
Exercise Session 11
Computer Architecture and

Systems Programming

Architectural Optimizations

Autumn Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

1

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are not official part of
the course) having a blue heading

• For the exam only the official exercise slides are relevant, if in doubt
always check the ones on the official moodle page

In this session…

• Processor Architecture (DDCA)

• Code and Compiler Optimisations (Strength reduction, Inlining etc.)

• Hardware Optimisation (Loop unrolling, reassociation, etc.)

• Exam Questions on Optimisations

• Measuring performance: Cycles Per Element (CPE) & friends

• Improving µ-arch performance pt.1: instruction parallelism

• Improving µ-arch performance pt.2: data parallelism

• Support your local µ-arch: compile-time optimizations

• Outlook on Assignment 9

3

Where are we in the course

Where are we in the course

• Know by now: How to write C, how this gets compiled down to an executable
(preprocessor, compiler, assembler, linker and loader)

• Compiler Optimisation Lecture: How to create a faster executable (purely
code based)

• Computer Architecture: How these instructions get executed on hardware,
also possible improvements via better hardware (multiple execution units,
OoO etc.)

• Future: Program gets loaded into memory, but what is memory? (Caches,
Virtual Memory); Exceptions, Multicore, Devices

Recap
Processor Architecture

Systems Programming and Computer Architecture

Remark

• What you will see now goes at times a bit beyond what they
teach you in SPCA: it’s a lot of DDCA but its fundamental to
understand what happens with the assembly language inside
a processor

What you saw in the lecture: seq proc.

What you saw in the lecture: pipelined proc.

Remark

• What you saw until now: x86, an
architecture

• Specified instructions (cmp, jmp, etc.),
how to address memory, addressing
modes etc.

• Now we look at microarchitecture: the
actual implementation of a architecture
(like x86, MIPS, ARM etc.) in hardware

Remark

• The processor we are building now is for a different
architecture called MIPS, very similar to x86

• This simply means there are different assembly
instructions, different addressing modes, register
names etc. but the underlying concepts stay the same

Recap
ISAs: Assembly

Systems Programming and Computer Architecture

Remark

• Before we look at how the code actually gets executed,
lets before see how assembly relates to this

• It boils down to difference between:

• ISA: abstract model, defining instructions, data types,
registers

• Michroarchitecture: the actual implementation of an
ISA in hardware

• We are going to look at ISA MIPS for the processor I will
build with you here

Instruction Set Architecture

• Examples for ISAs: x86-64, ARM (Advanced RISC Machines), RISC-V,
MIPS, PowerPC, SPARC, Z/Architecture (IBM Mainframes)

Instruction Set Architecture

• ISAs thus define how our assembly code looks (because this is
inherently what an ISA describes):

• MIPS (LHS), x86 (RHS)

Instruction Set Architecture (ISA): MIPS

• Instructions Examples: Left code is high level language (C, C++, Java),
RHS in MIPS

• First Part: called mnemonic indicates what to perform, operation is
performed on b,c the source operands and stored in the destination
operand

Instruction Set Architecture (ISA): MIPS

• The machine (michroarchitecture) provides “registers”, things were we
can store stuff: we can access them with $ in MIPS, with % in x86 => we
have 32 registers in mips

Instruction Set Architecture (ISA): MIPS

• Since we only have limited
number of registers: also have
memory which we can access
(Stack, Heap in x86)

Instruction Set Architecture (ISA): MIPS

• Assembly is for humans to read: but machines only understand
machine code: need to bring assembly into machine language

• Idea: encode all instruction as words that can be stored in memory, all
32bit

• MIPS has 3 type of Instructions: R-type, I-type, J-type (Register,
Immediate, Jump)

Instruction Set Architecture (ISA): MIPS
• R-type (Register type): uses 3 registers as operands, 2 as source 1 as

destination

• Operation to be performed is encoded in “op” and “funct” field: all R-type
instr. Have opcode=0 and funct is 32 for add and 34 for substract

• Operands encoded in rs, rt and rd (rs and rt source, rd dest)

Instruction Set Architecture (ISA): MIPS

• I-type instructions: different interpretation of the bits but conceptually
the same

Instruction Set Architecture (ISA): MIPS

• Now we can store an entire program in memory

Recap
Michroarchitecture: Single Cycle Processor

Systems Programming and Computer Architecture

Michroarchitecture

• Microarchitecture: specific arrangement of ALUs, FSMs, Memories etc.

