of just 1

Loop unrolling m

Systems @ ETH ziric

Combined = Serial Computation
(OP =)

e Computation (length=8)
(CCCCCC(2 > d[e]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

e Sequential dependence
* Performance: determined by latency of OP

Code Optimisations H

Systems @ ETH ziric

1. Loop unrolling 2x1
e 2. Loop unrolling 2x1 with reassociation
* 3. Vector Instructions

Loop unrolling with reassociation (2x1a)

* Can this change the result of
the computation?

* Yes, for FP. Why?

Compare to before:
X = (x OP d[i]) OP d[i+1];

void unroll2aa combine(struct vec *v, data_t *dest)

{

long length = vec_length(v);
long limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
long i;
/* Combine 2 elements at a time */
for (1 = 0; i< limit; i+=2) {
X = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
X = x OP d[i];
}

*dest = x;

Systems @ ETH ziric

 Why? This breaks sequential dependency (operations of next iteration

can directly be started after having calculated d[i] OP d[i+1]

Loop unrolling with reassociation (2x1a) H

Systems @ ETH ziric

(no dependency)

4o Y1
* What changed:
* Ops in the next iteration can be started early %

* Overall Performance

* N elements, D cycles latency/op
* (N/2+1)*D cycles:
CPE=D/2 X = X OP (d[i] OP d[i+1]);

 Why? This breaks sequential dependency (operations of next iteration
can directly be started after having calculated d[i] OP d[i+1]

Code Optimisations ::;

Systems @ ETH ziric

1. Loop unrolling 2x1
e 2. Loop unrolling 2x1 with reassociation
* 3. Vector Instructions

Vector Instructions

AVX2 SIMD operations (256-bit vectors)

* Single precision
vaddsd %ymm@, %ymml, %ymml

~ ~ ~ ~ ~ ~ ~ ~
./9\/9\.9\,/@\./9\./9\/@\..9\]
« Double precision vaddpd %ymm@, %ymml, %ymml

~ ~ ~ ~
N SN SN 2

%ymmo

%ymm1

%ymmo

%ymml

=a=

Systems @ ETH ziric

L=

Systems @ ETH ziric

Introduction to Assignment09 and
Exam Questions

HS23 CPE Calculations

Systems Programming and Computer Architecture

Assignment 09 Question 1

double aprod(double al[], 1int n)
{

ot 17 e 3-way loop unrolling
double x, vy, z;
double r = 1; — 3 Execution per loop
for (1 = 0; 1 < n-2; i+= 3) {

Xx = ali]l;

= al[i+l1l]; . -

Sos * Find critical path

r =r * x *y *z
}
for (; 1 < n; i++) Divide by 3

r *= ali];

return r;

Systems @ ETH ziric

101

Assignment 09 Question 1

for (1 =0; 1 < n-2; i+= 3) {

X

S5ONK

a[i];

a[i+l];

a[i+2];

((r *x) *y)* z;

Al: ((r*x)*y)*z

=5

Systems @ ETH ziric

r | x|y

Z

)

—+
&

r

102

Assignment 09 Question 1

for (1 =0; 1 < n-2; i+= 3) {

X

S5ONK

a[i];

a[i+l];

a[i+2];

(r * (x *y)) * z;

A2: (r*(x*y))*z

=5

Systems @ ETH ziric

r

X

Y

Z

*

*

Ry

n

H |«

v

103

Exam Question HS?2

a) Withp=((p * x) *v) * z, the theoretical CPE is:
b) Withp=(p* (X *vy)) * z, the theoretical CPE is:
c) Withp=p* ((x *vy) * z), the theoretical CPE is:

d) Withp=(p *x) * (y *), the theoretical CPE:

Consider the following code:

int product(int* a, int n){
int i, X, v, Z;
intp=1;
for (i = @;

x = a[il;
a[i+1];
ali+2];

=p*x*y®"z; PRODUCT CALCULATION

i<n; i) {
=p * a[i];

return p;

For the line marked "PRODUCT COMPUTATION" consider 4 different re-association options:
Versiona: p=((p*x) *y) *z
Versionb: p=(p*(x*y)) *z
Versionc: p=p* ((x*y) * z)
Versiond: p=(p*x) *(y*z)

This code executes on an Intel processor. Assume the processor has a single integer multiplication unit which is
pipelined to support issuing up to 1 integer multiplication per cycle (i.e., after issuing an integer multiplication, the
next integer multiplication can be issued in the next cycle). Assume the latency of an integer multiplication is 3
cycles for this processor.

