
Exercise Session 12
Systems Programming and

Computer Architecture

Caches & Virtual Memory

Autumn Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

1

Disclaimer
• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are
not official part of the course) having a blue heading

• For the exam only the official exercise slides are
relevant, if in doubt always check the ones on the
official moodle page

• Information from the exercise session is party taken
from Digital Design and Computer Architecture by
David Money Harris, Sarah L. Harris

2

Agenda

• Exceptions and Kernel

• Caches

• Virtual memory

• Quiz, Exam on VM and Caches

• Caches

• Virtual Memory

• Address Translation

• Preview Assignment 10

• Quiz Caches

3

Exceptions and the Kernel

Systems Programming and Computer
Architecture

4

Remark
• Exceptions as tought in lecture are exam relevant

• The following slides (in particular the kernel slides)
are just thought to give you more context on what
“the kernel” is

• You do not need to know kernel stuff in this depth
(again, only as much as tought in the lecture)

• The following slides are from the Computer Systems
Course

5

Recall from Lecture

6

• What does this actually mean?

Exceptions and the Kernel

7

Exceptions and the Kernel

8

Exceptions and the Kernel

9

Exceptions and the Kernel

10

Exceptions and the Kernel

11

Exceptions and the Kernel

12

Exceptions and the Kernel

13

Async Exceptions in a Nutshell

14

(meme stolen
from DINFK
Discord)

Exceptions and the Kernel

15

Exceptions and the Kernel

16

Exceptions and the Kernel

17

Exceptions and the Kernel

18

Exceptions and the Kernel

19

Remark
• Interested? Take Computer Systems core subject in

5th semester

20

Caches

Systems Programming and Computer
Architecture

21

Where are we in the course

22

• Compilation pipeline: from C source code to
assembly, to the executable (and how this is layed
out ”in memory”)

Where are we in the course

23

• Computer Architecture: processor design

Where are we in the course

24

• Currently: memory hierarchy (caches, vm)

Where are we in the course

25

• Later: embedded devices

Caches
• Analogy for Memory Hierachy: Library

• Cubical (Cache): Keeping books we recently used or likely to
use in the future at our cubicle (based on temporal and spatial
locality)

• Temporal Locality: if we used the book recently, we are
likely to use it again

• Spatial Locality: Interested in one book, so likely to be
interested in other books of the same shelf

• Shelves (Main Memory): Keeps most used books in shelf

• Basement (Disk): keeps lesser-used book in deep storage in
the basement

26

Caches
• Memory hierarchy graphically

• Processor seeks data

• 1. looks in cache, if not here then

• 2. looks in main memory, if not here

• 3. fetches data from disk/hard drive

27

Caches: Data held in the
cache

• Caches exploit temporal and spatial locality

• Temporal locality: processor is likely to access data again
soon, if it has accessed it recently [local variables]

• => If data is not in cache, processor fetches it from main
memory and puts it into cache (subsequent requests hit in
cache)

• Spatial Locality: when processor accesses piece of data, its
likely to access nearby memory locations [array]

• => Not just fetching one word, but several adjacent words,
a “cache block”/”cache line”

28

Caches: How is data found

• Cache: Capacity C, Cache block b, Blocks B=C/b

• S sets (rows): each set can hold block(s) of data

• Direct mapped (S=B sets): each block is in its own set

• N-way set associative (S=B/N sets): each set contains N
blocks

• Fully associative (S=1): one set containing all blocks

• Mapping: Relationship between address of data in memory
and cache

• Each memory address maps to exactly one set in the
cache

29

Caches: Direct Mapped

• Direct
mapped: each
set contains
one block

• Bottom 2 bits 0
because its
word (here 4
byte) aligned

• Next log2(S)=3
bits indicate
set (mod 8)

30

Caches: Direct Mapped

• Byte offset:
indicates byte
within word

• Set bits:
indicate set in
the cache
(log2(S) bits)

• Tag bits:
indicate
memory
address of data

31

Caches: Direct Mapped

• If two memory address point to the same set: conflict

• One must be evicted (removed from the cache)