• One ISA Like MIPS can have many different microarchitectures with
different performance, cost and complexity

• All run the same programs since all architectures share the same
“language” (ISA) but they can vary in cost, performance and complexity

Type of Processors

• Single Cycle: executes an entire instruction in one cycle

• Easy to explain, simple control

• Cycle time is limited by the slowest instruction

• Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

• Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

• All commercial high-performance processors use pipelining today

Type of Processors

• Single Cycle: executes an entire instruction in one cycle

• Easy to explain, simple control

• Cycle time is limited by the slowest instruction

• Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

• Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

• All commercial high-performance processors use pipelining today

Single Cycle Processor

• Divide microarchitecture in: datapath and controlpath

• Datapath: operates on words of data (here 32bit): contains memories,
registers, ALUs

• Controlpath: Recieves the current instruction from datapath and tells
the datapath how to execute the instruction: selects multiplexer select,
register enable, memory write signal

Single Cycle Processor

• Instruction memory: Holds the instructions (movq %rbp, %rsp, encoded in bit i.e. 0/1s)

• Data memory: holds data

• Program Counter PC (%rip in x86): contains address of the instruction to be executed:

Single Cycle Processor

• Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

• I-type

• Lw (load woard)

• Sw (store woard)

• R-type (binary ops: add, sub, …)

• Beq instruction (beq, bne, ..)

Single Cycle Processor

• PC register contains instruction to execute: fetch instruction (read it)

Single Cycle Processor

• Read source register containing the base address in register file($0): specified in “rs”
field, i.e. Instr 25:21

Single Cycle Processor

• Lw instruction also needs offset (here 32): offset is 16-bit immediate, needs to be
sign extended to 32 bits: Immediate is in bits 15:0

Single Cycle Processor

• Now we need to add sign extended offset (32) to base address ($0):

Single Cycle Processor

• Read data from memory, and load it into the second register which is specified in
“rt” i.e. bits 20:16

Single Cycle Processor

• Instruction has been executed: to fetch next instruction we need to increment
instruction pointer (here PC, in x86 %rip) by 4

Single Cycle Processor

• Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

• I-type

• Lw (load woard)

• Sw (store woard)

• R-type (binary ops: add, sub, …)

• Beq instruction (beq, bne, ..)

Single Cycle Processor

• Processor can already calculate address (SEXT, add register to immediate)

• Sw reads second register from register file (A2); add path to write it to memory

Single Cycle Processor

• Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

• I-type

• Lw (load woard)

• Sw (store woard)

• R-type (binary ops: add, sub, …)

• Beq instruction (beq, bne, ..)

Single Cycle Processor

• Register File: reads two
registers, ALU performs
operation on these 2
registers

• Need MUX to choose
between SEXT and 2nd
Reg (RD2)

• Need MUX to choose
whether to write to
memory (sw,lw) or to
register

• Register to write to
specified by “rd” 15:11
(for sw it was specified
by “rt” 20:16 => MUX)

Single Cycle Processor

• Lets implement the MIPS instructions: R-type, I-type s.t. our processor
can execute them

• I-type

• Lw (load woard)

• Sw (store woard)

• R-type (binary ops: add, sub, …)

• Beq instruction (beq, bne, ..)

Single Cycle Processor

• Branch instruction:
compares two
registers, if they are
equal adds the branch
offset to the PC

• Offset stored in
immediate field:
15:0, gets SEXT and
added to PC if chosen
to branch

Single Cycle Processor

Single Cycle Processor

• Recall: different instructions have different opcodes

• Opcodes decide which signals to give

• Lw/sw: MemToReg=1; Add/sub: MemToReg=0 etc.

