Exercise Session 12

Systems Programming and
Computer Architecture

Caches & Virtual Memory

Autumn Semester 2024

==

Systems @ ETH zirin

Disclaimer E;

Systems @ ETH zirin
Website: n.ethz.ch/~falkbe/
(Extra) Demos on GitHub: github.com/falkbe
Kahoots: now on website n.ethz.ch/~falkbe/

My exercise slides have additional slides (which are
not official part of the course) having a blue heading

For the exam only the official exercise slides are
relevant, if in doubt always check the ones on the
official moodle page

Information from the exercise session is party taken
from Digital Design and Computer Architecture by
David Money Harris, Sarah L. Harris

Agenda

Exceptions and Kernel

Caches

Virtual memory

Quiz, Exam on VM and Caches
Caches

Virtual Memory

Address Translation

Preview Assignment 10

Quiz Caches

==

Systems @ ETH zirin

==

Systems @ ETH zirin

Exceptions and the Kernel

Systems Programming and Computer
Architecture

Remark Ej

Systems @ ETH zirin
Exceptions as tought in lecture are exam relevant

The following slides (in particular the kernel slides)
are just thought to give you more context on what
“the kernel” is

You do not need to know kernel stuff in this depth
(again, only as much as tought in the lecture)

The following slides are from the Computer Systems
Course

Recall from Lecture

Systems @ ETH zirin

The Kernel

* Most operating systems have a kernel

= the part of the OS that runs in kernel mode
* Think of the kernel as:

A set of trap handling functions (always)

* A set of threads in a special address space (sometimes)
* Code to create the illusion of user-space processes (always)

* Many ways to structure the kernel and OS
* Microkernels, monolithic kernels, multikernels, etc.
* See the OS course next year...

What does this actually mean?

Exceptions and the Kernel

Systems @ ETH zirin
Physical
A P bl Memory
rooiem
Machine |
i Instructions
* Assume one application] process
F . . Executable Operating Heap
* For now... Edits Source Compiler Image: System Copy -~
, Coge | instructions ac]
and Data _
Machine
* How can we prevent the application: s || erating
* Corrupting the OS? Data ifr;eeT
Hea
* Accessing hardware that it shouldn’t? —

Exceptions and the Kernel

Systems @ ETH zirin

Thought Experiment

* How can we implement execution with limited privilege?
* Execute each program instruction in a simulator
* If the instruction is permitted, do the instruction
* Otherwise, stop the process
* Basic model in Javascript and other interpreted languages

* How do we go faster?
* Run the unprivileged code directly on the CPU!

Exceptions and the Kernel

Systems @ ETH zirin

Hardware Support:
Dual-Mode Operation

* Kernel mode
* Execution with the full privileges of the hardware

* Read/write to any memory, access any I/O device, read/write any disk sector,
send/read any packet

* Code here must be carefully written!

* User mode
* Limited privileges
* Only those granted by the operating system kernel

Exceptions and the Kernel Ej

Systems @ ETH zirin

A simple model of a CPU

Branch Address

; 3_‘,_,‘..‘, wwre | .

Program i
......................... Select PC fovoveveoivceeoccn 9 e | INSTFUCTONS
Counter Fetch and
Execute |- .
opcode

10

Exceptions and the Kernel :Ej

Systems @ ETH zirin

CPU with dual-mode operation (or more...)

Branch Address

..... i

...... CPU
Tl | N PC g |
Handler PC - Counter Fetch and

2| Execute |- .

R
Select New Mode
Mode GiEsasdstedisbiasiseisitistsiaid Mode :

11

Exceptions and the Kernel

Systems @ ETH zirin

Basic primitive: processor exceptions

* When an exception occurs:
* Finish executing current instruction
* Switch mode from user to kernel

* Look up exception cause in
the exception vector table

* Jump to this address

* And possibly:
 Save registers (or switch banks)
» Switch page table (usually not)

Exception
numbers

WVTable

Exception

code for
exception handler 0

C

code for
exception handler 1

o

0
1
2

._/

code for
exception handler 2

code for
exception handler n-1

12

Exceptions and the Kernel

Systems @ ETH zirin

Types of Exceptions

* A synchronous exception occurs as a results of executing an instruction.

* An asynchronous exception occurs as a result of events that are
external to the processor.

Interrupt Signal from 1/0 device Async
Trap Intentional exception Sync
Fault Potentially recoverable error Sync

Abort Nonrecoverable error Sync

13

Async Exceptlons in a Nutshell E;

Systems @ ETH zirin

HELLOIT'S | (meme stolen

ME THE
BOARD | from DINFK

Discord)

executing an instruction.
/f events that are

Async/Sync

U=
E Async
Sync

Sync

| HAVE AN
IMPORTANT
MESSAGE

Sync

14

Exceptions and the Kernel

SyS tems @ ETH zirich
Conventional perspective:
* User programs run until the kernel needs to
* System call
* Page fault
* Interrupt, etc.
User process Executes Process Y e S

starts syscall

resumes

User (privileged) mode

Kernel (privileged) mode
Execute Page fault
kernel code handler -f"H

15

Exceptions and the Kernel

Systems @ ETH zirin

Alternative perspective:

* Kernel runs, calls sandboxed user applications, then retakes control.

Creates
process

Page fault
handler

Kernel starts

Kernel (privileged) mode

User (unprivileged) mode
Process Process
resumes exits

Computer Svstems 2024 Ch. 3: The Kernel 20 m

16

Trap frame is
initialized
here!

Exceptions and the Kernel

Systems @ ETH zirin

The illusion of multiple computers

Creates System Creates Page Timer
process call process fault interrupt
Kernel (privileged) mode
Process
resumes

User (unprivileged) mode

Process 1

Process
resumes

Process 2

17

Exceptions and the Kernel E;

Systems @ ETH zirin

General model of OS structure

W ¥ M e Server process
Application Application T
System Library System Library j System Library
Syst I
Llys R User mode
v

Privileged mode

Kernel

18

Exceptions and the Kernel

Systems @ ETH zirin

Monolithic kernels vs. Microkernels

Syscall
App
A user

VFS v virtual memory mode Unix | . File
evice
file system IPC App | server | yiver | server IPC

scheduler vernel Y e
device drivers mode IPC, virtual memory
Hardware Hardware
* Monolithic OS * Microkernel OS:
— lots of privileged code — little privileged code
— services invoked by syscall — services invoked by IPC

— “horizontal” structure

19

Remark E;

Systems @ ETH zirin
* Interested? Take Computer Systems core subject in

5th semester

20

Systems @ ETH zirin

Caches

Systems Programming and Computer
Architecture

21

Where are we in the course

Systems @ ETH zirin

 Compilation pipeline: from C source code to
assembly, to the executable (and how this is layed
out “in memory”)

Recall: how C code runs as a process on CPU

Kernel virtual memor: y ih:;?l‘:lrevto
User stack user code
(created at runtime) %rsp
. , ¢ "y
Preprocessor ~ Compiler ~ Assembler Linker Loader ; s
Memory-mapped region for
I—} shared libraries
C source ‘ cpp ccl as Id executabl% execve I P
) Run-time heap
(created by malloc)
: Read/write segment Loaded
.C,.h . .S .0 (.data, .bss) :n;]om
e
Read-only segment executable
(.init, .text, .rodata) file

Unused

Where are we in the course

Systems @ ETH zirin

 Computer Architecture: processor design

CLK CLK CLK
| RegWriteD % RegWriteE 67 RegWriteM & RegWriteW
c"'“_:"' MemtoRegD MemtoRegE MemtoRegM MemtoRegW
uni
MemWriteD MemWriteE MemWriteM
ALUControlD,, ALUControlE,,
31:26
Moo | Op ALUSIcD ALUSTCE
—1 Funct RegDstD RegDstE
BranchD | |
CLK CLK EqualD[™ FCSeD — CLK
CLK & o) — |]
WE3 = WE
A . InshiD 25:21 A RD1) 8? SrcAE
] 1 _—Lm 3 Avoum | o po || [ReadDataw
Instruction 20:16 <
b= 00
memory A2 RD2 0 ot 07)srcBE Data
A3 Register || |1 Bks WriteDaiaE writepatamt_| | MO
wps g e Datal WD :
25:21 RsD RsE ALUOutW lﬂ»
: RiD RtE =
il CT WriteRegE, o WriteRegM, , WriteRegW., ,
1511 RdE RdE JJ o
SignimmD SignimmE
15:0 Ign
extend
<<2
+
PCPlus4F mo PCPlus4D o]
22
5 - - -
PCBranchD
ResultW
=z =
= = e a
@ @ ‘3 2|8 2 AH ‘% = HE ‘—3
B = =1 @ | = = Z
5 S) 8|8 M Al R Gk HE =
[Hazard unit J

Figure 7.58 Pipelined processor with full hazard handling 23

Where are we in the course

Systems @ ETH zirin

* Currently: memory hierarchy (caches, vm)

| Main
- Hard
CPU («»| Cache |! Memory Drive

24

Where are we in the course

 Later: embedded devices

CLK

MemWrite

Address Decoder J

¢aM

-‘ Processor

Address

LIM

W3IMm

CLK

;

—
WE

WriteData

~—

N

Memory M

00
1/O ReadData
, 01
Device 1 10
e

I/O

Device 2
— =/

*Hesgy

Systems @ ETH zirin

Figure 8.28 Support hardware for

memory-mapped I/0

Ve)

Caches Ej

Systems @ ETH zirin
Analogy for Memory Hierachy: Library

Cubical (Cache): Keeping books we recently used or likely to
use in the future at our cubicle (based on temporal and spatial
locality)

 Temporal Locality: if we used the book recently, we are
likely to use it again

e Spatial Locality: Interested in one book, so likely to be
interested in other books of the same shelf

Shelves (Main Memory): Keeps most used books in shelf

Basement (Disk): keeps lesser-used book in deep storage in
the basement

Caches
* Memory hierarchy graphically

Systems @ ETH zirin

* Processor seeks data
 1.looks in cache, if not here then
e 2.looks in main memory, if not here
» 3. fetches data from disk/hard drive