Calculate the theoretical cycles per element for each PRODUCT COMPUTATION option. Recall that the cycles per
element (CPE) is a measure of performance where the cycles for a computation on an array of size n is expressed as
Cn + K, where C is the cycles per element. The theoretical CPE is the value of C assuming the only factors are the
cycles per issue and the latency of the integer multiplication unit in the processor.

Hint: focus on the first for loop, you do not need to take into account the second for loop for the theoretical CPE
calculation.

Fill in the blanks by specifying values with up to 2 decimal places.

Consider the following code:

int product(int* a, int n){

int i, X, v, Z;

Exam Question HS? g

x = a[il;
a[i+1];
ali+2];

P*x*y®*z; PRODUCT CALCULATION
a) Withp = ((p * x) *vy) * z, the theoretical CPE is:

(; 1 <n; 1+) {
p * al[i];

b) Withp=(p* (x*y)) * z, the theoretical CPE is:

return p;

c)Withp=p*((x*y) * z), the theoretical CPE is:

H - * * * H .
d) With P= (p X) (y Z), the theoretical CPE: For the line marked "PRODUCT COMPUTATION" consider 4 different re-association options:

Versiona: p=((p*x) *y) *z

| T P U P - Fom e Foc % o0V R

3 el Vi cbions pog | Wshiudhion, 3 nslulion§
-\ Xy x4l 0h-xy -2
KKQK \ B‘ z “\ lX““ t [\ W(\d) (\ \ ‘d) r has a single integer multiplication unit which is
? X \6 T [\ X .1 z [\ xg l p X “% cycle (i.e., after issuing an integer multiplication, the
L/

g N \ ime the latency of an integer multiplication is 3

i N
3

>T COMPUTATION option. Recall that the cycles per

r a computation on an array of size n is expressed as
4 3 =1 2‘,:.2 = 2 s the value of C assuming the only factors are the
3 3 tin the processor.

:.ount the second for loop for the theoretical CPE

Fill in the blanks by specifying values with up to 2 decimal places.

L=

Systems @ ETH ziric

Exam Questions on Optimisation
HS22 Question 13

Systems Programming and Computer Architecture

Question 13 [10 points] o o ETH...

Which of the following code optimizations can reduce the number of instructions that the processor
needs to execute for a program? For each, write YES or NO and explain your reasoning. A
correct answer with no explanation will receive no points.

i) Code inlining.
ii) Code motion.
iii) Loop unrolling.

iv) Reassociation.

v) Strength reduction.

Question 13 [10 points] e CETH..

Which of the following code optimizations can reduce the number of instructions that the processor
needs to execute for a program? For each, write YES or NO and explain your reasoning. A
correct answer with no explanation will receive no points.

* i) Yes: no stackframe & no blackbox, i.e. allows

) Gode iniining. for compiler optimisations in body
ii) Code motion. * i) Yes: allows to precompute stuff like strlen(s)
i) Loop unrolling. * iii) Yes: we evaluate loop conditions less often

* iv) No: Changes only the order of operations

* v) No: Replaces one strong one with a weak
v) Strength reduction. one; may even need more for the weak ones

Iv) Reassociation.

L=

Systems @ ETH ziric

Exam Questions on Optimisation
HS21 Question 6

Systems Programming and Computer Architecture

Question 6 [13 points]

Systems @ ETH ziric
a) Which of the following code optimizations can reduce the total number of instructions that will
get executed in a program? For each, write YES or NO and explain why. A correct answer with no
explanation will receive no points.

(4 points)

* i) Yes: we evaluate loop conditions
less often

i) Precomputation. * i) Yes: allows to precompute stuff
like strlen(s)

|||) Vectorization (i.e., USing SIMD inStrUCtionS). ° |||) Yes: one instruction for mu|t|p|e
OPs

* jv) No: Changes only the order of
operations

1) Loop unrolling.

Iv) Reassociation.

b) Consider the following code: SystemS@ ETH:.o

void lowercase(char *s)

{
int 1i;
for (i = 0; i < strlen(s); i++) {
if (s[i] >= °A° && s[i] <= ’Z°) {
s[i] -= CA’ - ’a’);
}
}
}

The execution time of this code is quadratic in relation to the length of the string. Explain why. Also
describe one simple modification to the code that would make execution time linear in relation to
the length of the string. What is this type of optimization called?

(3 points)

Would the gcc compiler apply the modification you described automatically when running with opti-
mization flag -0 greater than 0? Explain why or why not.