Recap
Michroarchitecture: Pipelined Processor

Systems Programming and Computer Architecture

Type of Processors

• Single Cycle: executes an entire instruction in one cycle

• Easy to explain, simple control

• Cycle time is limited by the slowest instruction

• Pipelined Microarchitecture: applied pipelining to the single cycle
michroarchitecture

• Can execute multiple instruction simultaneously, must handle
dependencies between those instructions

• All commercial high-performance processors use pipelining today

Pipelined processor

• Idea: subdivide single-cycle processor into 5 pipeline stages: then we can
execute instruction simultaneously, one in each stage
• Since each stage has 1/5 of the entire logic: clock frequency is almost five

times faster, ideally: latency unchanged, but throughput 5x higher

• Call stages: 1. Fetch, 2. Decode, 3. Execute, 4. Memory, 5. Writeback
• 1. Fetch: processor reads instruction from instruction memory
• 2. Decode: Processor reads source operands from register file and decodes

instruction to procdue control signals
• 3. Execute: ALU computation
• 4. Memory: Read/Writes to memory
• 5. Writeback: Processor writes results to register file

Pipelined processor

Pipelined processor

• Example of what happens in Cycle 6: OR is being fetched from IM; $s1
is being read from the register file in SW instruction; ALU computes $t5
AND $t6 in AND instruction etc.

Pipelined processor: chop single processor in 5 stages

• Bank of flip
flops hold the
intermediate
values

Pipelined processor

Pipelined processor

• Pipelined processors have higher throughput: but there are some things
to be cautious about: data hazards

• When multiple instructions are handled concurrently: if one instruction
is dependent on the result of another which has not yet completed, we
have a hazard

Pipelined processor

• RAW hazard: add instructions writes result into $s0 at first half of cycle3, but
and instruction reads $s0 on cycle3 obtaining the wrong value

Pipelined processor

• There are 2 solutions for data hazards

• 1. Forwarding: result from memory or writeback stage is “forwarded” to
a dependent instruction in the execute stage

• 2. Stalling: stall the pipline, i.e. hold up operation until the data is
available

• Sometimes we need to combine forwarding with stalling, if even
with forwarding we don’t have enough time

Pipelined processor: 1. Forwarding

• In cycle4, $s0 is forwarded from the memory stage of the add
instruction to the Execute stage of the dependent AND instruction

Pipelined processor

• There are 2 solutions for data hazards

• 1. Forwarding: result from memory or writeback stage is “forwarded” to
a dependent instruction in the execute stage

• 2. Stalling: stall the pipline, i.e. hold up operation until the data is
available

• Sometimes we need to combine forwarding with stalling, if even
with forwarding we don’t have enough time

Pipelined processor: 2. Stalling w/ forwading

• lw instruction
received data from
memory at end of
cycl4, but AND
instruction needs
that data as a source
operand at the
beginning of cycle4

• Solution: stall
pipeline and then
forward

Pipelined processor

• A piplined processor with stalling, forwading etc. and all control units
implemented then looks like the following

Pipelined processor

Recap
Advanced Processor Architecture Paradigms

Superscalar Processors, Out of Order Execution, Multithreading,
Fine Grained Multithreading, SIMD and VLIW

Systems Programming and Computer Architecture

Superscalar Processor and OoO Execution

• Superscalar architecture refers to a processor that can issue and
execute multiple instructions simultaneously using multiple exueciton
units (multiple ALUs, FPUs tec.) to allow for parallelism at the
instruction level

• Note: All processors today are pipelined and superscalar

Superscalar Processor
and OoO Execution

• Out of Order (OoO)
Execution: Instructions are
being fetched and decoded in
program order, but we can
execute them out of order

• Write in Order: To allow for
correct exceptions etc.

• Example: If ADD stalls, we can
still execute MUL and SUB as
they are indepdentn

A Real Processor
• Abstract Processor

• Real Processor Arch

Multithreading

• Normal multithreading: If one
process (or thread) does a memory
instruction which takes time, start
executing instructions of another
process instead (to bridge the
waiting time)

• Fine Grained Multithreading
(FGM): Every cycle we put a
instruction from a different thread
in the processor

SIMD and VLIW

• SIMD (Single Instruction
Multiple Data): Single
Instruction Multiple
Data, i.e. one instruction
but we operate on
multiple data elements

• Called array and vector
processing

SIMD and VLIW

• SIMD Example:
AVXV2, i.e.
operation on
vectors

• Single Instruction
(vaddsd)
Multiple Data
(8 ints; 4 doubles)

SIMD and VLIW

• VLIW (Very Long
Instruction Word):
Instead of
processing just one
instruction at the
PC; take multiple
(long instruction
word)

Recap
How does all this relate to what you have seen in the

lecture?

