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Disclaimer E;

Systems @ ETH zirin
Website: n.ethz.ch/~falkbe/
(Extra) Demos on GitHub: github.com/falkbe
Kahoots: now on website n.ethz.ch/~falkbe/

My exercise slides have additional slides (which are
not official part of the course) having a blue heading

For the exam only the official exercise slides are
relevant, if in doubt always check the ones on the
official moodle page
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* Virtual Memory: Recap and Quiz

* Lecture Recap: Multiprocessing

Symmetric Multiprocessing (SMP)

Cache Coherency: MSI, MESI, MOESI, MESIF
Memory Consistency Models

Sync: TAS, CAS, TTAS/CAS Spinlock
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* Memory hiearachy
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Virtual Memory Recap
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Caches: Direct Mapped

Systems @ ETH ziricn
* Direct
d . h Address Data
mappeda: eac 11..11111100 [ mem[OxFFFFFFFC]
. 11..11111000 mem[0xFFFFFFF8]
set contains 11..11110100 mem[OxFFFFFFF4]
11...11110000 mem[0xFFFFFFFO]
one block 11..11101100 | mem[OXFFFFFFEC]
11...11101000 mem[OxFFFFFFES]
11..11100100 mem[0xFFFFFFEA4]
. 11...11100000 mem[0xFFFFFFEQ]
e Bottom 2 bits O . .
[ ] [
° [ ] [ ]
because its 00...00100100 mem[0x00000024]
00...00100000 mem[0x00000020]
Word (here 4 00...00011100 mem[0x0000001C] Set 7 (111)
I 00...00011000 mem[0x00000018 Set6 (110
byte) aligned [ 1 (110)
00...00010100 mem[0x00000014] Set 5 (101)
00...00010000 mem[0x00000010] Set 4 (100)
00...00001100 mem[0x0000000C] Set 3 (011)
e Next log2(S)=3 00...00001000 mem[0x00000008] Set 2 (010)
g ( ) 00...00000100 mem[0x00000004] | X Set 1 (001)
bits indicate 00...00000000 mem[0x00000000] Set 0 (000)

30. ' 23-Word Cach
set (mod 8) 2°°-Word Main Memory ord Cache



Caches: N-way Set Associative

Way 1 Way 0
I I I
V Tag Data V Tag Data
0 0
0 0
1| 00...00 | mem[0x00...24] | 1| 00...10 | mem[0x00...04]
0 0

Systems @ ETH zirin

Set 3
Set 2
Set 1
Set0

* Advantage: the higher the associativity, the less conflicts we

have

e Set associative caches generally have lower miss rate (only
need to evict if both ways are full)



Caches: Fully Associative Cache
Systems @ ETH zirin

Way 7 Way 6 Way 5 Way 4 Way 3 Way 2 Way 1 Way 0

| 1l Il | 1l Il 1l 1l |
V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
I | || | 1| | [ | || | 1| | [ [ 1| |

* Fully associative: B ways (number of blocks), i.e. no conflict
misses anymore

* Issue: need a lot of comparators (compare 8 values in parallel)

10
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Virtual Memory Recap
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* Memory hiearachy

____________________________________

N4 ) N N

____________________________________
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Virtual Memory Ej
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Virtual Memory: divided into virtual pages (typically 4KB size)
Physical Memory: divided into physical pages (same size)

Virtual page may be located in i) physical memory (DRAM) or
on hard drive (disk)

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Drive 13



Virtual Memory

2GB=231-byte virtual memory
128MB=22"-byte physical memory
4KB= 212-byte pages

231/ 212 =2V virtual pages (19 bit
VPN)

227/ 212 =215 physical pages (15 bit
PPN)

Physical memory can hold 1/16 of
virtual pages at a time

Physical
Page

Number  Physical Addresses
7FFF [(0x7FFF000 - 0x7FFFFFF
7FFE | Ox7FFEO0QO - 0Ox7FFEFFF
0001 | 0x0001000 - 0x0001FFF
0000 | 0x0000000 - 0x0000FFF