(2 points)

b) Consider the following code: SystemS@ ETH:.o

void lowercase(char *s)

{
int 1i;
for (i = 0; i < strlen(s); i++) {
if (s[i] >= °A° && s[i] <= ’Z°) {
s[i] -= CA’ - ’a’);
}
}
}

The execution time of this code is quadratic in relation to the length of the string. Explain why. Also
describe one simple modification to the code that would make execution time linear in relation to
the length of the string. What is this type of optimization called?

(3 points)

Would the gcc compiler apply the modification you described automatically when running with opti-
mization flag -0 greater than 0? Explain why or why not.

(2 points)

Precompute strlen(s); Called precomputation/code motion

Compiler would not automatically do it: “blackbox” function, may have side
effects: must not change semantics of the program

=5

Systems @ ETH ziric

Measuring (p-arch) performance

113

Expressing Program Performance m

Systems @ ETH ziric

On the program level:
* Execution Time =[Ce* CP| * CCT

* |C =Instruction count
e CPI = cycles per instruction (= 1/IPC)
* CCT = clock cycle time (= 1/Frequency)

* Unable to quantify performance for individual program
sections.

114

Expressing Program Performance m

Systems @ ETH ziric

On the instruction level:
* Throughput (instructions / cycle)
* Latency (cycles / instruction)

* Each depend on the type of instruction
* What to optimize for?

Thought for later: How do these differ when considering a single vs.
many instructions (on average)?

Expressing Program Performance m

Systems @ ETH ziric

Benchmarking array-like operations:

* Cycles per Element (CPE):
e Execution time = CPE*n + overhead
* Independent of clock time?
* Highly variable for different code sections
 Hard Lower bound - why?

116

Measuring CPE

void psuml(float a[], float p[], long int n) {

long int 1i;
pfe] = a[@];
for (1 = 1; i < n; i++)
pl[i] = p[i-1] + a[i];
}

void psum2(float a[], float p[], long int n) {

long int 1i;

pfe] = a[e];

for (1 = 1; 1< n-1; i+=2) {
float mid val = p[i-1] + a[i];
p[i] = mid_val;
p[i+1] = mid_val + a[i+1];

}

Cycles

3000

2500

2000

1500

1000

500

=a=

Systems @ ETH ziric

psuml \
Slope = 10.0 /ﬁ/ﬁﬂﬁ‘gﬁé

psum?2
Slope = 6.5

50 100 150 200
Elements

if (1 < n) p[i] = p[i-1] + a[i];

What do we need to know to calculate lower bound?

137

=5

Systems @ ETH ziric

Improving p-arch performance pt.1

Instruction parallelism (pipelining and superscalar
execution)

118

Once upon a time...

* Sequential Processor Design
(very long ago: single-cycle)
* Each instruction must be
— Fetched
— Decoded
— Executed
— Written back

e And the new PC determined

What are issues with this design?

PC

Memory

Execute

Decode

Fetch

wald velB dstE dstM srcA sncB

[st [dstha] srea | snca |

agistert*
file
e
icode ifun A B wvalC walP

I

Instruction PC
Mamory ineremeant

— %

PC

t

Write back

Systems @ ETH ziric

119

Instruction parallelism / Pipelining m

Systems @ ETH ziric

* Observation 1: higher clock frequencies as main source of
performance improvement -> we reached physical limits there.

e Observation 2: Individual hardware units are idle most of the
time.

* |dea: Overlap instruction execution.

Pipelining: example

Systems @ ETH ziric

addl S50, %eax

mov! %eax, (%esp)

addl (%esp), %edx

time

addl S50, %eax

mov! %eax, (%esp)

addl (%esp), %edx

time

121

How it’s done in the
CPU?

 Divide the Hardware
Into stages

* [nsert registers in
between that hold the
intermediate values

* Add pipeline control
logic

1
newFC
t
PC e]
[el
tl:lalzu.ﬂ
M | Mem H=% Data
emo I I
ry control - memary
|
Bch VA E ' N
1
ALl
Execute cc / ALU \'\ |
ALU l ALL
A B
[
[I
walh valo O3k oSl Bieh Ere
(aste [dsim] srca | srca]
Decod Ty I
file
Write back |
[ifun | © e Aar
L] & * ‘
| | | L. 1
Fetch Instruction PC
Mamory II nnnnnn
— %
[

=g=

Systems @ ETH ziric

122

Pipelining performance m

Systems @ ETH ziric

* Core ldea: Overlap instruction execution.