Systems Programming and Computer Architecture

What you saw in the lecture: seq proc.

• You should now understand this processor design diagram: the 5 stages for the
sequential processor

What you saw in the lecture: pipelined proc.

• You should also understand what pipelining is, why its useful, and how
this works inside the processor

What you saw in the lecture: data hazards

• You should also understand what pipelining is, why its useful, and how this
works inside the processor; but also what kind of hazards appear and why

Recap
Possible Compiler and Code Optimisations

Systems Programming and Computer Architecture

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

• 1. Compiler Flags

• 2. Code Motion / Precomputation

• 3. Strength Reduction

• 4. Common Subexpressions

• 5. Procedure Calls

• 6. Memory Aliasing (Restrict)

Code Optimisations

Code Optimisations

• Issue here: A, B might point to the same region, cant do scalar
replacement (local accumulation)

Code Optimisations

• Solution: either do it explicitly yourself

Code Optimisations

• Solution: or tell the compiler he can do it

Recap
Hardware Optimisations

Systems Programming and Computer Architecture

Code Optimisations

• 1. Loop unrolling 2x1

• 2. Loop unrolling 2x1 with reassociation

• 3. Vector Instructions

Code Optimisations

• 1. Loop unrolling 2x1

• 2. Loop unrolling 2x1 with reassociation

• 3. Vector Instructions

Loop unrolling

• Load two values, instead of just 1

Loop unrolling

• Load two values, instead of just 1

Loop unrolling

Code Optimisations

• 1. Loop unrolling 2x1

• 2. Loop unrolling 2x1 with reassociation

• 3. Vector Instructions

Loop unrolling with reassociation (2x1a)

• Why? This breaks sequential dependency (operations of next iteration
can directly be started after having calculated d[i] OP d[i+1]

Loop unrolling with reassociation (2x1a)

• Why? This breaks sequential dependency (operations of next iteration
can directly be started after having calculated d[i] OP d[i+1]

Code Optimisations

• 1. Loop unrolling 2x1

• 2. Loop unrolling 2x1 with reassociation

• 3. Vector Instructions

Vector Instructions

Introduction to Assignment09 and
Exam Questions
HS23 CPE Calculations

Systems Programming and Computer Architecture

Assignment 09 Question 1

double aprod(double a[], int n)

{

int i;

double x, y, z;

double r = 1;

for (i = 0; i < n-2; i+= 3) {

x = a[i];

y = a[i+1];

z = a[i+2];

r = r * x * y * z;

}

for (; i < n; i++)

r *= a[i];

return r;

}

• 3-way loop unrolling

– 3 Execution per loop

• Find critical path

• Divide by 3

101

Assignment 09 Question 1

for (i = 0; i < n-2; i+= 3) {

x = a[i];
y = a[i+1];
z = a[i+2];

r = ((r * x) * y) * z;

}

102

Assignment 09 Question 1

for (i = 0; i < n-2; i+= 3) {

x = a[i];
y = a[i+1];
z = a[i+2];

r = (r * (x * y)) * z;

}

103

Exam Question HS22 Question 13

Exam Question HS22 Question 13

Exam Questions on Optimisation
HS22 Question 13

Systems Programming and Computer Architecture

Exam Question HS22 Question 13

Exam Question HS22 Question 13

• i) Yes: no stackframe & no blackbox, i.e. allows
for compiler optimisations in body

• ii) Yes: allows to precompute stuff like strlen(s)

• iii) Yes: we evaluate loop conditions less often

• iv) No: Changes only the order of operations

• v) No: Replaces one strong one with a weak
one; may even need more for the weak ones