32

Caches: N-way Set Associative

33

• N-way: every memory address still maps to a specific set, but
can go into any of the n-ways inside this set (Here N=2)

Caches: N-way Set Associative

34

• Advantage: the higher the associativity, the less conflicts we
have

• Set associative caches generally have lower miss rate (only
need to evict if both ways are full)

Caches: Fully Associative Cache

35

• Fully associative: B ways (number of blocks), i.e. no conflict
misses anymore

• Issue: need a lot of comparators (compare 8 values in parallel)

Caches: Overview

36

Caches: Overview

37

• Higher associativity: generally lower miss rates

Caches: Recall from lecture

38

Caches: Recall from lecture

39

Caches: Recall from lecture

40

Caches: Recall from lecture

41

Caches: Recall from lecture

42

Caches: Recall from lecture

43

Caches: Recall from lecture

44

Caches: Recall from lecture

45

Virtual Memory

Systems Programming and Computer
Architecture

46

Virtual Memory

• Let us first look at how virtual memory works

• Then we can check out why it’s a useful concept

• Before we go to virtual memory, how do virtual memory and
caches relate?

47

Virtual Memory

• Some Terminology

• Physical Memory = Main Memory = DRAM, often 8, 16,
32GBs in modern systems

• Virtual Memory = Disk / Hard Drive, ranges from 120-1000GB

• Programs can access data anywhere in virtual memory: so
they must use virtual addresses that specify location in virtual
memory

• Physical memory holds a subset of most recently accessed
virtual memory: physical memory acts as a cache for virtual
memory

48

Virtual Memory

• Virtual Memory: divided into virtual pages (typically 4KB size)

• Physical Memory: divided into physical pages (same size)

• Virtual page may be located in i) physical memory (DRAM) or
on hard drive (disk)

49

Virtual Memory

• Address translation: Process of determining physical address,
given a virtual address

• Page fault: if processor tries to attempt to access a virtual
address that is not in physical memory (see exception slides)

50

Virtual Memory

• Page Table: contains entry for each virtual page, indicating
whether its in physical memory or on disk

• Each load store: Requires page table access, followed by
access of physical memory (page table also in physical
memory, so effectively 2x Physical memory access: TLB)

51

Virtual Memory: Address Translation

Systems Programming and Computer
Architecture

52

Virtual Memory

53

• 2GB=231-byte virtual memory

• 128MB=227-byte physical memory

• 4KB= 212-byte pages

• 231/ 212 = 219 virtual pages (19 bit
VPN)

• 227/ 212 = 215 physical pages (15 bit
PPN)

• Physical memory can hold 1/16 of
virtual pages at a time

Virtual Memory

54

• Task: Physical address of virtual address 0x247C using virtual memory
system?

Virtual Memory

55

• Physical address of virtual address 0x247C using virtual memory system

• 12bit page offset (0x47C) needs no translation. Remaining 19 bits are the
VPN, so virtual address 0x247C found in virtual page 0x2: PPN: 0x7FFF,
Physical address: 0x7fff47C

•

Virtual Memory

• Issue? What we did by hand is tedious and time consuming,
also the processor needs a general way and need to store
millions of mappings for multiple processes

• Solution: store mappings VPN->PPN in a table, the page table

56

Virtual Memory

57

• Processor uses page table to translate
VPN->PPN

• Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

• Indexed with virtual page number

• Entry 5: specifies virtual page 5 maps
to physical page 1

• Entry 6: Invalid (V=0) so located on disk

Virtual Memory

58

• Processor uses page table to translate
VPN->PPN

• Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

• Indexed with virtual page number

• Entry 5: specifies virtual page 5 maps
to physical page 1

• Entry 6: Invalid (V=0) so located on disk

• Task: Find physical address of virtual
address 0x247C using page table

Virtual Memory

59

• Processor uses page table to translate
VPN->PPN

• Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

• Indexed with virtual page number

• Entry 5: specifies virtual page 5 maps
to physical page 1

• Entry 6: Invalid (V=0) so located on disk

• Task: Find physical address of virtual
address 0x247C using page table

• Sol: 12 bit page offset (0x247C) no
translation; 0x2 virtual address maps to
0x7FFF, in total: 0x7FFF47C