* Yields increase in throughput (and mean latency) proportional
to #(pipeline stages) — assuming a full pipeline.

* |[nsight: We now have additional parameters — pipeline depth &
pipeline “fullness”.

Pipeline: All Gold?

Systems @ ETH ziric

addl S50, %eax

movl %eax, (%esp)

addl (%esp), %edx

time

addl S50, %eax

mov! %eax, (%esp)

addl (%esp), %edx

time

Any Problems here?

124

Pipeline: All Gold?

Systems @ ETH ziric

addl S50, %eax

mov. %eax. (%esp)

addl (%esp), %edx

add| S50 %eax

movl %eax, %esp)

addl (%esp), %edx

>
time
Pipelining introduces data hazards (read after write dependency)

Idea: Give the result value as early as possible

125

Applying CPE to pipelined execution n:j

Systems@ ETH ziicn

void combine(vec ptr v, data_t *dest) {
long int i;
long int length = vec length(v);
data t *data = get vec start(v);
data_t acc = IDENT;

for (i = @; 1 < length; i++) {
acc = acc OP data[i];

}
*dest

acc;

126

Applying CPE to pipelined execution

Systems @ ETH ziric

void combine(vec_ptr v, data t *dest) {
long int i;
long int length = vec_length(v);
data_t *data = get vec start(v);
data_t acc = 1;

for (i = @; i < length; i++) {
acc = acc * data[i];

}
*dest = acc;
}
Assembly Instructions Execution Unit Operations
.L24:
imull (%eax,%edx,4),%ecx | load (%eax, %edx.0, 4) — t.1
imull t.1, %ecx.0 — %ecx.1l
incl %edx incl %edx.0 — %edx.1
cmpl %esi, %edx cmpl %esi, %edx.l — cc.1l
71 .L24 jJjl-taken cc.1l

127

Scheduling Execution Units

Systems @ ETH ziric

Execution Unit Operations

load (%eax, %edx.0, 4) — t.1

imull t.1, %ecx.0 - %ecx.1 Rl £.1
incl %edx.0 — %Sedx.l

cmpl %esi, %edx.l — cc.l

jl-taken cc.l

imull

L A Fecx.l

128

Lower bound CPE — with data dependencies

Systems @ ETH ziric
* Assuming perfect branch .
— v
prediction & multiple load 2 1 e
. 3“_ﬁ
units s
* CPE bound by critical path e
7 —\. J %e
8 lteration 1
9
10 Cycle
11
12 Iteration 2
13 :
14 =2
15 .3 T
Iteration 3

129

How to improve? m

Systems @ ETH ziric

e Current problems:
— stages with different #instructions / cycle
— data / control hazards causing stalls

e Option 1: increase pipeline depth. How (far)? Why (not)?

* Option 2: replicate pipeline (components). How (far)? Why
(not)?

130

Option 1: increase pipeline depth m

Systems @ ETH ziric

* Theoretical speedup = #stages

* Observation: increases #instructions in pipeline at any given
time
— smart(er) scheduling needed
— control hazards: branch mispredictions become more costly

— data hazards: more complex to apply work-arounds
(forwarding/bypasses/reordering)

Option 2: replicate pipeline (components) m

Systems @ ETH ziric

* Step 1: replicate components
representing bottlenecks
(load/store units, FPU, ...)

* |deally, all pipeline stages have the
same throughput (#instructions /
cycle), on average

(o] oe] -~ (9)] 4] B ! w N -

-
o

k.
Iteration 1
imull
Cycle i=1
Secx.2
A

Iteration 2

—
—

-
N

-
w

—
N

-
(4)]

Iteration 3

133

Improving CPE — multiple functional units

Combine two elements at the time:

for (1 =0; 1 < limit; i+=2) {
X0 = X0 OP datal[i];
x1 = x1 OP data[i+1];

}
*dest = x0 OP x1;

Fecx.l

febx.1

=5

Systems @ ETH ziric

134

Lower bound CPE — single instruction latency

Tedx. d

Yedx.0
— ¥
1 incl)Feean
— A 4 ¥
2 load [(cmpl)| h
EE - 1
3 TeoH . = f jl load Fedx. 3
2) | s
4 =0 1))
FecX. I * *t.E
S lteration 1 addl Load
Tecd. 2 * *t'B
6 Cycle lteration 2 addl) i=2 | J
Fecd. 3 * #t_il
7 lteration 3 addl JEuas
TecH. d
lteration 4