-

’ : “ e A
| CLK Processor Chip i

~ ~ | S
| : ain

| < < Hard

/| CPU @ Cache || Memory Drive

i | ~
P\ Y, \- J

27

Caches: Data held in the
Ca C h e Systems @ ETH zirin

Caches exploit temporal and spatial locality

Temporal locality: processor is likely to access data again
soon, if it has accessed it recently [local variables]

 =>|fdatais notin cache, processor fetches it from main
memory and puts it into cache (subsequent requests hit in
cache)

Spatial Locality: when processor accesses piece of data, its
likely to access nearby memory locations [array]

 => Not just fetching one word, but several adjacent words,
a “cache block”/”cache line”

28

Caches: How is data found E;

Systems @ ETH zirin

» Cache: Capacity C, Cache block b, Blocks B=C/b
e Ssets (rows): each set can hold block(s) of data
* Direct mapped (S=B sets): each block is in its own set

* N-way set associative (S=B/N sets): each set contains N
blocks

* Fully associative (S=1): one set containing all blocks

* Mapping: Relationship between address of data in memory
and cache

 Each memory address maps to exactly one set in the
cache

29

Caches: Direct Mapped

Systems @ ETH ziricn
* Direct
d . h Address Data
mappeda: eac 11..11111100 [mem[OxFFFFFFFC]
. 11..11111000 mem[0xFFFFFFF8]
set contains 11..11110100 mem[OxFFFFFFF4]
11...11110000 mem[0xFFFFFFFO]
one block 11..11101100 | mem[OXFFFFFFEC]
11...11101000 mem[OxFFFFFFES]
11..11100100 mem[0xFFFFFFEA4]
. 11...11100000 mem[0xFFFFFFEQ]
e Bottom 2 bits O . .
[] [
° [] []
because its 00...00100100 mem[0x00000024]
00...00100000 mem[0x00000020]
Word (here 4 00...00011100 mem[0x0000001C] Set 7 (111)
I 00...00011000 mem[0x00000018 Set6 (110
byte) aligned [1 (110)
00...00010100 mem[0x00000014] Set 5 (101)
00...00010000 mem[0x00000010] Set 4 (100)
00...00001100 mem[0x0000000C] Set 3 (011)
e Next log2(S)=3 00...00001000 mem[0x00000008] Set 2 (010)
g () 00...00000100 mem[0x00000004] | X Set 1 (001)
bits indicate 00...00000000 mem[0x00000000] Set 0 (000)

30. ' 23-Word Cach
set (mod 8) 2°°-Word Main Memory ord Cache

SV

Caches: Direct Mapped

Byte Tt —
Memory 29 _Set Offset
* Byte offset: Address | yom l o 100 |
indicates byte V Tag Data .
within word Set7
Set5 8-entry x
* Set bits: e (uarsanon
indi ' SRAM
indicate set in > Szﬁ
the cache - / Set1
(log2(S) bits) _ 27 {32
* Tag bits:
indicate
memory Hit .
address of data Byte
Tag Set Offset
M
poo 1. 111]001]00

FFFFFF E 4

Caches: Direct Mapped

Systems @ ETH ziricn
Byte
Mem ory Tag Set Offset
Address 00...00 2(31 00
1 V Tag Data
0 Set7(111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
1| 00...00 | mem[0x00...0C] | Set 3 (011)
1| 00..00 | mem[0x00...08] | Set 2 (010)
#{1 | 00..00 | mem[0x00...04] | Set 1 (001)
0 Set 0 (000)

* If two memory address point to the same set: conflict
* One must be evicted (removed from the cache)

32

Caches: N-way Set Associative

Byte 'ms @ ETH ziicn
Memory I Tag |Set Iogs(,)elt ure

Address T Way 1 Way 0
28 2] | |
V Tag Data V Tag Data

Set 3
Set 2
Set 1
Set0

Hit1U Hit, N | © / Hi,
/‘(32

Hit Data

* N-way: every memory address still maps to a specific set, but
can go into any of the n-ways inside this set (Here N=2)

33

Caches: N-way Set Associative

Way 1 Way 0
I I I
V Tag Data V Tag Data
0 0
0 0
1| 00...00 | mem[0x00...24] | 1| 00...10 | mem[0x00...04]
0 0

Systems @ ETH zirin

Set 3
Set 2
Set 1
Set0

* Advantage: the higher the associativity, the less conflicts we

have

e Set associative caches generally have lower miss rate (only
need to evict if both ways are full)

34

Caches: Fully Associative Cache
Systems @ ETH zirin

Way 7 Way 6 Way 5 Way 4 Way 3 Way 2 Way 1 Way 0

| 1l Il | 1l Il 1l 1l |
V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
I | || | 1| | [| || | 1| | [[1| |

* Fully associative: B ways (number of blocks), i.e. no conflict
misses anymore

* Issue: need a lot of comparators (compare 8 values in parallel)

35

Caches: Overview

Systems @ ETH zirin
Byte
M emory Tag Set Offset
P
V Ta Data I
e Set7 (111) Table 8.2 Cache organizations
0 Set6 (110)
0 Set5(101) Number of Ways Number of Sets
0 Set 4 (100) .
1 00..00 | memiox00..0C] | Set 3 (011) Organization (N) (S)
1| 00...00 | mem[0x00..08] | Set 2 (010)
{1 | 00..00 | mem[0x00..04] | Set 1 (001) :
1 Set 0 (000) Direct Mapped 1 B
Set Associative 1<N<B B/N
Way 1 Way 0 o
| 1 | | Fully Associative B 1
V Tag Data V Tag Data
0 0 Set 3
0 0 Set 2
1] 00..00 | mem[0x00...24] | 1| 00..10 | mem[0x00..04] | Set 1
0 0 Set 0
Way 7 Way 6 Way 5 Way 4 Way 3 Way 2 Way 1 Way 0

| Il | | Il I I Il |
V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data

LI 1T 1]

I N I N N N N

36

Caches: Overview

Systems @ ETH zirin
0.10
0.09 }
1-way
0.o8f —
0.07) _
Figure 8.17 Miss rate versus

0.06 cache size and associativity
Miss Rate on SPEG2000 benchmark

0.05} Ad . ..
per Type apted with permission from

Hennessy and Patterson,
Computer Architecture: A
Quantitative Approach, Sth ed.,
Morgan Kaufmann, 2012.

0.04

0.03}

0.02

0.01} Capacity Compulsory
0-00 L L L / L L L I
4 8 16 32 64 128 256 512 1024
Cache Size (KB)

* Higher associativity: generally lower miss rates

37

Caches: Recall from lecture

Systems @ ETH zirin

Types of cache miss

* Cold (compulsory) miss
* Occurs on first access to a block

e Conflict miss

* Most caches limit placement to small subset of available slots
* e.g., block i must be placed in slot (i mod 4)

* Cache may be large enough, but multiple lines map to same slot
» e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

* Capacity miss
* Set of active cache blocks (working set) larger than cache

* Coherency miss
* Multiprocessor systems: see later in the course

38

Caches: Recall from lecture

Systems @ ETH zirin

What to do on a write-hit?

e Write-through
* Write immediately to memory
* Memory is always consistent with the cache copy
* Slow: what if the same value (or line!) is written several times

 Write-back

* Defer write to memory until replacement of line
* Need a dirty bit

* = indicates line is different from memory
* Higher performance (but more complex)

39

Caches: Recall from lecture

Systems @ ETH zirin

What to do on a write-miss?

* Write-allocate (load into cache, update line in cache)
* Good if more writes to the location follow
* More complex to implement
* May evict an existing value
 Common with write-back caches

* No-write-allocate (writes immediately to memory)
e Simpler to implement
* Slower code (bad if value subsequently re-read)
e Seen with write-through caches

40

Caches: Recall from lecture

Systems @ ETH zirin

Other hardware cache features

* Unified
* Serves both instruction and data fetches

* Private
* Only one core uses this cache

* Shared
* Multiple cores share the cache

* Inclusive
* Anything in this cache is also in every lower-level cache

* Exclusive
* Anything in this cache is not in any lower-level cache

41

Caches: Recall from lecture E;

SyS tems @ ETH zirich
General cache organization
(SI EI B) E = 2¢ lines per set
A
set
line or block
S =2%sets {
\
Cache size:
i tag | |0]1f2]----- B-1 S x E x B data bytes
valid bit B = 2P bytes per cache block (the data) -2

42

Caches: Recall from lecture

Systems @ ETH zirin

Cache read ——

* Check if any line in set

E = 2¢ lines per set has matching tag
AN * Yes + line valid: hit
* Locate data starting
at offset

Address of word:
| t bits | s bits | b bits |

= 7Js
S =2°sets 4 tag set block

index offset

data begins at this offset

o1]2] -] B1
N g

~—

= 9b
B = 2° bytes per cache block (the data) “ systemse

valid bit

Caches: Recall from lecture

Systems @ ETH zirin

Direct mapped cache (E = 1)

Direct mapped: One line per set
This example: cache block size 8 bytes

(

Address of int:
o[1]2]3[afs]e]7 |_thits | 0..01 [100 |
0]1]2{3]4fs]6]7 e
0)1]2]3]4]5]6]7

\ 0]1]2[3]afs]e]7]

S =25 sets <

44

Caches: Recall from lecture

Systems @ ETH zirin

Direct mapped cache (E = 1)

Direct mapped: One line per set
This example : cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

| tag | of1[2]3]a]s]6]7

block offset

int (4 Bytes) is here
No match: old line is evicted and replaced

45

Systems @ ETH zirin

Virtual Memory

Systems Programming and Computer
Architecture

46

Virtual Memory

Systems @ ETH zirin
Let us first look at how virtual memory works
Then we can check out why it’s a useful concept

Before we go to virtual memory, how do virtual memory and
caches relate?