Exam Questions on Optimisation
HS21 Question 6

Systems Programming and Computer Architecture

Exam Question HS22 Question 13

• i) Yes: we evaluate loop conditions
less often

• ii) Yes: allows to precompute stuff
like strlen(s)

• iii) Yes: one instruction for multiple
OPs

• iv) No: Changes only the order of
operations

• Precompute strlen(s); Called precomputation/code motion
• Compiler would not automatically do it: “blackbox” function, may have side

effects: must not change semantics of the program

Measuring (µ-arch) performance

113

Expressing Program Performance

On the program level:

• Execution Time = IC  CPI  CCT

• IC = instruction count

• CPI = cycles per instruction (= 1/IPC)

• CCT = clock cycle time (= 1/Frequency)

• Unable to quantify performance for individual program
sections.

114

Expressing Program Performance

On the instruction level:

• Throughput (instructions / cycle)

• Latency (cycles / instruction)

• Each depend on the type of instruction

• What to optimize for?

115

Thought for later: How do these differ when considering a single vs.
many instructions (on average)?

Expressing Program Performance

Benchmarking array-like operations:

• Cycles per Element (CPE):
• Execution time = CPE*n + overhead

• Independent of clock time?

• Highly variable for different code sections

• Hard Lower bound - why?

116

Measuring CPE

void psum2(float a[], float p[], long int n) {

long int i;

p[0] = a[0];

for (i = 1; i < n-1; i+=2) {

float mid_val = p[i-1] + a[i];

p[i] = mid_val;

p[i+1] = mid_val + a[i+1];

}

if (i < n) p[i] = p[i-1] + a[i];

}

void psum1(float a[], float p[], long int n) {

long int i;

p[0] = a[0];

for (i = 1; i < n; i++)

p[i] = p[i-1] + a[i];

}

117
What do we need to know to calculate lower bound?

Improving µ-arch performance pt.1

Instruction parallelism (pipelining and superscalar
execution)

118

• Sequential Processor Design
(very long ago: single-cycle)

• Each instruction must be

– Fetched

– Decoded

– Executed

– Written back

• And the new PC determined

119

What are issues with this design?

Once upon a time…

Instruction parallelism / Pipelining

• Observation 1: higher clock frequencies as main source of
performance improvement -> we reached physical limits there.

• Observation 2: Individual hardware units are idle most of the
time.

• Idea: Overlap instruction execution.

120

Pipelining: example

121

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time

How it’s done in the
CPU?

• Divide the Hardware
into stages

• Insert registers in
between that hold the
intermediate values

• Add pipeline control
logic

122

Write Back

Memory

Execute

Decode

Fetch

Pipelining performance

• Core Idea: Overlap instruction execution.

• Yields increase in throughput (and mean latency) proportional
to #(pipeline stages) – assuming a full pipeline.

• Insight: We now have additional parameters – pipeline depth &
pipeline “fullness”.

123

Pipeline: All Gold?

124

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time

Any Problems here?

Pipeline: All Gold?

125

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time

addl $50, %eax

addl (%esp), %edx

movl %eax, (%esp)

time
Pipelining introduces data hazards (read after write dependency)
Idea: Give the result value as early as possible

Applying CPE to pipelined execution

void combine(vec_ptr v, data_t *dest) {

 long int i;

 long int length = vec_length(v);

 data_t *data = get_vec_start(v);

 data_t acc = IDENT;

 for (i = 0; i < length; i++) {

 acc = acc OP data[i];

 }

 *dest = acc;

}
126

Applying CPE to pipelined execution

void combine(vec_ptr v, data_t *dest) {

 long int i;

 long int length = vec_length(v);

 data_t *data = get_vec_start(v);

 data_t acc = 1;

 for (i = 0; i < length; i++) {

 acc = acc * data[i];

 }

 *dest = acc;

}

127

Scheduling Execution Units

128

Lower bound CPE – with data dependencies

• Assuming perfect branch
prediction & multiple load
units

• CPE bound by critical path

129

How to improve?

• Current problems:

– stages with different #instructions / cycle

– data / control hazards causing stalls

• Option 1: increase pipeline depth. How (far)? Why (not)?