Systems @ ETH ziric

135

Option 2: replicate pipeline (components)

Systems @ ETH ziric
* Step 2: Issue multiple Front End T .
Cache Tag nstruction Cache
instructions every cycle, possibly poCache 32KiBBWay [Tnsiuction
16 Bytes/cycl
out-of-order. —— i
: P eror ST Buindow)
Called superscalar execution T ¥+ F ¥ F F
: e e e
Once again: F ¥ F ¥ F
. . MicroCode 5>-Way Decode
- assume many InStrUCtIOnS are FFISC Complexq|Simple [|Simple |[Simple [|[Simple
. . [METCIH] DecoderDecodernPDecoderPDecoderDecoder
available for scheduling Y T T R
— Higher penalty for mis-predictions e swam surerosh g qpe T

& hazards AN o 7

Liscgs Sur aars

pewte (501 |llocation Queve (IDQ) (140; 2x70 uopsm
ream = 0 w0 M)

Intel Sunny Cove, 10nm 2019 (total: 14-19 pipeline stages, 6-way multi-issue)
136

Simultaneous Multithreading (SMT) from
OS View Systems@ ETH za

CPU Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz
%2 Utilization over &0 seconds 100%:
I N~ g — pl) _ _r'llh .-"lll\"___ — R _— [—

r"f N | B T _ ~~ | _.__.-"{-H_-_ —] I N
Utilization Speed Maxirmum speed: 2.80 GHz
6% 084GHz = !
Cores 2

Processes Threads Handles Legical processors: 4

71 889 2806(4 Virtualization: Enabled

L1 cache: 128 KB
Up time

IT MAKES YOU SEE DOUBLE

0:01:26:38 ::; E:E:Z ?;:;E 1 CPU (Socket) ... AND FEEL SINGLE!
2 Cores (Physical Processors)
4 Logical Processors (“Threads”) 137

=5

Systems @ ETH ziric

Improving p-arch performance pt.2

Data parallelism - Single Instruction Multiple
Data instructions

138

Using SIMD Instructions m

Systems @ ETH ziric

e Use vector-instructions instead of scalar-instructions
* Many different extensions to x86 ISA
= MMX, SSE, SSE2, FMA3, FMA4, CLMUL, AVX, AVX2, AVX10, etc.

e Compiler can (under certain conditions) vectorize code itself. [1
" Enabled by gcc -03 or specific flags such as -ftree-vectorize.

" Use gcc -march=native to make use of all architecture-specific
optimizations on your machine.

[1] https://gcc.gnu.org/projects/tree-ssa/vectorization.html

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Automatic Vectorization

Systems @ ETH ziric
: . main:
int a[256], b[256], c[256]; LEBO:
int main (int argc, char* argv[]) { .cfi_startproc
int i; endbr64
leaq a(%rip), %rsi
for §i=0; i§256; if+){ xorl %eax, %eax
} a[i] = b[1] + c[i]; leaq b(%rip), %rcx
} leaq c(%rip), %rdx
.p2align 4,,10
.p2align 3

$ gcc -Wall -fopt-info-all -03 -march=native -S -o autovec.S autovec.c
Unit growth for small function inlining: 13->13 (0%)

Inlined
autovec.
autovec.
autovec.

calls, eliminated © functions

:8:14: optimized: loop vectorized using 16 byte vectors
:5:5: note: vectorized 1 loops in function.

:5:5: note: ***** Analysis failed with vector mode VOID

vmovdqga (%rcx,%rax), %xmm1

vpaddd (%rdx,%rax), %xmm1, %xmm0
vmovdga %xmmO, (%rsi,%rax)

addq S$16, %rax

cmpq $1024, %rax

jne L2
xorl %eax, %eax
ret

.cfi_endproc

Explicit Vectorization m

Systems @ ETH ziric

e Can also write explicitly vectorized code.
e Offers better control and more advanced optimizations

" Use intrinsics or built-ins
=" Need to take care of portability!