47

Virtual Memory Ej

Systems @ ETH zirin

Some Terminology

Physical Memory = Main Memory = DRAM, often 8, 16,
32GBs in modern systems

Virtual Memory = Disk / Hard Drive, ranges from 120-1000GB

Programs can access data anywhere in virtual memory: so
they must use virtual addresses that specify location in virtual
memory

Physical memory holds a subset of most recently accessed
virtual memory: physical memory acts as a cache for virtual
memory

48

Virtual Memory Ej

Systems @ ETH zirin

Virtual Memory: divided into virtual pages (typically 4KB size)
Physical Memory: divided into physical pages (same size)

Virtual page may be located in i) physical memory (DRAM) or
on hard drive (disk)

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Drive 49

Virtual Memory

Systems @ ETH zirin

Address translation: Process of determining physical address,
given a virtual address

Page fault: if processor tries to attempt to access a virtual
address that is not in physical memory (see exception slides)

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Drive 50

Virtual Memory

Systems @ ETH zirin

* Page Table: contains entry for each virtual page, indicating
whether its in physical memory or on disk

* Each load store: Requires page table access, followed by
access of physical memory (page table also in physical
memory, so effectively 2x Physical memory access: TLB)

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Drive 51

==

Systems @ ETH zirin

Virtual Memory: Address Translation

Systems Programming and Computer
Architecture

52

Virtual Memory

2GB=231-byte virtual memory
128MB=22"-byte physical memory
4KB= 212-byte pages

231/ 212 =2V virtual pages (19 bit
VPN)

227/ 212 =215 physical pages (15 bit
PPN)

Physical memory can hold 1/16 of
virtual pages at a time

Physical
Page

Number Physical Addresses
7FFF [(0x7FFF000 - 0x7FFFFFF
7FFE | Ox7FFEO0QO - 0Ox7FFEFFF
0001 | 0x0001000 - 0x0001FFF
0000 | 0x0000000 - 0x0000FFF

Physical Memory

Virtual Addresses

0x7FFFF000 - Ox7FFFFFFF

0x7FFFEOOQO - Ox7FFFEFFF

0x7FFFDO000 - Ox7FFFDFFF

0x7FFFCO000 - Ox7FFFCFFF

0x7FFFBO000 - Ox7FFFBFFF

0x7FFFA000 - OX7FFFAFFF

Ox7FFF9000 - Ox7FFFOFFF

0x00006000 - 0xO0006FFF

0x00005000 - 0x00005FFF

0x00004000 - 0xO00004FFF

0x00003000 - 0x00003FFF

0x00002000 - 0x00002FFF

0x00001000 - 0x00001FFF

Systems @ ETH zirin

Virtual
Page
Number

7FFFF
7FFFE
7FFFD
7FFFC
7FFFB
7FFFA
7FFF9

00006
00005
00004
00003
00002
00001

0x00000000 - 0x00000FFF

00000

Virtual Memory

Virtual Memory

Systems @ ETH zirin

* Task: Physical address of virtual address 0x247C using virtual memory
system?

Virtual Address

30 29 28 14 13 12 11 10 9 210 Virtual
Page
VPN Page Offset

| 7 | 9 | Virtual Addresses Number
i Ox7FFFF000 - OXx7FFFFFFF | 7FFFF
(Transiation) 12 0x7FFFE000 - Ox7FFFEFFF | 7FFFE
115 0x7FFFDO000 - 0x7FFFDFFF | 7FFFD
525 24 1312 11106 210 0x7FFFB000 - 0x7FFFBFFF | 7FFFB
. 0x7FFFA000 - Ox7FEFAFFF | 7FFFA
Physical Address 0x7FFF9000 - 0x7FFFOFFF | 7FFF9

Page E E
Number Physical Addresses 0x00006000 - 0x0O0006FFF | 00006
7FFF [0x7FFF000 - Ox7FFFFFF 0x00005000 - 0X00005FFF | 00005
7FFE | 0x7FFE000 - Ox7FFEFFF 0x00004000 - 0x00004FFF | 00004
. ; 0x00003000 - 0x00003FFF | 00003
. : 0x00002000 - 0x00002FFF | 00002
0001 | 0x0001000 - 0X0001FFF 0x00001000 - 0x00001FFF | 00001
0000 | 0x0000000 - 0xXO000FFF 0x00000000 - 0X00000FFF | 00000

Physical Memory Virtual Memory

Virtual Memory

Systems @ ETH zirin

Physical address of virtual address 0x247C using virtual memory system

12bit page offset (0x47C) needs no translation. Remaining 19 bits are the
VPN, so virtual address 0x247C found in virtual page Ox2: PPN: Ox7FFF,

Physical address: Ox7fff47C
Virtual Address

Virtual
302928 ...141312 11109 ..210 Page
Page Offset
| VF:,N | J | Virtual Addresses Number
19 0x7FFFFO00 - OX7FFFFFFF | 7FFFF
(ranslation) 12 0x7FFFEO00 - Ox7FFFEFFF | 7FFFE
115 0x7FFFDO000 - 0x7FFFDFFF | 7FFFD
|26 =24 1312 |11 e I O| 0x7FFFB00O - 0x7FFFBFFF_| 7FFFB
N 0x7FFFAQ00 - Ox7FFFAFFF | 7FFFA
Physical Address 0x7FFF9000 - 0x7FFFOFFF | 7FFF9
Page E E
Number Physical Addresses 0x00006000 - 0X00006FFF | 00006
7FFF [[OX7FFFO00 - OX7FFFFFF 0x00005000 - 0x00005FFF _| 00005
7FFE | 0x7FFE000 - Ox7FFEFFF 0x00004000 - 0x00004FFF _| 00004
° : 0x00003000 - 0x00003FFF _| 00003
- E 0x00002000 - 0x00002FFF _| 00002
0001 |_0x0001000 - Ox0001FFF 0x00001000 - 0x00001FFF__| 00001
0000 [0x0000000 - 0x0000FFF 0x00000000 - 0x00000FFF _| 00000

Physical Memory Virtual Memory

Virtual Memory Ej

Systems @ ETH zirin

Issue? What we did by hand is tedious and time consuming,
also the processor needs a general way and need to store
millions of mappings for multiple processes

Solution: store mappings VPN->PPN in a table, the page table

56

Virtual Memory

Processor uses page table to translate
VPN->PPN

Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

Indexed with virtual page number

Entry 5: specifies virtual page 5 maps
to physical page 1

Entry 6: Invalid (V=0) so located on disk

Physical
Page
Number

Systems @ ETH zirin

Virtual
Page
Number

7FFFF

7FFFE

0x0000

7FFFD

Ox7FFE

7FFFC

7FFFB

olo|=|=lO0I<

7FFFA

00007

00006

0x0001

00005

00004

00003

Ox7FFF

00002

00001

OO=|0O|I0|=O|OC

00000

Page Table

Virtual Memory

Processor uses page table to translate
VPN->PPN

Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

Indexed with virtual page number

Entry 5: specifies virtual page 5 maps
to physical page 1

Entry 6: Invalid (V=0) so located on disk

Task: Find physical address of virtual
address 0x247C using page table

Physical
Page
Number

Systems @ ETH zirin

Virtual
Page
Number

7FFFF

7FFFE

0x0000

7FFFD

Ox7FFE

7FFFC

7FFFB

olo|=|=lO0I<

7FFFA

00007

00006

0x0001

00005

00004

00003

Ox7FFF

00002

00001

OO=|0O|I0|=O|OC

00000

Page Table

Virtual Page

Virtual viwe esetme ot

0x00002 47C

Address
119 112
Processor uses page table to translate Physical
VPN->PPN \% Page Number
Contains entry for each virtual page: 8
Valid bit (if currently in physical 1 0x0000
memory) g} OX7FFE
Indexed with virtual page number 0 ©
op . . e}
Entry 5: specifies virtual page 5 maps o ©
to physical page 1 8 Q
©
Entry 6: Invalid (V=0) so located on disk] Ox0001 o
0
0
1 OX7FFF
Task: Find physical address of virtual 0
address 0x247C using page table ? ’ ’
. 115 112
Sol: 12 bit page offset (0x247C) no Hit
translation; Ox2 virtual address maps to Physical Ox7EEE | 47C

Ox7FFF, in total: OX7FFF47C Address

Virtual Memory

* If we were to access Entry5: page hit

CPU Chip P% .
3 e PTE]
CPU > MMU o Cache/
PA > Memory
[o
Data
®

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Physical
Page
Number

Systems @ ETH zirin

Virtual
Page
Number

7FFFF

7FFFE

0x0000

7FFFD

Ox7FFE

7FFFC

7FFFB

ol0o|= =0 <

7FFFA

00007

00006

0x0001

00005

00004

00003

OX7FFF

00002

00001

o0o|=O|0= OO0

00000

Page Table

60

Virtual Memory

SyS tems @ ETH zirich
* |If we were to access Entry6: page fault (V=0)
Physical Virtual
Exception Page Page
: ----- o— —_———— Page fault handler Vv Number Number
! 0 7FFFF
. : 02 0 7FFFE
CPU Chip 1 PTEA . Victim page 1 0x0000 7FFFD
(1] > @ ! 1 0x7FFE 7FFFC
e o R e N i
o New page)]
o ° °
. 0 00007
1) Processor sends virtual address to MMU 0 00006
2-3) MMU fetches PTE from page table in memory 1 0x0001 00005
4) Valid bit is zero, so MMU triggers page fault exception 8 ggggg
5) Handler identifies victim page to evict (and, if dirty, pages it out to disk) 1 Ox7FFF 00002
6) Handler pages in new page and updates PTE in memory 8 88888
7) Handler returns to original process, restarting faulting instruction Page Table

61

Virtual Memory Ej

Systems @ ETH zirin

* Page table: can be stored anywhere in physical memory at
discretion of the OS

* Processor uses dedicated register, called page table register
to store base address and page table in physical memory

62

==

Systems @ ETH zirin

Virtual Memory: Translation
Lookaside Buffer (TLB)

Systems Programming and Computer
Architecture

63

Virtual Memory E;

Systems @ ETH zirin

Virtual Memory: would have sever performance impact if we
needed a page table read on every load/store (2x physical
memory access)

Idea: page table accesses have great spatial & temporal
locality & large page size => lets cache PTEs

Processor keeps last several page table entires in small cache
called “translation lookaside buffer” (TLB)