Virtual Memory

• If we were to access Entry5: page hit

60

Virtual Memory

• If we were to access Entry6: page fault (V=0)

61

Virtual Memory

• Page table: can be stored anywhere in physical memory at
discretion of the OS

• Processor uses dedicated register, called page table register
to store base address and page table in physical memory

62

Virtual Memory: Translation
Lookaside Buffer (TLB)

Systems Programming and Computer
Architecture

63

Virtual Memory

• Virtual Memory: would have sever performance impact if we
needed a page table read on every load/store (2x physical
memory access)

• Idea: page table accesses have great spatial & temporal
locality & large page size => lets cache PTEs

• Processor keeps last several page table entires in small cache
called “translation lookaside buffer” (TLB)

• Processor “looks aside” to find translation in TLB before
having to access page table in physical memory

• TLBs have 16-512 entries (quite small): though TLBs have hit
rate>99%

64

Virtual Memory

• Accessing VPN 0x2 hits in this two entry TLB

65

Virtual Memory

• Accessing VPN 0x2 hits in this two entry TLB

66

Virtual Memory

• Accessing VPN 0x5FB0 misses in TLB: need to access
page table in physical memory

67

Virtual Memory
• Accessing VPN 0x5FB0 misses in TLB: need to access

page table in physical memory

68

Virtual Memory: Multi-Level-
Pagetable

Systems Programming and Computer
Architecture

69

Virtual Memory

• In lecture: its not feasible to have an entire page table (not
even for one process)

• To conserve memory: page tables can be broken up into
multiple levels: first level page table always kept in physical
memory, indicates where second level page tables are stored
in virtual memory

• In a 2 level page table: 2nd page table contains actual physical
addresses

70

Virtual Memory

• Page Table
Number: indexes
1st level page
table (gives base
address of
second tbale)

• Page Table
Offset: indexes
2nd level page
table

71

Virtual Memory

• Example:
accessing
virtual address
0x003FEFB0

• Only VPN
needs
translation:

• Page Table
number: 0x0

• Page Table
Offset 0x3FE

• PPN:
0x23F1FB0

72

Virtual Memory
• This concept generalizes to arbitrary levels

73

Why is Virtual Memory Useful?

Systems Programming and Computer
Architecture

74

Virtual Memory

75

Virtual Memory

76

Virtual Memory
• Remember shared object files from linking?

77

Virtual Memory
• Remember making stack not executable from attacks?

78

Big Picture: Relation between
Caches and Virtual Memory

Systems Programming and Computer
Architecture

79

Caches and Virtual Memory

80

Virtual Memory
• ”Virtually/Physically Indexed” - ”Virtually/Physically

Tagged” depends on how we access the cache

• Virtually Indexed – Virtually Tagged

• Virtually Indexed – Physically Tagged

• Physically Indexed – Virtually Tagged

• Physically Indexed – Physically Tagged

81

Virtual Memory
• ”Virtually/Physically Indexed” - ”Virtually/Physically

Tagged” depends on how we access the cache

• Virtually Indexed – Virtually Tagged

• Virtually Indexed – Physically Tagged

• Physically Indexed – Virtually Tagged

• Physically Indexed – Physically Tagged

82

Virtually Indexed – Virtually Tagged

• Only uses virtual
address

• Homonyms: same VAs->
different PAs

• Solution: ASID (per
process), Flush on
context switch

• Synonyms: different VA
-> same PA

• Solution: Make
read-only

83

Virtual Memory
• ”Virtually/Physically Indexed” - ”Virtually/Physically

Tagged” depends on how we access the cache

• Virtually Indexed – Virtually Tagged

• Virtually Indexed – Physically Tagged

• Physically Indexed – Virtually Tagged

• Physically Indexed – Physically Tagged

84

Virtually Indexed – Physically Tagged

• Best of both worlds

• Virtually Indexed: fast
cache indexing (don’t
need to wait for
translation)

• Physically tagged: no
homonyms and
synonym issues

• Aliasing issue: if cache
is too big

85

Virtually Indexed – Physically Tagged

• Aliasing

• If two virtual addresses have the same physical address:
as we index virtually, they get indexed to different
locations in the cache

• This will lead to having two copies of the data block:
when these locations are update we get inconsistencies

• Solution (among others): Reduce cache size, i.e. s.t. VPO
and PPO are the same: then the two virtual addresses will
have the same page offset, so are mapped to the same
index

• What does this entail?