141

Explicit Vectorization

Systems @ ETH ziric

PRODUCTS SUPPORT SOLUTIONS DEVELOPERS PARTNERS FOUNDRY R P ocus Q, searchinte

Intel® Intrinsics Guide

Intel® Intrinsics Guide

Updated Version
05/10/2023 3.66

Instruction Set
I MMX Q

_J SSE family

IT\AVX family v‘:ici _mm_2intersect_epi32 (_ mi128i a, _ mi28i b, _ mmaskS* kl, _ mmask8¥* k2)
“JAVX-fHZfamily 'J void _mm256_2intersect_epi32 (_ m256i a, _ m256i b, _ mmask8* k1, _ mmaskS* k2)
I_‘AMX family @v:id _mmS12 2intersect_epi32 (_ mS512i a, _ m512i b, _ mmasklé* k1, _ mmasklé* k2)
_ISVML iv:id _mm_2intersect_epié4 (__m128i a, _ ml128i b, _ mmaskS* kl, _ mmask8* k2)
| Other ﬁv:id _mm256_2intersect_epié4 (_ m256i a, _ m256i b, _ mmask8* k1, _ mmask8* k2)
Ev:id _mm512_2intersect_epi64 (__mS512i a, _ m512i b, _ mmask8* k1, _ mmask8* k2)

7 Tt CIRPRIREE 2o =

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html 142

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

#include <immintrin.h>
#include <stdio.h>

void addArraysAVXAligned(float *a, float *b, float *result, int size) { SySi‘EMS@E'quﬁch
int avxSize = 8; // AVX supports 8 floats / instruction
int avxOperations = size / avxSize;
for (int i = 0; i < avxOperations; ++i) {
// Load 256 bits (8 floats) into AVX registers
__m256 avx_a = mm256 load ps(&a[i * avxSize]);
__m256 avx b = mm256 load ps(&b[i * avxSize]);
// Perform addition using AVX
_ _m256 avx_result = mm256 add ps(avx_a, avx_b);
~mm256_store ps(&result[i * avxSize], avx_result);

// Initialize arrays with some values
for (int i = 0; 1 < size; ++i) {
a[i] =

b[i] = 2 * i;

}
addArraysAVXAligned(a, b, result, size);

printf("Result: ");
for (int 1 = 0; i < size; ++1i) {

; printf("%.1f ", result[i]);

for (int i = avxOperations * avxSize; i < size; ++i) {

result[i] = a[i] + b[i];)

printf("\n");
_mm_free(a);
~mm_free(b);
~mm_free(result);
return 0;

}

int main() {
// Size of the arrays
int size = 18;
// Ensure proper alignment (32 bytes for AVX)
size t alignment = 32;
// Allocate aligned memory for arrays using mm _malloc
float *a = (float*) mm malloc(size * sizeof(float), alignment);
float *b = (float*) mm malloc(size * sizeof(float), alignment);
float *result = (float*) mm malloc(size * sizeof(float), alignment);

143

=5

Systems @ ETH ziric

Support your local p-arch

Compile-time optimizations

144

Compile-time optimization m

Systems @ ETH ziric

Key rationale: Hardware is more expensive to improve than
software.

But: Compiler must preserve program semantics.

So-called optimization blockers make it hard for the compiler to
check whether a given optimization strategy can be applied.

Examples
" Procedure Calls
= Memory Aliasing

Procedure Calls n:j

Systems @ ETH ziric

void lowerl(char *s) void lower2(char *s)
{ {
int 1i; int 1i;
for (1 = 0; 1 < strlen(s); i++) { o int len = strlen(s);
if (s[i] >= 'A" && s[i] <= 'Z") { - for (i = 0; 1 < len; i++) {
s[i] -= ('A" - 'a"); — if (s[i] >= 'A" && s[i] <= "'Z") {
} s[i] -= (A" - "a’);
} }
} }

}

Optimization idea: Move the call to strlen out of the for loop.

146

Procedure Calls m

Systems @ ETH ziric

void lowerl(char *s) void lower2(char *s)
{ {
int 1i; int 1i;
for (i = 9; 1 < strlen(s); i++) { int len = strlen(s);
if (s[i] >= 'A" && s[i] <= 'Z") { for (i = 0; 1 < len; i++) {
s[i] -= ('A" - 'a'); if (s[i] >= 'A" && s[i] <= "'Z") {
} s[i] -= ("A" - "a");
} }
} }

}
* Procedures can have side-effects

 Compiler treats them as black-boxes
e Solutions:

" [nline the function where possible or

= manually move the call out of the loop.

147

Memory Aliasing

Systems @ ETH ziric

e Especially problematic in C (allows address arithmetic)

/* Sums rows of n x n matrix a /* Sums rows of n x n matrix a
and stores in vector b */ and stores in vector b */
void sum _rowsl(double *a, double *b, long n) {) void sum rows2(double *a, double *b, long n) {
long i, j; long i, 3J;
for (i = 0; i < n; i++) { — for (i = 0; i < n; i++) {
b[i] = ©; double val = ©;
for (j = 0; j < n; j++) for (j = 0; j < n; j++)
b[i] += a[i*n + j]; val += a[i*n + j];
} b[i] = val;
} }

}

Optimization idea: Can we accumulate b[1i] in a processor
register, instead of going to memory?