Processor “looks aside” to find translation in TLB before
having to access page table in physical memory

TLBs have 16-512 entries (quite small): though TLBs have hit
rate>99%

64

Virtual Memory

Systems @ ETH zirin

* Accessing VPN 0x2 hits in this two entry TLB

Virtual Page
Virtual Page Number Offset

Addressl 0x00,002 | 47C |

V

119 112

Entry 1 Entry O
| 1 |
Virtual Physical Virtual Physical
V Page Number Page Number Vv Page Number Page Number
[1] 0x7FFFD | 0x0000 [1] 0x00002 | 0x7FFF | TLB

4 4 4

19 115 119 115

Hit, Hito N ° /—Hit

A15 12
ox7FFF_| 47C | 65

. Physical
Hit Address |

Virtual Memory E;

Systems @ ETH zirin

* Accessing VPN 0x2 hits in this two entry TLB

TLB hit
CPU Chip TLB
o PTE
VPN o
1)
VA - PA -
CPU > MMU o > Cache/
[Memory
Data
(5

A TLB hit eliminates a memory access ,

Virtual Memory

* Accessing VPN Ox5FBO misses in TLB: need to access
page table in physical memory

Virtual
Address

Virtual Page
Page Number Offset
|_0x00002 | 47C |
119 112
Entry 1 Entry O
[11 |
Virtual Physical Virtual Physical

V Page Number Page Number ¥ Page Number Page Number
[1] 0x7FFFD | 0x0000 [1] 0x00002 | 0x7FFF |TLB

119 A15 119 A15

Hit

N ° /—Hit,

A15 12
Ox7FFF_| 47C |

Physical |
Address

Systems @ ETH zirin

67

Virtual Memory

Systems @ ETH zirin
* Accessing VPN Ox5FBO misses in TLB: need to access
page table in physical memory

TLB miss

CPU Chip TLB
(4
(2) PTE
VPN
@ 0 |
VA PTEA -
CPU > MMU > Cache/
PA s Memory
(57
Data
6

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare (we hope)

68

==

Systems @ ETH zirin

Virtual Memory: Multi-Level-
Pagetable

Systems Programming and Computer
Architecture

69

Virtual Memory

Systems @ ETH zirin

* Inlecture: its not feasible to have an entire page table (not
even for one process)

* To conserve memory: page tables can be broken up into
multiple levels: first level page table always kept in physical
memory, indicates where second level page tables are stored
in virtual memory

* In a2 level page table: 2" page table contains actual physical
addresses

70

Virtual Memory

SyS tems @ ETH zirich
Page Table Page Table Page
Virtual Number Offset offset ® Page Table
Address 5 10 .
Physical Page Number: indexes
Numb
e 15t level page
il table (gives base
i address of
Page Table I »
, TageTad : 8 second tbale)
R f ° s e« Page Table
: 5 [S Offset: indexes
= |l o
ol 2" level page
v table
First-Level - Second-Level
Page Table Page Tables

71

Virtual
Address

Virtual Memory

Page Table Page Table Page
Number Offset Offset
[oxo | 3FE_[| FBO
19 10 12
Physical Page
VvV Number
_.HI1 0x1003
<ot 1 Ox23F1
H1 0
H| 1 O0x7FFE »
Hl0 =
o]
H1 0 «©
Page Table o 5
Y Address o >
0 2 . o
1 0x40000 K 0 4
. o W 0x0073 a
: < e 2
g e 8
0 o M1 0x72FC @
; ! 7]
0 % M 0
—>1| 0x2375000 i MO0
H1 0
Valid1 1 0x00C1
" valid2 18 12
Physical 5 58F1 T FBo

Address

Systems @ ETH zirin

Example:
accessing
virtual address
OxO03FEFBO

Only VPN
needs
translation:

Page Table
number: 0x0

Page Table
Offset Ox3FE

PPN:
Ox23F1FBO

72

Virtual Memory

* This concept generalizes to arbitrary levels

Systems @ ETH zirin

Virtual address

BR

9 9 9 9
VPN1 VPN2 VPN3 VPN4 VPO
Page
Directory Page
Page Map Pointer Directory Page
Table Table Table Table
PMA4LE PDPE PDE PTE
=512 GB region > 1 GB region > 2 MB region > 4 KB region
per entry per entry per entry per entry
40 | 2
PPN PPO

Systems Programming 2023 Ch. 19: Virtual Memory

Physical address

73

==

Systems @ ETH zirin

Why is Virtual Memory Useful?

Systems Programming and Computer
Architecture

74

Virtual Memory

Systems @ ETH zirin

* Efficient use of limited main memory (RAM)

* Use RAM as a cache for the parts of a virtual address space
* some non-cached parts stored on disk
« some (unallocated) non-cached parts stored nowhere

» Keep only active areas of virtual address space in memory
* transfer data back and forth as needed

* Simplifies memory management for programmers
* Each process gets the same full, private linear address space

* Isolates address spaces
* One process can’t interfere with another’s memory
* because they operate in different address spaces
* User process cannot access privileged information
 different sections of address spaces have different permissions

75

Virtual

Memory

1: VM as a tool for caching

* Virtual memory: array of N =

* think of the array (allocated part) as being stored on disk

* Physical main memory (DRAM) = cache for allocated virtual memory

* Blocks are called pages; size = 2P

Disk or 2
SSD

Systems @ ETH zirin
2" contiguous bytes
Virtual memory Physical memory
VP 1 | Cached \i PPO
Uncached PP 1

Unallocated

Cached
Uncached >< Empty
Cached PP 2m-p-1

VP 2MP-1 Uncached 1

]

2n-1

Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

76

Virtual Memory

e Remember shared object files from linking?

2. VM as a tool for memory management

Key idea: each process has its
own virtual address space

-> each process needs its own page table!

* Allocated physical pages are
scattered in memory

» Well-chosen virtual->physical
mappings simplify memory
allocation and management

Virtual
Address
Space for

Process 1:

nal— |

Virtual
Address
Space for

Process 2:

VP 1

VP 2

VP 1
VP 2

L]

Address
translation

Systems @ ETH zirin
0 Physical
Address
PP 2 Space
(DRAM)
(e.g., read-only
PP6 library code)
PP 8

M-1

77

Virtual Memory
Systems @ ETH zirin

« Remember making stack not executable from attacks?

3. VM as a tool for memory protection

Supervisor mode

permission Physical

* Extend Page Table Processi: ~ SUP READ WRITE Address Address Space

Entries (PTEs) with VPO:| No | Yes | No ERE
. e b.t VP1:| No Yes Yes PP 4
permission DILS VP2: | Yes | Yes | Yes PP 2 _

* Page fault handler : PP 4
checks these before Y
remapping Processj: ~ SUP READ WRITE Address -

* If violated, send process VPO:| No | Yes | No PP 9 — NETY)
SIGSEGV (segmentation WVP1:| Yes | Yes | Yes PP 6
fault) WP2:| No | Yes | Yes PP 11 > PP11

78

==

Systems @ ETH zirin

Big Picture: Relation between
Caches and Virtual Memory

Systems Programming and Computer
Architecture

79

Caches and Virtual Memory E;

Systems @ ETH zirin
32/64 L2, L3, and
CPU [« Result < .
X main memory
Virtual address (VA) y
36 voo12
VPN VPO L1 hit L1 miss
32 Ny 4
TLEl’T TLBI L1 d-cache
TIB (64 sets, 8 lines/set)

TLB

miss L T W
N
L1 TLB (16 sets, 4 entries/set)

40 12
V2 2 2 2 40 6 6
VPN1 | VPN2 | VPN3 | VPN4 Y Y
PPN PPO * CcT Cl |CO —
A Physical T
CR3
address (PA)

Page tables 7 E
S =80

Virtual Memory

"Virtually/Physically Indexed” - ”Virtually/Physically
Tagged” depends on how we access the cache

Virtually Indexed — Virtually Tagged
Virtually Indexed — Physically Tagged
Physically Indexed — Virtually Tagged
Physically Indexed — Physically Tagged

==

Systems @ ETH zirin

81

Virtual Memory

"Virtually/Physically Indexed” - ”Virtually/Physically
Tagged” depends on how we access the cache

Virtually Indexed — Virtually Tagged
Virtually Indexed — Physically Tagged
Physically Indexed — Virtually Tagged
Physically Indexed — Physically Tagged

==

Systems @ ETH zirin

82

Virtually Indexed — Virtually Tagged

Only uses virtual

address CPU
H.omonyms: same VAs-> Tage index, bytey,
different PAs
* Solution: ASID (per VD tag word0 wordl word2 word3
VD tag word0 wordl word2 word3
process), FIUSh on VD tag word0 wordl word2 word3
context SWitCh VD tag word0 wrrdi ~word2 word 3
Synonyms: different VA v
->same PA MMU
e Solution: Make l
read-only

Physical memory

55

Virtual Memory

"Virtually/Physically Indexed” - ”Virtually/Physically
Tagged” depends on how we access the cache

Virtually Indexed — Virtually Tagged
Virtually Indexed — Physically Tagged
Physically Indexed — Virtually Tagged
Physically Indexed — Physically Tagged

==

Systems @ ETH zirin

84

Virtually Indexed — Physically Tagged

Best of both worlds

Virtually Indexed: fast
cache indexing (don’t
need to wait for
translation)

Physically tagged: no
homonyms and
synonym issues

Aliasing issue: if cache
is too big

index,,

VD
VD
VD
VD

tag
tag
tag
tag

byte,,,

word 0
- word 0
- word 0
word 0

Systems @ ETH zirin

k J

Tag

4
~wordl word2 word3
~wordl word2 word3
~wordl word2 word3
wordl word2 word3

Physical memory

85

Virtually Indexed — Physically Tagged m

Systems @ ETH zirin
Aliasing
* If two virtual addresses have the same physical address:

as we index virtually, they get indexed to different
locations in the cache

* This will lead to having two copies of the data block:
when these locations are update we get inconsistencies

Solution (among others): Reduce cache size, i.e. s.t. VPO
and PPO are the same: then the two virtual addresses will
have the same page offset, so are mapped to the same
index

What does this entail?