86

Virtually Indexed – Physically Tagged

87

Virtually Indexed – Physically Tagged

88

• Unless you have huge pages, VPO will not be too big:
harshly limits CI+CO

Virtual Memory
• ”Virtually/Physically Indexed” - ”Virtually/Physically

Tagged” depends on how we access the cache

• Virtually Indexed – Virtually Tagged

• Virtually Indexed – Physically Tagged

• Physically Indexed – Virtually Tagged

• Physically Indexed – Physically Tagged

89

Physically Indexed – Virtually Tagged

• Makes no sense at all

• Physically Indexed:
indexing is slow as we
have to wait for address
translation

• Virtually Tagged:
introduces homonym
and synonym issues as
seen before

90

Virtual Memory
• ”Virtually/Physically Indexed” - ”Virtually/Physically

Tagged” depends on how we access the cache

• Virtually Indexed – Virtually Tagged

• Virtually Indexed – Physically Tagged

• Physically Indexed – Virtually Tagged

• Physically Indexed – Physically Tagged

91

Physically Indexed – Phyically Tagged

• Slowest: requires full
address translation
before lookup

• No homonyms or
synonyms

• Typically used for L2, L3
as we have already
done the translation
until then

92

Caches and Virtual Memory

93

• Is there still something unclear here?

Quiz

Systems Programming and Computer
Architecture

94

Quiz

95

Quiz

96

Quiz

97

• Cache Drawing: One row means one block (I just created two
cells that we can see that 2 ints can go in one cache block)!

Quiz

98

Quiz

99

Quiz

100

Quiz

• You get the idea …

• The underlying issue: cache too small, forces overlapping
cache accessing

• What would be a possible solution to get higher cache hit rate
without increasing cache size?

101

Quiz

102

Quiz

103

Quiz

104

Quiz

105

Quiz

106

Quiz

107

Physically Indexed – Virtually Tagged

• Next accesses analogous

• Thus we have seen we can increase hit rate by increase cache
size (next to doing row accesses)

108

Quiz

109

Quiz

110

Quiz

111

Quiz

112

Quiz

113

Quiz

114

Quiz

115

Quiz

• Pattern continues

116

Quiz

117

Quiz

118

Quiz

119

Quiz

120

Quiz

121

Quiz

• Pattern continues: Compulsory Miss, Compulsory Miss, Hit,
Hit

122

Quiz - Remark

• In an exam: you don’t have as much time, you sketch or just
calculate with the numbers!!

123

Quiz - Remark

124

Quiz

125

Quiz

126

Quiz

127

Quiz

128

Quiz

129

Quiz

130

Quiz

131

Core i7 memory system

Systems Programming and Computer

Architecture
132

Cache

Virtual Memory

Address Translation

Caches

Systems Programming and Computer
Architecture

133

General cache concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: block 14

14
Block b is in cache:
Hit!

134

Memory is partitioned
into blocks of contiguous
bytes

General cache concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

Block b is stored in cache
•Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

135

Let’s think about those numbers

• Huge difference between a hit and a miss
– Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
– Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

– Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”

136

Aside: Latency numbers

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Types of cache miss

• Cold (compulsory) miss
– Occurs on first access to a block

• Conflict miss
– Most hardware caches limit blocks to a small subset (sometimes

a singleton) of the available cache slots
• e.g., block i must be placed in slot (i mod 4)

– Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot
• e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

• Capacity miss
– Occurs when the set of active cache blocks (working set) is

larger than the cache

• Coherency miss
– Multiprocessor systems: see later in the course

138

Why caches work

• Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

• Temporal locality:
– Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
– Items with nearby addresses tend

to be referenced close together in time

block

block

139

Example:
Blocked matrix multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

Block size B x B

140

Cache miss analysis

• Assume:

– Cache block = 8 doubles = 64 Bytes

– Cache size C << n (much smaller than n)

– Three blocks fit into cache: 3B2 < C

– B is a multiple of cache block

• First (block) iteration:

– B2/8 misses for each block

– B rows, B/8 misses per row

– 2n/B * B2/8 = nB/4

– n/B blocks in a and b resp.