148

Memory Aliasing

Systems @ ETH ziric
What will happen when running the following code?
int main(int argc, char* argv[]) { void sum_rowsl(double *a, double *b, long n) {
long 1, J;
double A1[9] = for (1 = 0; 1< n; i++) {
{ 9, 1, 2, b[l] = 0;
4, 8, 16, for (j = 0; j < n; Jj++)
32, 64, 128}; b[i] += a[i*n + j];
}
double A2[9]; }
memcpy (A2, Al, sizeof(Al)); void sum rows2(double *a, double *b, long n) {
long i, J;
double *B1 = Al+3; for (1 = 0; 1< n; i++) {
double *B2 = A2+3; double val = 0©;
for (j = 0; j < n; j++)
sum_rows1(Al, Bl, 3); val += a[i*n + j];
sum _rows2(A2, B2, 3); b[i] = val;
}
for (int i = 9; i < 9; i++) }

assert(A1[i] == A2[i]);

} 149

Memory Aliasing

Systems @ ETH ziric
void sum rowsl(double *a, double *b, long n) { void sum rows2(double *a, double *b, long n) {
long i, 3 long i, 3
for (1 =0; i< n; i++) { for (i =0; 1< n; i++) {
b[i] = ©; double val = 0;
for (j = 0; j < n; j++) for (j = 0; j < n; j++)
b[i] += a[i*n + j]; val += a[i*n + j];
} b[i] = val;
} }
}

* Functions are only equal under certain assumptions.
 Compiler cannot tell whether a and b are aliases for each other.
* To enable the compiler to generate optimized code

= explicitly rewrite using local accumulator or
" use the restrict keyword.

150

Using the restrict keyword (since C99) m

Systems @ ETH ziric
void sum _rowsl(double * restrict a, double * restrict b, long n) {
long 1, 3J;
for (1 =0; i< n; i++) {
b[i] = ©;
for (j = 0; j < n; j++)
b[i] += a[i*n + J];

e Tells the compiler that, for the lifetime of the restrict-

annotated pointer, it will be the only pointer used to access the
underlying memory.

* Programmer responsible for making sure this is the case.

151

Now we can discuss: m

Systems @ ETH ziric
* How to...
* ... Improve processor performance* past Moore’s Law?
e ... Improve the improvement?

... deal with practical challenges of performance hacks?

* how to define and measure performance?

* Up next: your turn!

152

=5

Systems @ ETH ziric

Assignment 9: Compiler Optimizations

153

Assignment 9 n:j

Systems @ ETH ziric

Some options for optimizing matrix multiplication:
— Loop unrolling
— Cache optimization (Blocking, Locality...)
— Compiler optimization
— Vectorization

154

Assignment 9 n:j

Systems @ ETH ziric

Understanding what your program does:

— Use perf (Good)
https://perf.wiki.kernel.org/index.php/Tutorial

— Use Intel V-Tune (Good)
Order it from IDES or download trial version online

155

https://perf.wiki.kernel.org/index.php/Tutorial

Curious what the compiler optimized?

Systems @ ETH ziicn
e Use gcc -fopt-info -all (optimized + missed + note)
-optimized (applied optimizations)
-missed (missed optimizations)
-note (print verbose info about optimizations)

$ gcc -Wall -mavx -fopt-info-all -03 -o main main.c

main.c:22:9: optimized: Inlining mm256 store ps/917 into addArraysAVXAligned/5512 (always inline).
main.c:19:29: optimized: Inlining mm256 add ps/833 into addArraysAVXAligned/5512 (always _inline).
main.c:26:45: optimized: loop vectorized using 16 byte vectors

main.c:13:23: missed: couldn't vectorize loop

C
C
C
C

https://gcc.enu.org/onlinedocs/gcc/Developer-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html

Cycle Counter n:j

Systems @ ETH ziric

* You will need to access the cycle counter of your CPU!

— One function to start the counter

— One function to get the counter value

1. void start_counter();
2.