86

Virtually Indexed — Physically Tagged

Speeding up L1 access

20

6 6
CcT Cl |(CO
Phys. address (PA)
PPN PPO
Address No
Translation
Virt. address (VA) VPN veo |+
36 12

Bits that determine Cl identical in virtual and physical address
Can index into cache while address translation taking place
Generally we hit in TLB, so PPN bits (CT bits) available next
“Virtually indexed, physically tagged”

Cache carefully sized to make this possible

Systems @ ETH zirin

Tag Check

A A

|

Change

" a

_ g

87

Virtually Indexed — Physically Tagged ﬁ

rich

Why cache size isn’t increasing over the years

36 12
‘ Virtual page number ‘ VPO |
‘ TLB I
40 12
‘ Physical page number PPO ‘
‘ L1 cache ' # sets S = 26 no# bytes/line B = 26
40 b - —— - 6 . - S R . .

‘ Cache Tag ‘ Cl ‘ -C‘;) ‘

* log,(cache size) = bits(Cl) + bits(CO) + log,(associativity)

* ForCorei7:6+6+3=15—=32kB

* For performance: bits(Cl) + bits(CO) < bits(VPO)

|

* Unless you have huge pages, VPO will not be too big:
harshly limits CI+CO

88

Virtual Memory

"Virtually/Physically Indexed” - ”Virtually/Physically
Tagged” depends on how we access the cache

Virtually Indexed — Virtually Tagged
Virtually Indexed — Physically Tagged
Physically Indexed — Virtually Tagged
Physically Indexed — Physically Tagged

==

Systems @ ETH zirin

89

Physically Indexed — Virtually Tagged m

SyS tems @ ETH zivic
e Makes no sense at all

* Physically Indexed:
indexing is slow as we
have to wait for address
translation

* Virtually Tagged:
introduces homonym
and synonym issues as
seen before

90

Virtual Memory

"Virtually/Physically Indexed” - ”Virtually/Physically
Tagged” depends on how we access the cache

Virtually Indexed — Virtually Tagged
Virtually Indexed — Physically Tagged
Physically Indexed — Virtually Tagged
Physically Indexed — Physically Tagged

==

Systems @ ETH zirin

91

Physically Indexed —

* Slowest: requires full
address translation
before lookup

* No homonyms or
synonyms

* Typically used for L2, L3
as we have already
done the translation
until then

Phyically Tagged

SyS tems @ ETH ziricx
Tag) index,) byte,
VD tag ~word0 wordl word2 word3
VD tag ~word0 wordl word2 word3
VD tag ~word0 wordl word2 word3
VD tag word0O wordl word2 word3

|

Physical memory

Caches and Virtual Memory Ej

.] Systems @ ETH zirin
* Is there still something unclear here?
S2/64 L2, L3, and
CPU [Result <)
A main memory
Virtual address (VA) :
36 \ 12
VPN VPO L1 hit L1 miss
32 WV 4
TLE;T el L1 d-cache
TLB (64 sets, 8 lines/set)
miss N s s W:
N
L1 TLB (16 sets, 4 entries/set)
40 12
W9 9 9 9 v \A 40 6| 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO ’ cT a lco—
A Physical T
cR3 address (PA)

Page tables

93

Systems @ ETH zirin

Systems Programming and Computer
Architecture

94

Quiz

Systems @ ETH zirin

Question 1

This problem requires you to analyze the cache behavior of a function that sums the elements of
an array A:

int A[2] [4];

int sum()

{

}

int sum = O0;

for (int j = 0; j < 4; j++) {
for (int 1 = 0; 1 < 2; i++) {
sum += A[i][j];
}
}

return sum;

Assume the following:

e The memory system consists of registers, a single L1 cache, and main memory.
e The cache is cold when the function is called and the array has been initialized elsewhere.
e Variables i, j and sum are all stored in registers.

e The array A is aligned in memory such that the first two array elements map to the same

cache block.

® sizeof(int) ==

e The cache is direct mapped, with a block size of 8 bytes.

95

Quiz

Systems @ ETH zirin

a) Suppose that the cache consists of 2 sets. Fill out the table to indicate if the corresponding
memory access in A will be a hit (h) or a miss (m).

A Col0 | Coll [Col2 | Col 3

Row O m

Row 1

96

Systems @ ETH zirin

ek 0

* Cache Drawing: One row means one block (I just created two
cells that we can see that 2 ints can go in one cache block)!

97

Cuctomca ETHM ;.

2Tt
Wy \;‘1_1.] Qrp Qa3 Qay) (ache wlﬂ-' it mise
Aem\ ql’l Q}_‘L &23 qlq

o (1 CL (3

Ro im|

R

Systems @ ETH ziricn

MI'SH'A ' CH,LLI
ch (1 CL (3

RO m

RA [m]

Sk 0
vet 4

Quiz

retonnc 2 ETH zivicn
s ™
Acon (b 2 O 3 lag F gy Hlag,
3¥1 \CA
AL 20y { A1q \’E Gag Qay) Misser i couly
ﬁ)\ ﬁ.vl LYY %73 ql"l

et () (1 cL (3
Mewter Ci
¥ Ro m [m]

(ogy | G 201002 [az2) sek0 RA m
(V] a4y l____) Sﬁ’l
‘;M ayy /

3 will puk (G4 Tan) o coeht, et ol block

M?.Wlﬁl't Coulng,
mﬂ] | am M; l Sel 0
Q34 | % /
Qe | fay

100

Quiz
Systems @ ETH zirin
* You get the idea ...

A Col0 | Coll | Col2 | Col3

Row 0 m m m m

Row 1 m m m m

 The underlying issue: cache too small, forces overlapping
cache accessing

 What would be a possible solution to get higher cache hit rate
without increasing cache size?

101

Quiz

Systems @ ETH zirin

b) What is the pattern of hits and misses if the cache consists of 4 sets instead of 2 sets?

Col 0

Col 1

Col 2

Col 3

Row 0

Row 1

102

An
&

Qg
%23

GrY)
; A
Ae™ - (am
Me\mcllt

\fﬁn \ Q’ll‘_a |

qu"}, aqy i -
024 [0)
QL“, cth —"')

Systems @ ETH zirin
Uy)
c"-'-l
Couehy.
) sefo0
4 set
— sef 2
ek 3

103

Systems @ ETH ziic

Caehe o,wvhd«' iF misey

() 1 | 2l @3

Set 0 Ro im|
seb 1 R’|

sk 2

a3

3 will pob lam lan) wn codn
Mewwuﬁ— Ciuthng,

(o Lo b2 |ag [an) seto

“ sef 1
&“M

stk
Q1 | 924

104

Systems @ ETH zirin

Missea | v eyt
() (1 CcL (3

RO m
RA [m |

105

Quiz

L|

Accem abn: JE é Oy F lag Tl +@
29 LY I‘hl_.] Q\3 91y)
ALy T Gy oy Gy
M?.chl‘ﬁ- Couelng_

Logg s 2 lom Tasg 1 sero

& 3] Gy J s

ql'\ ™ .ﬂ b1 a'L)_] SQI?,

B2y | G2y &'——-9 I\r——) et 3

Systems @ ETH zirin
K i CMLl
co (1 CL (3
RO m T[\l
R1 m

106

Quiz
Systems @ ETH zirin

(1
A((ﬂn qu‘Uni SE:I ‘g:‘ Qid 20y T hg, +ay 'FF‘?.]_
A4 Qs Gyv; 94) Kb | i (ML‘
254 3 Y
AeRy I k"\u V| oy Gy
ch (1 cr (3
Meww% Coeg.
RO m h
oy Lag 2 10m [am) sb0 RA m [h]
“Uqq | Gy set 1
Oy, |00 | [V} (V] sd
By | %2 |— ek 3

107

Physically Indexed — Virtually Tagged

SyS tems @ ETH ziricn
* Next accesses analogous

A Col0 | Coll | Col2 | Col3

Row 0 m h m h

Row 1 m h m h

* Thus we have seen we can increase hit rate by increase cache
size (next to doing row accesses)

108

Quiz

Systems @ ETH zirin

Question 2

This problem tests your understanding of the cache organization and performance. Assume the
following:

sizeof (int) ==

Array x begins at memory address 0.

The cache is initially empty.

The only memory accesses are to the entries of the array x. All variables are stored in
registers.

Consider the following C code:
int x[128];

int j;

int sum = 0;

for (int i = 0; i < 64; i++) {

j =1+ 64;
sum += x[i] * x[j];

109

Quiz

Systems @ ETH zirin

Case 1

a) Assume your cache is a 256-byte directed-mapped data cache with 8-byte cache blocks. What
is the cache miss rate?