• Option 2: replicate pipeline (components). How (far)? Why
(not)?

130

Option 1: increase pipeline depth

• Theoretical speedup = #stages

• Observation: increases #instructions in pipeline at any given
time

– smart(er) scheduling needed

– control hazards: branch mispredictions become more costly

– data hazards: more complex to apply work-arounds
(forwarding/bypasses/reordering)

131

Option 2: replicate pipeline (components)

• Step 1: replicate components
representing bottlenecks
(load/store units, FPU, …)

• Ideally, all pipeline stages have the
same throughput (#instructions /
cycle), on average

133

Improving CPE – multiple functional units

Combine two elements at the time:

for (i = 0; i < limit; i+=2) {

 x0 = x0 OP data[i];

 x1 = x1 OP data[i+1];

}

*dest = x0 OP x1;

134

Lower bound CPE – single instruction latency

135

Option 2: replicate pipeline (components)

• Step 2: Issue multiple
instructions every cycle, possibly
out-of-order.

• Called superscalar execution

• Once again:

– assume many instructions are
available for scheduling

– Higher penalty for mis-predictions
& hazards

136

Intel Sunny Cove, 10nm 2019 (total: 14-19 pipeline stages, 6-way multi-issue)

Simultaneous Multithreading (SMT) from
OS View

137

1 CPU (Socket)
2 Cores (Physical Processors)
4 Logical Processors (“Threads”)

Improving µ-arch performance pt.2

Data parallelism - Single Instruction Multiple
Data instructions

138

Using SIMD Instructions

• Use vector-instructions instead of scalar-instructions

• Many different extensions to x86 ISA

▪ MMX, SSE, SSE2, FMA3, FMA4, CLMUL, AVX, AVX2, AVX10, etc.

• Compiler can (under certain conditions) vectorize code itself. [1]

▪ Enabled by gcc –O3 or specific flags such as -ftree-vectorize.

▪ Use gcc –march=native to make use of all architecture-specific
optimizations on your machine.

[1] https://gcc.gnu.org/projects/tree-ssa/vectorization.html 139

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Automatic Vectorization

int a[256], b[256], c[256];

int main (int argc, char* argv[]) {
int i;

for (i=0; i<256; i++){
a[i] = b[i] + c[i];

}
}

main:
.LFB0:

.cfi_startproc
endbr64
leaq a(%rip), %rsi
xorl %eax, %eax
leaq b(%rip), %rcx
leaq c(%rip), %rdx
.p2align 4,,10
.p2align 3

.L2:
vmovdqa (%rcx,%rax), %xmm1
vpaddd (%rdx,%rax), %xmm1, %xmm0
vmovdqa %xmm0, (%rsi,%rax)
addq $16, %rax
cmpq $1024, %rax
jne .L2
xorl %eax, %eax
ret
.cfi_endproc

$ gcc -Wall -fopt-info-all -O3 -march=native -S -o autovec.S autovec.c
Unit growth for small function inlining: 13->13 (0%)
Inlined 0 calls, eliminated 0 functions
autovec.c:8:14: optimized: loop vectorized using 16 byte vectors
autovec.c:5:5: note: vectorized 1 loops in function.
autovec.c:5:5: note: ***** Analysis failed with vector mode VOID

140

Explicit Vectorization

• Can also write explicitly vectorized code.

• Offers better control and more advanced optimizations

▪ Use intrinsics or built-ins

▪ Need to take care of portability!

141

Explicit Vectorization

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html 142

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

#include <immintrin.h>
#include <stdio.h>

void addArraysAVXAligned(float *a, float *b, float *result, int size) {
int avxSize = 8; // AVX supports 8 floats / instruction
int avxOperations = size / avxSize;
for (int i = 0; i < avxOperations; ++i) {

// Load 256 bits (8 floats) into AVX registers
__m256 avx_a = _mm256_load_ps(&a[i * avxSize]);
__m256 avx_b = _mm256_load_ps(&b[i * avxSize]);
// Perform addition using AVX
__m256 avx_result = _mm256_add_ps(avx_a, avx_b);
_mm256_store_ps(&result[i * avxSize], avx_result);