Physical Memory

Virtual Addresses

0x7FFFF000 - Ox7FFFFFFF

0x7FFFEOOQO - Ox7FFFEFFF

0x7FFFDO000 - Ox7FFFDFFF

0x7FFFCO000 - Ox7FFFCFFF

0x7FFFBO000 - Ox7FFFBFFF

0x7FFFA000 - OX7FFFAFFF

Ox7FFF9000 - Ox7FFFOFFF

0x00006000 - 0xO0006FFF

0x00005000 - 0x00005FFF

0x00004000 - 0xO00004FFF

0x00003000 - 0x00003FFF

0x00002000 - 0x00002FFF

0x00001000 - 0x00001FFF

Systems @ ETH zirin

Virtual
Page
Number

7FFFF
7FFFE
7FFFD
7FFFC
7FFFB
7FFFA
7FFF9

00006
00005
00004
00003
00002
00001

0x00000000 - 0x00000FFF

00000

Virtual Memory




Virtual Memory
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* Address translation: Process of determining physical address,
given a virtual address

Virtual Address

Virtual
302928 ...141312 11109 ..210 Page
Page Offset
| VF:,N | J | Virtual Addresses Number
19 0x7FFFFO00 - OX7FFFFFFF | 7FFFF
(ranslation ) 12 0x7FFFEO00 - Ox7FFFEFFF | 7FFFE
115 0x7FFFDO000 - 0x7FFFDFFF | 7FFFD
|26 =24 1312 |11 e I O| 0x7FFFB00O - 0x7FFFBFFF_| 7FFFB
N 0x7FFFA000 - 0x7FFFAFFF | 7FFFA
Physical Address 0x7FFF9000 - 0x7FFFOFFF | 7FFF9
Page E E
Number  Physical Addresses 0x00006000 - 0X00006FFF | 00006
7FFF [[OX7FFFO00 - OX7FFFFFF 0x00005000 - 0x00005FFF _| 00005
7FFE [ 0x7FFE000 - 0x7FFEFFF 0x00004000 - 0x00004FFF _| 00004
. : 0x00003000 - 0x00003FFF _| 00003
: E 0x00002000 - 0x00002FFF | 00002
0001 |_0x0001000 - Ox0001FFF 0x00001000 - 0x00001FFF | 00001
0000 [0x0000000 - 0x0000FFF 0x00000000 - 0x00000FFF _| 00000

Physical Memory Virtual Memory



Virtual Memory

Processor uses page table to translate
VPN->PPN

Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

Indexed with virtual page number

Entry 5: specifies virtual page 5 maps
to physical page 1

Entry 6: Invalid (V=0) so located on disk

Physical
Page
Number

Systems @ ETH zirin

Virtual
Page
Number

7FFFF

7FFFE

0x0000

7FFFD

Ox7FFE

7FFFC

7FFFB

olo|=|=lO0I<

7FFFA

00007

00006

0x0001

00005

00004

00003

Ox7FFF

00002

00001

OO=|0O|I0|=O|OC

00000

Page Table



Virtual Memory

SyS tems @ ETH zirich
Page Table Page Table Page
Virtual Number Offset offset ® Page Table
Address 5 10 .
Physical Page Number: indexes
Numb
e 15t level page
il table (gives base
i address of
Page Table I »
, TageTad : 8 second tbale)
R f ° s e« Page Table
: 5 [ S Offset: indexes
= |l o
ol 2" level page
v table
First-Level - Second-Level
Page Table Page Tables

17



Virtual Memory

TLB hit

CPU Chip
TLB

o PTE
VPN o

©

VA PA

CPU > MMU >
[ (4]

Data
(5]

A TLB hit eliminates a memory access

Cache/
Memory

Systems @ ETH zirin

18



Caches and Virtual Memory E;
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32/64 L2, L3, and
CPU [« Result < .
X main memory
Virtual address (VA) y
36 voo12
VPN VPO L1 hit L1 miss
32 Ny 4
TLEl’T TLBI L1 d-cache
TIB (64 sets, 8 lines/set)