110

0a)

Quiz

Systems @ ETH zirin
f P [Vs | (=256 Byke
L——'——) st s'é()etr]f
K R= 22207 232 Blockgy
‘_ isdso 3L &k
|0ga [G€3 | 1 I3 |

1qu

fa.z 6l Ay

111

b3
Auon nathn: _% C) - x(isCt] = [xCollt x[é4) | wmiss

l Sed
‘;l / L__,__) sd? stems @ ETH ziricn
}_"T_._’ set 40
042 [03] || et

g 1 a

L[T 1)

- | e
\lau [ac3] T i
q ¢yl @

| o "Jll q, 112

63 /
Atcen [\uﬂ"\: _':20 : (I K(”’Cl{] = (0] HMJ

loo | Qa4 I—‘_"’; I__ | $edD

Q o S [|) Yy SyStEMS@E'"zu‘rich

28

1| set 20
\aex (ae3] l____:] Set 31
r‘l tyl @
[ace T 4¢3

' Q428 I QQ}

S0 boch ﬂ\“lg‘; W cothy ,euch Qo) a4

R i ot
197/

|a 81 Ue3 l//‘[’JESﬁ%:

|quﬁ I Q121 113

63 -
Awon o 2« x(iskly] = o]t xléu) *k@ +x[6€)
)

| ————— a[agu[ag) seid Cochl v
) I) w" /StemS@MZunch

S

P

\lucz{“csl

IQn 6 l QQI

S0 bock (o) 00\ oty oAk |agy) age)
a, | a ————7 3ek 1
5 \Tl Sd'%
‘_‘5 sef 3)

ey

\iﬁsz (a¢3]

114
IQ{Z 6 I Q1ZL

b3
Auen ot _.% G- k(i) = o4 efed) +x(1) ﬁ;_(&f)l

0o | Qa4 _J— P IEO__°I4;| Sed
%—J/L_; s
> set 30

| set 34

DM ok [“le o cathy ek ‘qvlﬁh]

(achl ()

==

tems @ ETH zivich

115

Quiz
SyS tems @ ETH ziicn
e Pattern continues

a) Assume your cache is a 256-byte directed-mapped data cache with 8-byte cache blocks. What
is the cache miss rate?
Solution: 100%

116

Systems @ ETH zirin

b) If the cache were twice as big, what would be the miss rate?
Solution: 50%

117

Systems @ ETH zirin
(2%

oo) o4 | — [T s 1 G By
0] ay] —— | RIECEEY 12 Byte

] S R=9"C T ol Blocky

! 5ds & Byr

> | 'se}?.o 264 &k

lage (03] ————— 1 1T 53 |

118

Aon ot 2100 i) - o]+ xlé4)
’a A —_—? I " l 5640
6,) o] — L1 7 st

S0 bloch [Q!lq,,\ W catig
lao) a4 | — TaaTar] sei0

]
« set 30
lage (Ge3y|— 1 _| Set 31

L
qmlu -

lagel aml ——— | 1 sel 63

Cothl—miss

ystems @ ETH ziricn

119

b3
Ateem [\aﬂm: "?u (i) x[iJ,Cl,] = 40]+lz[7‘!]‘ Codh wnf s .’

lao | G4 I"_”__'g' |°}__°__.L‘L,|$dl‘.)
Q a - L__,__) aef 1 >ms @ ETH ziricn

-
-
i

.
> || set30
R et
Q e | @ T |—~_u

[aeg T4eq) ————

e Lagy) ———— [T sel b3
Sl hed Toglog) wn cuda

4k 1

| & Q4 l"__—_’} |______|$d0
\q;!a;l——~—"” L)

. ‘ _______l $et30
\m |/ set 3
l’tm%u—l SERSRNRAS (YT
—

[ace T 4z3)]

lagge | Gl ———— | T)sel b3 120

b3
‘"0

6o | G4 [Ja) sedD ek
Q, | oy | —— ek

— | set 30
_Qh[ﬂGSI ! |/ 5ek 31
hltqlu ‘l_,——-._.-—-_-a@_&[)
[ace T Ae3) — -

|Q125| %2}' — “_______llset 63

Qo q4 I&o Q1 Sdo
0,) oy | —— sek 1

5 ‘_j____ s 30 Ik

g (@3 set 31

u "
s T

[ay6 | gy — |1)seté3

s@ ETH ziicn

121

Quiz

Systems @ ETH zirin
Pattern continues: Compulsory Miss, Compulsory Miss, Hit,
Hit
Case 1

a) Assume your cache is a 256-byte directed-mapped data cache with 8-byte cache blocks. What
is the cache miss rate?
Solution: 100%

b) If the cache were twice as big, what would be the miss rate?
Solution: 50%

122

Quiz - Remark
Systems @ ETH zirin

* In an exam: you don’t have as much time, you sketch or just
calculate with the numbers!!

Case 1

a) Assume your cache is a 256-byte directed-mapped data cache with 8-byte cache blocks. What
is the cache miss rate?

b) If the cache were twice as big, what would be the miss rate?

123

Quiz - Remark
Cuctomen B TH 7irich

Caloalavivn

Dulo: 128 embien - Glyhs = 572 byl Code: 28bbaly = 32 blovhg

§ by
ST 3y = b4 blody = = 3L selts

& l,‘lc
Dala
00 & wis r4

& b O
SR ([
)

A6 063 |
[PTITY o B

) 6 —— 0 el : SO%
1
(one cold mis o Kb A)

124

Quiz

Systems @ ETH zirin

Case 2

a) Assume your cache is 256-byte 2-way set associative using an LRU replacement policy with
8-byte cache blocks. What is the cache miss rate?

b) Will larger cache size help to reduce the miss rate?

c) Will larger cache line help to reduce the miss rate?

125

Qz.2.0

SyS tems @ ETH ziricx
V) wur 1
iy “4
lao |u | — 31 __\l— | goo (=150 Gﬂk
a, | a I D e 'Y ¢4 Byre
] R= 256 by = 32 Blocks
; Sl & Byr
L 1T T samw 2 R =4 s
gy [3.] | T sabae £
| s, ‘l_e.Tz :
lo,, | ago !
lq_(’%_g,,l [g)
\%'_-x___%_& e

126

Quiz
Systems @ ETH zricx

a) Assume your cache is 256-byte 2-way set associative using an LRU replacement policy with
8-byte cache blocks. What is the cache miss rate?

b) Will larger cache size help to reduce the miss rate?

c) Will larger cache line help to reduce the miss rate?

127

Quiz
Systems @ ETH zricx

a) Assume your cache is 256-byte 2-way set associative using an LRU replacement policy with
8-byte cache blocks. What is the cache miss rate?

b) Will larger cache size help to reduce the miss rate?

N
W O
Oty b R NE_]! ak) Sdo: 2 mightn [lam‘l“l‘b"‘)J

Wit
At lag Lan | (dgolageVid0 | 2hiks | (o, des)
Jaguin &0 7 witvall
20\ iy to On ’\HQ
ap || oe Mc [agy |

wW§§
2 iix % | 0 '\\Iq

/a
Wit Wit

b\ Lﬁﬂﬁv cache sipei wowd gl MY\

128

Quiz

Systems @ ETH zirin

c) Will larger cache line help to reduce the miss rate?

129

Quiz
SyS tems @ ETH ziricn

c) Will larger cache line help to reduce the miss rate?

¢} lagy cocht | le/bode Geign , cume 4b bglt blovh size

woy O iy 1
u,\\ i\‘u /iv;h) q V] l QLI ‘131 ' q"‘]_“‘m_ SL‘ [}
anls 3 : i f§ :
h(\, hlt
A9 T | ap a, Jag) % [ap]| agl am) 5AD
it i
Pach i Vap Jan T 0 a3) [% [@ “;m
i Wik
UV aw Jan T8 Jag) T % [aor [gl asd
v
A A
S Vo~ E ™ \
Missealt sttt ok e 2 Y mis
bel e

I SHRAN 130

NTES

=

Quiz

Systems @ ETH zirin

Case 2

a) Assume your cache is 256-byte 2-way set associative using an LRU replacement policy with
8-byte cache blocks. What is the cache miss rate?
Solution: 50%

b) Will larger cache size help to reduce the miss rate?
Solution: No

c) Will larger cache line help to reduce the miss rate?
Solution: Yes

131

Core i7 memory system

Systems @ ETH zirin

Cache
32/64 L2, L3, and
CPU Result I S—)
A main memory
l\/irtual address (VA) \
36 12
\:PN | VPO L1 hit L1 miss
32 { 4
1 L1 d-cache
TLB (64 sets, 8 lines/set)
miss L e W:
L1 TLB (16 sets, 4 entries/set)
j 2 g 2 2 40\1 v AD [} 6
| VPN | VPN | VN3 | vena | TR vy o ool
Physical
address (PA)

Page tables

Address Translation

Systems Programming and Computer

Architecture

I
Virtual Memory

132

Caches

Cache

St 12,13, and
Result — i
main memory

CPU
Virtual address (VA)
12

L1 miss

36 &
VPN [veo | L1 hit
32 \l/ 4
TLBT | TLBI L1 d-cache

[|
(64 sets, 8 lines/set)

TLB
miss

L1 TLB (16 sets, 4 entries/set)

9 9 9 9 N
Hpﬂ — cr c |co—

VPN1 | VPN2 | VPN3 | VPN4 PPN
Physical

address (PA)

Page tables

Systems Programming and Computer
Architecture

Systems @ ETH zirin

133

General cache concepts: Hit

Cache

Memory

Request: block 14

8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Systems @ ETH zirin

Data in block b is needed

Block b is in cache:
Hit!

Memory is partitioned
into blocks of contiguous
bytes

General cache concepts: Miss

Cache

Memory

Request: 12
8 12 14 3

Request: 12
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

SyS tems@ ETH zivicn
Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Let’s think about those numbers

Systems @ ETH zirin

* Huge difference between a hit and a miss

— Could be 100x, if just L1 and main memory

* Would you believe 99% hits is twice as good as 97%?

— Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

— Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit rate”

136

Aside: Latency numbers

Latency Numbers Every Programmer Should Know

ins

L1 cache reference: 1ns

Branch mispredict: 3ns

L2 cache reference: 4ns

2020

u Main memory reference:
100ns

EEEEEEEEEE 1,000ns = 1ps

Enmmmmmmmm Compress 1KB wth Zippy:

2,000ns = 2us

10,000ns = 10us =

Send 2,000 bytes over
commodity network: 44ns

SSD random read:
16,000ns = 16ps

Read 1,000,000 bytes
sequentially from
memory: 3,000ns = 3pus

Round trip in same
datacenter: 500,000ns =
500us

1,000,000ns = Ims =MW

Systems @ ETH zirin

O

Read 1,000,000 bytes
sequentially from SSD:
49,000ns = 49us

Disk seek: 2,000,000ns =
2ms

Read 1,000,000 bytes
sequentially from disk:
825,000ns = 825pus

o

acket roundtrip CA to
Netherlands:
150,000,000ns = 150ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Types of cache miss

Systems @ ETH zirin

Cold (compulsory) miss
— Occurs on first access to a block
Conflict miss

— Most hardware caches limit blocks to a small subset (sometimes
a singleton) of the available cache slots

* e.g., block i must be placed in slot (i mod 4)

— Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

* e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
Capacity miss

— Occurs when the set of active cache blocks (working set) is
larger than the cache

Coherency miss
— Multiprocessor systems: see later in the course

Why caches work

==

Systems @ ETH zirin

* Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently

* Temporal locality:

\/

— Recently referenced items are likely
to be referenced again in the near future

* Spatial locality:
— |tems with nearby addresses tend
to be referenced close together in time

C

block

block

139

Example:
Blocked matrix multiplication

Systems @ ETH zirin

¢ = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0@; i < n; i+=B)
for (j =0; j < n; j+=B)
for (k = @; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; il++)
for (j1 = j; j1 < j+B; jl++)
for (k1 = k; k1 < k+B; kl++)
c[il*n+j1] += a[il*n + k1]*b[kl*n + j1];

Block size B x B

140

Cache miss analysis

Assume:

Cache block = 8 doubles = 64 Bytes
Cache size C << n (much smaller than n)
Three blocks [fit into cache: 3B2< C
B is a multiple of cache block

First (block) iteration: -
— BZ2/8 misses for each block
— Brows, B/8 misses per row
— 2n/B * B%/8 = nB/4
|

— n/Bblocks in a and b resp.