– omitting matrix c, as its misses are
unaffected by blocking if filled in
row-major order

*=

*=

Block size B x B

n/B blocks

141

Cache miss analysis

• Assume:

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

– Three blocks fit into cache: 3B2 < C

– B is a multiple of cache block

• Second (block) iteration:

– Same as first iteration

– 2n/B * B2/8 = nB/4

• Total misses:

– nB/4 * (n/B)2 = n3/(4B)

– (n/B)2 blocks in c to compute

142

*=

Block size B x B

n/B blocks

Cache miss analysis –
different assumption

• Assume:

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

– Three blocks fit into cache: 3B2 < C

Now if B ≤ cache block…

• Total misses:

 (Bn/8 + n) * (n/B)2

= (1/(8B) + 1/B2) * n3

(omitting matrix c)

143

*=

Block size B x B

n/B blocks

c a bMisses in matrix a
per iteration

Misses in matrix b
per iteration

Number of iterations

Note: if B = 1, same as no blocking analysis in lecture slides: (9/8) * n3 misses
 if B = 8 = cache block size, we have n3/32 misses = n3/(4B)

Cache read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

data begins at this offset

• Locate set
•Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

valid bit

t bits s bits b bits

Address of word:

tag set
index

block
offset

144

Cache parameters
E = 2e lines per set: Associativity

S = 2s sets:
Number of
sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data): block size

data begins at this offset

t bits s bits b bits

Address of word:

tag set
index

block
offset

145

Direct mapped cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

146

t bits s bits b bits

tag
set

index
block
offset

2-way set-associative cache

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

147

Virtual Memory

Systems Programming and Computer

Architecture

148

Virtual Memory: Why?

• Address Space >> Physical Memory

• Memory allocation: what goes where?

• Protection: How to restrict access

• Sharing: How to save memory

Solution: Virtual Memory and address translation!

Systems Programming and Computer

Architecture
149

• Virtual memory: array of N = 2n contiguous bytes

– think of the array (allocated part) as being stored on disk

• Physical main memory (DRAM) = cache for allocated virtual memory

• Blocks are called pages; size = 2p

Empty

Empty

Unallocated

Uncached

Unallocated

Uncached

Uncached

Empty

1: VM as a tool for caching

PP 2m-p-1

Physical memory

VP 0

VP 1

VP 2n-p-1

Virtual memory

Cached

PP 0

PP 1

Cached

0

2n-1

2m-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Disk

150

Cached

Systems Programming and Computer

Architecture

System Thrashing

• If you have a too big working set

 ∑ WorkingSet > Main Memory

• The pages need to be swapped in and out
continuously
i.e. copy from disk to
memory and vice versa

Systems Programming and Computer

Architecture
151

2. VM as a tool
for memory management

• Memory allocation
– Each virtual page can be mapped to any physical page
– A virtual page can be stored in different physical pages at different times

• Sharing code and data among processes
– Map virtual pages to the same physical page (here: PP 6)

Virtual Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Systems Programming and Computer
Architecture

152

3. Using VM to simplify
linking and loading

• Linking
– Each program has similar virtual

address space

– Code, stack, and shared libraries
always start at the same address

• Loading
– execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

– The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Memory-mapped region for
shared libraries

Systems Programming and Computer
Architecture

153

4. VM as a tool
for memory protection

• Extend PTEs with permission bits
• Page fault handler checks these before remapping

– If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

154

Address Translation

155

Address Translation

• You cannot simply store each VA->PA mapping!
(too much memory usage)

• You cannot do the translation in software
(too slow)

• You need a memory efficient & hardware accessible
structure to store the mappings

• Concept of virtual/physical pages with page tables

Systems Programming and Computer

Architecture
156

Virtual Memory
Address

Physical AddressMMU

Address translation
with a page table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table
Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

Systems Programming and Computer
Architecture

157

Virtual to Physical

Systems Programming and Computer

Architecture
158

Virtual Page Number (VPN) Virtual Page Offset (VPO)

Directory Offset Table Offset Page Offset

Physical Page Number (PPN) Physical Page Offset (VPO)

Physical Address of Page Page Offset

2^(#bits) = the page size!