}
for (int i = avxOperations * avxSize; i < size; ++i) {

result[i] = a[i] + b[i];
}

}

int main() {
// Size of the arrays
int size = 18;
// Ensure proper alignment (32 bytes for AVX)
size_t alignment = 32;
// Allocate aligned memory for arrays using _mm_malloc
float *a = (float*)_mm_malloc(size * sizeof(float), alignment);
float *b = (float*)_mm_malloc(size * sizeof(float), alignment);
float *result = (float*)_mm_malloc(size * sizeof(float), alignment);

// Initialize arrays with some values
for (int i = 0; i < size; ++i) {

a[i] = i;
b[i] = 2 * i;

}
addArraysAVXAligned(a, b, result, size);
printf("Result: ");
for (int i = 0; i < size; ++i) {

printf("%.1f ", result[i]);
}
printf("\n");
_mm_free(a);
_mm_free(b);
_mm_free(result);
return 0;

}

143

Support your local µ-arch

Compile-time optimizations

144

Compile-time optimization

• Key rationale: Hardware is more expensive to improve than
software.

• But: Compiler must preserve program semantics.

• So-called optimization blockers make it hard for the compiler to
check whether a given optimization strategy can be applied.

• Examples

▪ Procedure Calls

▪ Memory Aliasing

145

Procedure Calls

Optimization idea: Move the call to strlen out of the for loop.

≟

void lower1(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

void lower2(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

146

Procedure Calls

• Procedures can have side-effects

• Compiler treats them as black-boxes

• Solutions:

▪ Inline the function where possible or

▪ manually move the call out of the loop.

void lower1(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

void lower2(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

147

Memory Aliasing

• Especially problematic in C (allows address arithmetic)

Optimization idea: Can we accumulate b[i] in a processor
register, instead of going to memory?

/* Sums rows of n x n matrix a
and stores in vector b */

void sum_rows1(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

/* Sums rows of n x n matrix a
and stores in vector b */

void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

≟

148

Memory Aliasing

What will happen when running the following code?
void sum_rows1(double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

int main(int argc, char* argv[]) {

double A1[9] =
 { 0, 1, 2,

4, 8, 16,
 32, 64, 128};

double A2[9];

memcpy(A2, A1, sizeof(A1));

double *B1 = A1+3;
double *B2 = A2+3;

sum_rows1(A1, B1, 3);
sum_rows2(A2, B2, 3);

for (int i = 0; i < 9; i++)
 assert(A1[i] == A2[i]);

}
149

Memory Aliasing

• Functions are only equal under certain assumptions.

• Compiler cannot tell whether a and b are aliases for each other.

• To enable the compiler to generate optimized code

▪ explicitly rewrite using local accumulator or

▪ use the restrict keyword.

void sum_rows1(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

150

Using the restrict keyword (since C99)

• Tells the compiler that, for the lifetime of the restrict-
annotated pointer, it will be the only pointer used to access the
underlying memory.

• Programmer responsible for making sure this is the case.

void sum_rows1(double * restrict a, double * restrict b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

151

Now we can discuss:

• How to…

• … improve processor performance* past Moore’s Law?

• … improve the improvement?

• … deal with practical challenges of performance hacks?

 * how to define and measure performance?

• Up next: your turn!

152

Assignment 9: Compiler Optimizations

153

Assignment 9

Some options for optimizing matrix multiplication:

– Loop unrolling

– Cache optimization (Blocking, Locality…)

– Compiler optimization

– Vectorization

– …

154

Assignment 9

Understanding what your program does:

– Use perf (Good)
https://perf.wiki.kernel.org/index.php/Tutorial

– Use Intel V-Tune (Good)
Order it from IDES or download trial version online

155

https://perf.wiki.kernel.org/index.php/Tutorial

Curious what the compiler optimized?