— omitting matrix ¢, as its misses are
unaffected by blocking if filled in
row-major order

Systems @ ETH zirin

n/B blocks

—N

HEENE
*

t

Block size B x B

141

Cache miss analysis

Assume:
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)
— Three blocks [fit into cache: 3B2< C
— B is a multiple of cache block
Second (block) iteration:
— Same as first iteration
— 2n/B * B2/8 =nB/4
Total misses:
— nB/4 * (n/B)? =n3/(4B)
— (n/B)? blocks in c to compute

Systems @ ETH zirin

n/B blocks

—
Ll

Block size Bx B

142

Cache miss analysis —
different assumption Systemse ETHzw

e Assume:
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)
— Three blocks [fit into cache: 3B2< C
Now if B < cache block...

* Total misses: n/B blocks
* 2 ;)
(Bn/8 + n) * (n/B) L] ERNRNERNEE
x ¢
Misses in matrix a Misses in matrixb ~ Number of iterations - d k b
per iteration per iteration
=(1/(8B) +1/B?) * n3 Block size B x B

(omitting matrix c)

Note: if B =1, same as no blocking analysis in lecture slides: (9/8) * n3 misses
if B = 8 = cache block size, we have n3/32 misses = n3/(4B)

143

Cache read

E = 2¢ lines per set

* [ocate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting

at offset

Address of word:

t bits

s bits b bits

— A A

tag

set block
index offset

A
r
r
o000
o000
S=2°sets < ——
0000000000 OCOGOEOGOOEOEOOEONOOEOGOEOSONOOSNOIO
o000
\.
vV tag Of1]2] - ccc- B-1
] . — _J
valid bit v

data begins at this offset

B = 2P bytes per cache block (the data)

144

S = 25 sets:
Number of
sets

Cache parameters

— E = 2° |ines per set: Associativity

A
s N
r
o000
Address of word:
il t bits s bits | b bits
o0 tag set block
index offset
0 000000000 00O0OCGCOGEOGOEOGOEOEOGOEOSOEOSOSOO® OO
o000
\.
data begins at this offset
vV tag Ol1]2]] B1
— v
~—

—p B = 2" bytes per cache block (the data): block size 145

Direct mapped cache (E = 1)

SyS tems @ ETH ziricx
Direct mapped: One line per set
Assume: cache block size 8 bytes
set block
tag :
p index offset
v tag 0]1]12]|3]|4]|5]6]7 N
t bits s bits | b bits
\Y; ta Ol112)13]|4]|5]|6]7 -
g find set
S =25 sets <
Y tag O1112]|3]|4]|5]|6]7

Y tag O11|2]|3]|4]|5]|6]7

2-way set-associative cache

SyS tems @ ETH zirich
E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:
t bits 0..01 | 100

compare both

valid? + | match: yes = hit

Y tag Ol112]|3}14)5]|6]7 Y tag Ol112)1314]|5]|6]7

block offset
short int (2 Bytes) is here

No match:
* Onelinein setis selected for eviction and replacement

* Replacement policies: random, least recently used (LRU), ...
147

E ' H Ziirich

Systemse

e~
.mm..

Nt

- -~

- — -

e s e T S TR AN W e A s A B
SIS e e - e

I:‘ l..n.(z-'l:.fuf Io L.b‘ll
i

-

—— -

=== m o o BT W
TR o TP Y e T < S o s

Virtual Memory: Why?

* Address Space >> Physical Memory

* Memory allocation: what goes where?
* Protection: How to restrict access

* Sharing: How to save memory

Solution: Virtual Memory and address translation!

Systems Programming and Computer
Architecture

Systems @ ETH zirin

149

1: VM as a tool for caching
Systems @ ETH zirin

e Virtual memory: array of N = 2" contiguous bytes
— think of the array (allocated part) as being stored on disk

* Physical main memory (DRAM) = cache for allocated virtual memory
* Blocks are called pages; size = 2P

@ Virtual memory Physical memory

0

VP O] Unallocated

VP 1| Cached \i Empty PPO
Uncached PP 1
. Unallocated Empty
D I S k Cached
Uncached >< Empty
Cached PP 2m-p_1

2m-1
VP 2"-P-1| Uncached

2n-1

N

Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

Systems Programming and Computer
. 150
Architecture

System Thrashing

SyS tems @ ETH ziricx
e |f you have a too big working set
> WorkingSet > Main Memory

* The pages need to be swapped in and out

continuously T o

i.e. copy from disk to PEEN

memory and vice versa e f I
Systems Programming and Computer | # {Client I 33) | 151
Architecture

2. VM as a tool
for memory management Systemse ETHsu

* Memory allocation

— Each virtual page can be mapped to any physical page

— Avirtual page can be stored in different physical pages at different times
e Sharing code and data among processes

— Map virtual pages to the same physical page (here: PP 6)

0 Address 0

Virtual Address ¢ lati Physical
Space for VP 1 ransiation Address
Process 1: Space
VP 2 —> PP2 (DRAM)
N-1
(e.g., read-only
PP 6 library code)
Virtual Address
Space for > PP8
Process 2: VP 1
VP 2
Systems Programming and Computer
. 152
Architecture N-1 M-1

3. Using VM to simplify
linking and loading Systemse ETHae

i Memory
Kernel virtual memory invisible to
° I—I n kl ng User stack user code
o . ted at runti
— Each program has similar virtual (created at runtime) —— %rs
— p
address space | (stack
. . int
— Code, stack, and shared libraries $ pointer)
always start at the same address
Memory-mapped region for
shared libraries
* Loading
— execve() allocates virtual pages I — brk
for .text and .data sections S — T
= creates PTEs marked as invalid un-time heap
(created by malloc)
— The .text and .data sections ,
are copied, page by page, on Read/write segment Loaded
demand by the virtual memory (.data, .bss) fgom
system p the
Y Read-only segment executable
(.init, .text, .rodata) file
/
Unused
0

4. VM as a tool
for memory protection Systemse ETHae

 Extend PTEs with permission bits

* Page fault handler checks these before remapping
— If violated, send process SIGSEGV (segmentation fault)

Physical
Process i: SUP READ WRITE Address Address Space
VP 0O: No Yes No PP 6
VP1: [No Yes Yes PP 4
VP 2: | Yes Yes Yes PP 2 bl
. PP 4
[J
PP 6
Process j: SUP READ WRITE Address —
VP O: No Yes No PP 9 / —>{ pPpP9
VP 1. Yes Yes Yes PP 6
VP 2: | No Yes Yes PP 11 —> PP11

Systems @ ETH zirin

Address Translation

32/64

L2, L3, and
CPU Result —

main memory

Virtual address (VA)
12

VPN [VPO
|
TR

TLBT TLEJ

T

TLB
TLB hit
miss L — W:
L1 TLB (16 sets, 4 entries/set)

PPN PPO — cT ¢l |co—

[Physical
address (PA)

L1 hit L1 miss

L1 d-cache
(64 sets, 8 lines/set)

[CR3

Page tables

Address Translation

155

Address Translation E;

Systems @ ETH zirin

Virtual Memory

Address

* You cannot simply store each VA->PA mapping!
(too much memory usage)

 You cannot do the translation in software
(too slow)

* You need a memory efficient & hardware accessible
structure to store the mappings

* Concept of virtual/physical pages with page tables

Systems Programming and Computer
Architecture

156

Address translation
with a page table Systemse ETH .z

Virtual address
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table
Page table address
for process)Valid Physical page number (PPN)
—
Valid bit = 0:
page not in memory <€
(page fault)
v v
Physical page number (PPN) Physical page offset (PPO)
Systems Programming and Computer PhySiCG/ address 157

Architecture

Virtual to Physical

Gets translated Stays the same Systems @ ETH zirin
A A

Virtual Page Number (VPN) Virtual Page Offset (VPO)

Directory Offset Table Offset Page Offset

2/ (#bits) = #table entries

v 2/ (#bits) = the page size!