Gets translated

2^(#bits) = #table entries

Stays the same

VPN 1 VPN 2 ... VPN k

PPN

Translating with a
k-level page table

0p-1n-1

VPO

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

Systems Programming and Computer
Architecture

159

x86-64 paging

PM4LE

BR

Page Map

Table

VPN1

9

VPO

12
Virtual address

PPN PPO

40 12

Physical address

VPN2 VPN3 VPN4

9 9 9

PDPE

Page

Directory

Pointer

Table

PDE

Page

Directory

Table

PTE

Page

Table

512 GB region
per entry

1 GB region
per entry

2 MB region
per entry

4 KB region
per entry

Systems Programming and Computer
Architecture

160

Page Tables

• The MMU walks the page table structure in hardware

• Page hit: successful translation, page is present in
main memory

• Page miss: successful translation, page is not present
in main memory (need to fetch from disk)

Systems Programming and Computer

Architecture
161

Faults vs Misses

• Page miss: reference to virtual memory word that is
not in physical memory

• Page fault: exception when trying to access a page

– may be not in memory (fetch page), recoverable

– may be not writable, error

– may be not mapped (SIGSEGV) error

Systems Programming and Computer

Architecture
162

Address translation: page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

163
Systems Programming and Computer
Architecture

Translation Lookaside Buffer (TLB)

Systems Programming and Computer
Architecture

164

TLB hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

Systems Programming and Computer
Architecture

165

TLB miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare (we hope)

Systems Programming and Computer
Architecture

166

<sidenote>

• If you have a cache:

– The cache is checked first in general

– Then the lower-level data is checked

• When calculating the times for recovering a miss, always
add the time needed to check the cache!

Systems Programming and Computer

Architecture
167

TLB Coverage

• Assume you have

– 1024 entry TLB

– 4KiB pages

– You have 4GiB of main memory

• How much physical memory is covered by the TLB
in percentage of main memory?

• How can it be increased?

Systems Programming and Computer

Architecture
168

TLB Coverage

• Assume you have

– 1024 entry TLB

– 4KiB pages

– You have 4GiB of main memory

• How much physical memory is covered by the TLB
in percentage of main memory?

• How can it be increased?

Systems Programming and Computer

Architecture
169

TLB covers 1024 * 4KiB = 4MiB
4MiB / 4096MiB ≈ 0.1%

Larger TLB (expensive)
Bigger pages

Core i7 memory system

Systems Programming and Computer

Architecture
170

Address Translation

Translation

Lookaside Buffer

Page Tables

Caches and Virtual Memory

• Where to place the line is determined by its address.

– There are [physically | virtually] tagged
[physically | virtually] indexed caches

– Virtually is faster in general (no need to translate) but introduces
aliasing (homonym and synonym problems)
http://en.wikipedia.org/wiki/CPU_cache#Address_translation

Systems Programming and Computer

Architecture
171

http://en.wikipedia.org/wiki/CPU_cache

Caches and Virtual Memory

• What happens on context switch?

– There is always the possibility that the caches have to be
invalidated when another process is getting scheduled. (TLB..)

– Two processes may interfere with each other i.e. polluting the
cache resulting in a higher cache miss ratio!

Systems Programming and Computer

Architecture
172

Cache coloring to restrict
processes to a subset of cache?

173

What kind of cache do you need to do this?

Assignment 10

174

Assignment

• Pen&Paper:

– Understand Caches, Translation/TLB

– Cache miss rate:
#Cache-miss-access/#Total-access

• Implement a Cache simulator

Systems Programming and Computer
Architecture

175

Measurement

• If you want to know how fast your program is, you will
have to measure it!

• There are quite some performance counters in your CPU
that gather statistics!