3. unsigned long get counter();

157

Cycle Counter n:j

Systems @ ETH ziric

* The value you need is located in the rdtsc register

— Use inline assembly to load the value into your variables (see slides of
the first lecture)

158

Cycles

S5e+11

4.5e+11

de+11

3.5e+11

3e+11

2.5e+11

Z2e+1l

15e+11

le+11

5e+10

Example Solution

for size = 1to 2500

Original (o opts [1])

Original (-02[2]1)

Original (-O3 various -f [3])

row precalc[1]

j-Away, lk-Bway [1]

MuLé mit -02

row precalc; j-dway, lk-Bway [2,3]

“méoo

1000

Matrix size

1500

2000

2500

Systems @ ETH ziric

159

Assignment 09 Question 1

double aprod(double al[], 1int n)
{

ot 17 e 3-way loop unrolling
double x, vy, z;
double r = 1; — 3 Execution per loop
for (1 = 0; 1 < n-2; i+= 3) {

Xx = ali]l;

= al[i+l1l]; . -

Sos * Find critical path

r =r * x *y *z
}
for (; 1 < n; i++) Divide by 3

r *= ali];

return r;

Systems @ ETH ziric

160

Assignment 09 Question 1

for (1 =0; 1 < n-2; i+= 3) {

X

S5ONK

a[i];

a[i+l];

a[i+2];

((r *x) *y)* z;

Al: ((r*x)*y)*z

=5

Systems @ ETH ziric

r | x|y

Z

)

—+
&

r

161

Assignment 09 Question 1

for (1 =0; 1 < n-2; i+= 3) {

X

S5ONK

a[i];

a[i+l];

a[i+2];

(r * (x *y)) * z;

A2: (r*(x*y))*z

=5

Systems @ ETH ziric

r

X

Y

Z

*

*

Ry

n

H |«

v

162

Have a nice week!

CAN You PAsS
THE SALT?

I sAD-
T Know! TH DEVELOPING
A SYSTEM TO PAss YOU
ARBITRARY CONDIMENTS.

TS BEEN 20)
MINUTES!

) ITLL SAVE TIME
IN THE LONG RUN!

N
vl :

=5

Systems @ ETH ziric

163

	Introduction
	Slide 1
	Slide 2
	Slide 3: In this session…
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Assignment 09 Question 1
	Slide 102: Assignment 09 Question 1
	Slide 103: Assignment 09 Question 1
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

	measuring performance
	Slide 113: Measuring (µ-arch) performance
	Slide 114: Expressing Program Performance
	Slide 115: Expressing Program Performance
	Slide 116: Expressing Program Performance
	Slide 117: Measuring CPE

	pipelining revisited
	Slide 118: Improving µ-arch performance pt.1
	Slide 119
	Slide 120: Instruction parallelism / Pipelining
	Slide 121: Pipelining: example
	Slide 122
	Slide 123: Pipelining performance
	Slide 124: Pipeline: All Gold?
	Slide 125: Pipeline: All Gold?
	Slide 126: Applying CPE to pipelined execution
	Slide 127: Applying CPE to pipelined execution
	Slide 128: Scheduling Execution Units
	Slide 129: Lower bound CPE – with data dependencies
	Slide 130: How to improve?
	Slide 131: Option 1: increase pipeline depth
	Slide 133: Option 2: replicate pipeline (components)
	Slide 134: Improving CPE – multiple functional units
	Slide 135: Lower bound CPE – single instruction latency
	Slide 136: Option 2: replicate pipeline (components)
	Slide 137: Simultaneous Multithreading (SMT) from OS View

	data parallelism
	Slide 138: Improving µ-arch performance pt.2
	Slide 139: Using SIMD Instructions
	Slide 140: Automatic Vectorization
	Slide 141: Explicit Vectorization
	Slide 142: Explicit Vectorization
	Slide 143

	Compile-time
	Slide 144: Support your local µ-arch
	Slide 145: Compile-time optimization
	Slide 146: Procedure Calls
	Slide 147: Procedure Calls
	Slide 148: Memory Aliasing
	Slide 149: Memory Aliasing
	Slide 150: Memory Aliasing
	Slide 151: Using the restrict keyword (since C99)

	Summary
	Slide 152: Now we can discuss:

	Assignment 9
	Slide 153: Assignment 9: Compiler Optimizations
	Slide 154: Assignment 9
	Slide 155: Assignment 9
	Slide 156: Curious what the compiler optimized?
	Slide 157: Cycle Counter
	Slide 158: Cycle Counter
	Slide 159: Example Solution
	Slide 160: Assignment 09 Question 1
	Slide 161: Assignment 09 Question 1
	Slide 162: Assignment 09 Question 1
	Slide 163: Have a nice week!