Physical Page Number (PPN) Physical Page Offset (VPO)

Physical Address of Page Page Offset

Systems Programming and Computer
Architecture

158

Translating with a
k-level page table Systemse ETH .z

Virtual Address
n-1 p-1 0
4 VPN1 4 VPN2 . VPN k VPO
Level 1 Level 2 Level k
page table _page table page table
> - o[PPN }T
m-1 l p-1 Y 0
PPN PPO
Physical Address

Systems Programming and Computer
Architecture

159

Xx86-64 paging

Systems @ ETH zirin

Virtual address

9 9 9 9
VPN1 VPN2 VPN3 VPN4 VPO
Page
Directory Page
Page Map Pointer Directory Page
Table Table Table Table
»> PM4LE R ™™ PDPE > PDE > PTE 7
BR —» > > >
512 GBregion 1 GB region 2 MB region 4 KB region
per entry per entry per entry per entry

40
PPN

Systems Programming and Computer

Architecture

12

PPO

Physical address

160

Page Tables E;

Systems @ ETH zirin

e The MMU walks the page table structure in hardware

* Page hit: successful translation, page is present in
main memory

* Page miss: successful translation, page is not present
in main memory (need to fetch from disk)

Systems Programming and Computer
4 161
Architecture

Faults vs Misses E;

Systems @ ETH zirin

* Page miss: reference to virtual memory word that is
not in physical memory

e Page fault: exception when trying to access a page
— may be not in memory (fetch page), recoverable
— may be not writable, error
— may be not mapped (SIGSEGV) error

Systems Programming and Computer
Y g g p 162

Architecture

Address translation: page fault

Systems @ ETH zirin

Page fault handler

CPU Chip

CPU

—>

o
VA
7

Exception

|jm————————— >
| (4
|
|
! ©

PTEA >

MMU e PTE Cache/

9 Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Systems Programming and Computer

Architecture

U

Victim page

New page

Disk

163

Systems @ ETH zirin

Translation Lookaside Buffer (TLB)

CPU

Virtual address (VA)
12

36
VPN VPO I

32/64

Result

Translation

ETIR)
[|

Lookaside Buffer

TLB
hit

a0

TLB
miss
L1 TLB (16 sets, 4 entries/set)
9 9 9 9

Systems Programming and Computer
Architecture

Page tables

VPN1 | VPN2 VPN3|VPN4

PPN

Address Translation

L1 hit

L1 d-cache

L2, L3, and
main memory

(64 sets, 8 lines/set)

L1 miss

Physical
address (PA)

164

TLB hit

CPU Chip .
9 PTE
VPN 9
@
CPU va > MMU
A

Systems @ ETH zirin

PA

e Cache/

Memory

A TLB hit eliminates a memory access

Systems Programming and Computer

Architecture

Data

165

TLB miss

Systems @ ETH zirin

CPU Chip
TLB e
9 PTE
VPN
VA
CPU > MMU PTEA
Cache/
A 3 s/ Memory
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare (we hope)

Systems Programming and Computer

Architecture

166

%

Hits aud Teps <sidenote>

Systems @ ETH zirin

* |f you have a cache:

— The cache is checked first in general
— Then the lower-level data is checked

 When calculating the times for recovering a miss, always
add the time needed to check the cache!

Systems Programming and Computer
Y g g p 167

Architecture

TLB Coverage Ej

Systems @ ETH zirin

* Assume you have
— 1024 entry TLB
— 4KiB pages
— You have 4GiB of main memory

* How much physical memory is covered by the TLB
in percentage of main memory?

e How can it be increased?

Systems Programming and Computer
4 168
Architecture

TLB Coverage

Systems @ ETH zirin

* Assume you have

— 1024 entry TLB
- 4KIB pages TLB covers 1024 * 4KiB = 4MiB
— You have 4GiB of main me 4MiB / 4096MiB = 0.1%

* How much physical memory is covered by the TLB
in percentage of main memory?

. . Larger TLB (expensive)
* How can it be increased?

Systems Programming and Computer
) 169
Architecture

Core i7 memory system

Systems @ ETH zirin
32/64 L2, L3, and
CPU Result o — .
main memory
Virtual address (VA)
36 12
[
‘ P | L1 hit L1 miss
4
TLBT TLBI L1 d'CaChe
Translation TLB (64 sets, 8 lines/set)

Lookaside Buffer |

H H
L1 TLB (16 sets, 4 entries/set) ‘ ‘ '

VE 9 9 9 0 2
‘ VPN1 ‘ VPN2 ‘ VPN3 ‘ VPN4 ‘ > ’ - o
‘ PPN l PPO ‘ — ‘ cr ‘ a |C0}—
0 Physical T

address (PA)

Page Tables

Page tables

Address Translation

Systems Programming and Computer
Architecture

170

Caches and Virtual Memory
Systems @ ETH zirin

 Where to place the line is determined by its address.

— There are [physically | virtually] tagged
[physically | virtually] indexed caches

— Virtually is faster in general (no need to translate) but introduces

aliasing (homonym and synonym problems)
http://en.wikipedia.org/wiki/CPU cache#Address translation

Systems Programming and Computer
. 171
Architecture

http://en.wikipedia.org/wiki/CPU_cache

Caches and Virtual Memory
Systems @ ETH zirin

 What happens on context switch?

— There is always the possibility that the caches have to be
invalidated when another process is getting scheduled. (TLB..)

— Two processes may interfere with each other i.e. polluting the
cache resulting in a higher cache miss ratio!

Systems Programming and Computer
Y g g p 172

Architecture

Cache coloring to restrict :Ej

processes to a subset of cache? Ssemseemtc.

P Virtual Pages Physical Pages
— Io »| Color A
« _Color 8
. . . ~ L2 Cache
Application A ¢ : , : a }Color A
s s (N sets)
AlColora
1 l v| Color B
, Virtual Pages ‘{ }c lor B
olor
v (N sets)
. . . 4 CoioraA
Application B ¢ : | ColorB
\

OS Managed Fixed Mapping
(Hardware) 17

What kind of cache do you need to do this?

173

Assignment 10

CPU
€

Cache

LVirtgaI address (VA)

VPN
I

VPO

a6 12,13, and
main memory

Result —

32 4

TLB
miss

L1 TLB (16 sets, 4 entries/set)

Page tables

TLB
hit

Address Translation

L1 hit L1 miss
L1 d-cache
(64 sets, 8 lines/set)
- T)
| 40 6 5|
PO | el cT ¢l |cor-
Physical
address (PA)

Virtual Memory

Systems @ ETH zirin

174

Assignment
Systems @ ETH zirin

* Pen&Paper:

— Understand Caches, Translation/TLB

— Cache miss rate:
#Cache-miss-access/#Total-access

* Implement a Cache simulator

Systems Programming and Computer
Architecture

175

Measurement E;

Systems @ ETH zirin

* |f you want to know how fast your program is, you will
have to measure it!

* There are quite some performance counters in your CPU
that gather statistics!

Systems Programming and
: 176
Computer Architecture

Example OProfile

Systems @ ETH zirin

CPU_CLK_UNHALTED

INST_RETIRED
LLC_MISSES

LLC_REFS

DTLB_LOAD_MISSES
L2_REQSTS
ICACHE_MISSES

Systems Programming and Computer
Architecture

Clock cycles when not halted

number of instructions retired

Last level cache demand requests from this core that missed the
LLC

Last level cache demand requests from this core

The number of DTLB load misses
The number of Level 2 Cache requests

Number of Instruction Cache, Streaming Buffer and Victim Cache
Misses. Includes Uncacheable accesses.

http://oprofile.sourceforge.net/

177

http://oprofile.sourceforge.net/

1

Hands on Caches

Quiz Time

Systems Programming and Computer
Y g g p 178

Architecture

Question 1

The memory system
consists of register, a single
L1 cache and main
memory.

The cache is cold and the
array has been initialized.
Variables i, j and sum are
stored in registers.

The array A is aligned in
memory.

sizeof(int) ==

The cache is direct
mapped, with a block size
of 8 bytes.

Systems @ ETH zirin

int A[2][4];

int sum()

{

int sum = 0;

for (int j = 0; j < 4; j++) {
for (int i = 0; i < 2; i++) {
sum += A[i][j];
}
}

return sum;

Question 1a
Systems @ ETH zirin

a) Suppose that the cache consists of 2 sets.
Fill out the table to indicate if the corresponding memory access in
A will be a hit (h) or a miss (m).

e Lo | o | oo | i
o JE

Systems Programming and Computer
Architecture

180

Question 1a
Systems @ ETH zirin

2 sets->1 bit

blocksize = 8 -> 3 bits offset

“ oo (o1 | oz o3l | oo mwm | o s

h Lol | oo | oz | o

Systems Programming and Computer
. 181
Architecture

Question 1b

Systems @ ETH zirin

a) Suppose that the cache consists of 2 sets.
Fill out the table to indicate if the corresponding memory access in
A will be a hit (h) or a miss (m).

b) What is the pattern of hits and misses if the cache consits of 4 sets
iInstead of 2 sets?

e Lo | o | con | i
o B

Systems Programming and Computer
i 182
Architecture

Question 1b

4 sets -> 2 bit

Systems @ ETH zirin

blocksize = 8 -> 3 bits offset

[0][1]

[0](2]

[0](3]

[1][0]

[1][1]

[1](2]

[1](3]

l

:

N

H

Systems Programming and Computer

Architecture

L
M H M H

183

Question 2

Systems @ ETH zirin
sizeof(int) ==
Array x begins at memory int x[128];
address 0. int J;

int sum = 0;

The cache is initially empty.
The only memory accesses . = (i c i -0 i <6a; i+9) 1
are to the entries of the i =i+ 64;

array X. _ sum += x[i] * x[j];

All variables are stored in }

the registers.

Question 2.1

a) What is the cache miss rate?

Systems @ ETH zirin

256 = blocksize x #sets x #ways AD@ 32 sets

32 sets -> 5 bit

blocksize = 8 -> 3 bits offset

&x[j] =&x[i] +64 x 4 = &x[i] + 256 AN always map to the same block: 100% missrate

b) If the cache were twice as big, what would be the miss rate?

512 =blocksize x #sets x #ways AN 64 sets
64 sets -> 6 bit

blocksize = 8 -> 3 bits offset

2 elements / block: Every 2" iteration is a hit, every other is a miss: 50% miss-rate

Systems Programming and Computer
Architecture

185

Question 2.2

Systems @ ETH zirin

256 = blocksize x #sets x #ways ANE16 sets, 2 ways, 8 bytes
LRU Policy

16 sets -> 4 bit

blocksize = 8 -> 3 bits offset
&x[j] =&x[i] +64 x4 = &x[i] + 256
ADE always map to the same set.
AN we have 2 blocks / set
AN 50% missrate

Larger cache-size does not help!
2 elements / block: Every 2" element is a hit, every other is a miss: 50% miss-rate

Larger cache line size does help!
Miss-rate = 1/#elements per block

Systems Programming and Computer
. 186
Architecture

Questions?

Systems @ ETH zirin
—
memegenerator.net
Systems Programming and Computer 187

Architecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137: Aside: Latency numbers
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179: Question 1
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Question 2
	Slide 185
	Slide 186
	Slide 187