Systems Programming and
Computer Architecture

176

Example OProfile

Counter Description

CPU_CLK_UNHALTED Clock cycles when not halted

INST_RETIRED number of instructions retired

LLC_MISSES Last level cache demand requests from this core that missed the
LLC

LLC_REFS Last level cache demand requests from this core

DTLB_LOAD_MISSES The number of DTLB load misses

L2_REQSTS The number of Level 2 Cache requests

ICACHE_MISSES Number of Instruction Cache, Streaming Buffer and Victim Cache
Misses. Includes Uncacheable accesses.

Systems Programming and Computer

Architecture
177

http://oprofile.sourceforge.net/

http://oprofile.sourceforge.net/

Quiz Time

Hands on Caches

Systems Programming and Computer

Architecture
178

Question 1

• The memory system
consists of register, a single
L1 cache and main
memory.

• The cache is cold and the
array has been initialized.

• Variables i, j and sum are
stored in registers.

• The array A is aligned in
memory.

• sizeof(int) == 4.
• The cache is direct

mapped, with a block size
of 8 bytes.

Question 1a

Systems Programming and Computer
Architecture

180

a) Suppose that the cache consists of 2 sets.
Fill out the table to indicate if the corresponding memory access in
A will be a hit (h) or a miss (m).

A Col 0 Col 1 Col 2 Col 3

Row 0 M

Row 1

Question 1a

Systems Programming and Computer
Architecture

181

A Col 0 Col 1 Col 2 Col 3

Row 0 M M M M

Row 1 M M M M

A [0][0] [0][1] [0][2] [0][3] [1][0] [1][1] [1][2] [1][3]

Address 5 4 3 2 1 0

blocksize = 8 -> 3 bits offset

2 sets -> 1 bit

Cache

Question 1b

Systems Programming and Computer
Architecture

182

a) Suppose that the cache consists of 2 sets.
Fill out the table to indicate if the corresponding memory access in
A will be a hit (h) or a miss (m).

b) What is the pattern of hits and misses if the cache consits of 4 sets
instead of 2 sets?

A Col 0 Col 1 Col 2 Col 3

Row 0 M

Row 1

Question 1b

Systems Programming and Computer
Architecture

183

A Col 0 Col 1 Col 2 Col 3

Row 0 M H M H

Row 1 M H M H

A [0][0] [0][1] [0][2] [0][3] [1][0] [1][1] [1][2] [1][3]

Address 5 4 3 2 1 0

blocksize = 8 -> 3 bits offset

4 sets -> 2 bit

Cache

Question 2

• sizeof(int) == 4.
• Array x begins at memory

address 0.
• The cache is initially empty.
• The only memory accesses

are to the entries of the
array x.

• All variables are stored in
the registers.

Question 2.1

Systems Programming and Computer
Architecture

185

Address 8 7 6 5 4 3 2 1 0

blocksize = 8 -> 3 bits offset

32 sets -> 5 bit

256 = blocksize x #sets x #ways 32 sets

&x[j] = &x[i] + 64 x 4 = &x[i] + 256 always map to the same block: 100% missrate

Address 8 7 6 5 4 3 2 1 0

blocksize = 8 -> 3 bits offset

64 sets -> 6 bit

512 = blocksize x #sets x #ways 64 sets

2 elements / block: Every 2nd iteration is a hit, every other is a miss: 50% miss-rate

b) If the cache were twice as big, what would be the miss rate?

a) What is the cache miss rate?

Question 2.2

Systems Programming and Computer
Architecture

186

Address 8 7 6 5 4 3 2 1 0

blocksize = 8 -> 3 bits offset

16 sets -> 4 bit

256 = blocksize x #sets x #ways 16 sets, 2 ways, 8 bytes
LRU Policy

&x[j] = &x[i] + 64 x 4 = &x[i] + 256
 always map to the same set.
 we have 2 blocks / set
 50% missrate

Larger cache-size does not help!
2 elements / block: Every 2nd element is a hit, every other is a miss: 50% miss-rate

Larger cache line size does help!
Miss-rate = 1/#elements per block

Questions?

Systems Programming and Computer

Architecture
187

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137: Aside: Latency numbers
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179: Question 1
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Question 2
	Slide 185
	Slide 186
	Slide 187