• Use gcc -fopt-info -all (optimized + missed + note)

 -optimized (applied optimizations)
 -missed (missed optimizations)
 -note (print verbose info about optimizations)

$ gcc -Wall -mavx -fopt-info-all -O3 -o main main.c
main.c:22:9: optimized: Inlining _mm256_store_ps/917 into addArraysAVXAligned/5512 (always_inline).
main.c:19:29: optimized: Inlining _mm256_add_ps/833 into addArraysAVXAligned/5512 (always_inline).
main.c:26:45: optimized: loop vectorized using 16 byte vectors
main.c:13:23: missed: couldn't vectorize loop

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html
156

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html

Cycle Counter

• You will need to access the cycle counter of your CPU!

– One function to start the counter

– One function to get the counter value

157

1. void start_counter();
2.
3. unsigned long get_counter();

Cycle Counter

• The value you need is located in the rdtsc register

– Use inline assembly to load the value into your variables (see slides of
the first lecture)

158

Example Solution

159

Assignment 09 Question 1

double aprod(double a[], int n)

{

int i;

double x, y, z;

double r = 1;

for (i = 0; i < n-2; i+= 3) {

x = a[i];

y = a[i+1];

z = a[i+2];

r = r * x * y * z;

}

for (; i < n; i++)

r *= a[i];

return r;

}

• 3-way loop unrolling

– 3 Execution per loop

• Find critical path

• Divide by 3

160

Assignment 09 Question 1

for (i = 0; i < n-2; i+= 3) {

x = a[i];
y = a[i+1];
z = a[i+2];

r = ((r * x) * y) * z;

}

161

Assignment 09 Question 1

for (i = 0; i < n-2; i+= 3) {

x = a[i];
y = a[i+1];
z = a[i+2];

r = (r * (x * y)) * z;

}

162

Have a nice week!

163

	Introduction
	Slide 1
	Slide 2
	Slide 3: In this session…
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Assignment 09 Question 1
	Slide 102: Assignment 09 Question 1
	Slide 103: Assignment 09 Question 1
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

	measuring performance
	Slide 113: Measuring (µ-arch) performance
	Slide 114: Expressing Program Performance
	Slide 115: Expressing Program Performance
	Slide 116: Expressing Program Performance
	Slide 117: Measuring CPE

	pipelining revisited
	Slide 118: Improving µ-arch performance pt.1
	Slide 119
	Slide 120: Instruction parallelism / Pipelining
	Slide 121: Pipelining: example
	Slide 122
	Slide 123: Pipelining performance
	Slide 124: Pipeline: All Gold?
	Slide 125: Pipeline: All Gold?
	Slide 126: Applying CPE to pipelined execution
	Slide 127: Applying CPE to pipelined execution
	Slide 128: Scheduling Execution Units
	Slide 129: Lower bound CPE – with data dependencies
	Slide 130: How to improve?
	Slide 131: Option 1: increase pipeline depth
	Slide 133: Option 2: replicate pipeline (components)
	Slide 134: Improving CPE – multiple functional units
	Slide 135: Lower bound CPE – single instruction latency
	Slide 136: Option 2: replicate pipeline (components)
	Slide 137: Simultaneous Multithreading (SMT) from OS View

	data parallelism
	Slide 138: Improving µ-arch performance pt.2
	Slide 139: Using SIMD Instructions
	Slide 140: Automatic Vectorization
	Slide 141: Explicit Vectorization
	Slide 142: Explicit Vectorization
	Slide 143

	Compile-time
	Slide 144: Support your local µ-arch
	Slide 145: Compile-time optimization
	Slide 146: Procedure Calls
	Slide 147: Procedure Calls
	Slide 148: Memory Aliasing
	Slide 149: Memory Aliasing
	Slide 150: Memory Aliasing
	Slide 151: Using the restrict keyword (since C99)

	Summary
	Slide 152: Now we can discuss:

	Assignment 9
	Slide 153: Assignment 9: Compiler Optimizations
	Slide 154: Assignment 9
	Slide 155: Assignment 9
	Slide 156: Curious what the compiler optimized?
	Slide 157: Cycle Counter
	Slide 158: Cycle Counter
	Slide 159: Example Solution
	Slide 160: Assignment 09 Question 1
	Slide 161: Assignment 09 Question 1
	Slide 162: Assignment 09 Question 1
	Slide 163: Have a nice week!