TLB

miss L T W
N
L1 TLB (16 sets, 4 entries/set)

40 12
V2 2 2 2 40 6 6
VPN1 | VPN2 | VPN3 | VPN4 Y Y
PPN PPO * CcT Cl |CO —
A Physical T
CR3
address (PA)

Page tables 7 E
=19
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Virtual Memory Recap
Quiz

Systems Programming and Computer
Architecture
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Virtual Memory Quiz
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e Recall: TLBI, TLBT, CI, CO, CT positions

Virtual Address: 9x03D4

TLBT ———————*<— TLBl —

13 12 11 10 9 8 7 6 5 4 3 2 1 0

“ VPN . VPO ——
Physical Address - cT - 0 ——>+—co —
11 10 7 5 3 2 1 0

21



Virtual Memory Quiz
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Consider a small memory system with a TLB and a L1 data cache. We make the following ass-
umptions to simplify the question:

e The memory is byte addressable, each access is always to a single byte.
Virtual addresses are 14 bits wide.

Physical addresses are 12 bits wide.

The page size is 64 bytes.

The TLB is two-way set associative with 8 total entries.

The L1 (data) cache is physically addressed, direct mapped, and has a 4-byte block size;
there are 16 sets.

22



Virtual Memory Quiz
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TLB: (all values are hexadecimal)
Set ||| Tag | PPN | Valid || Tag | PPN | Valid
0 05 0 12 42 1
1 02 20 1 04 32 1
2 01 22 1 07 0
3 01 22 1 02 0
Page table: (all values are hexadecimal)
VPN || PPN | Valid VPN || PPN | Valid
00 08
01 02 1 09 20 1
02 03 1 0a
03 Ob
04 Oc
05 0d 04 1
06 22 1 Oe
07 22 1 0f

Cache: (all values are hexadecimal)

Index || Tag | Valid | Block[0] | Block[1] | Block[2] | Block|3]
00 00 1 de ad fa ce
01 31 0

02 24 1 02 13 el de
03 22 1 22 23 e2 2e
04 21 0

05 22 0

06 18 0

07 22 1 9a 01 00 de
08 20 0

09 22 1 83 la 09 ce
Oa 20 1 0d 1f f1 do
Ob 3a 0

Oc 3f 0

0d 24 1 be fb 57 02
Oe 23 0

of 22 1 cf Ta 9b a0

23
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Symmetric Multiprocessing (SMP)

Systems Programming and Computer
Architecture

24



SMP

 Computer Architecture: processor design

CLK CLK CLK
~—— | RegWriteD % RegWriteE 67 RegWriteM % RegWriteW
c""“_:"' MemtoRegD MemtoRegE MemtoRegM MemtoRegW
uni
MemWriteD MemWriteE MemWriteM
ALUControlD,, ALUControlE,,
3126
. Op ALUSIcD ALUSTCE
2 Funct | | RegDstD RegDstE
BranchD | |
CLK CLK EqualD[ ™ FCSeD — CLK
CLK & o) — | ]
WE3 = WE
A . InshiD 25:21 A RD1 ) 8? SrcAE
] 1J _—Lm %3 Avoum | o po || [ReadDataw
Instruction 20:16 =~ <
b= 00
memory A2 RD2 0 ot 0 ]srcBE Data
A3 Register B s ! WriteDataE WriteDataM memary
WDS egle riteDatal WD .
25:21 RsD RsE ALUOutW lﬂ»
. RtD RtE M=
il CT WriteRegE, o WriteRegM, , WriteRegW., ,
1511 RdE RdE JJ o
SignimmD SignimmE
15:0 Ign
extend
<<2
+
PCPlus4F mo PCPlus4D o]
22
5 - - -
PCBranchD
ResultW
= =
o @ ‘Q HE z 5(8 ‘g E HE ‘:‘;‘
B 5 =3 ala & o= o= g
5 S ) 8|8 M Al R Gk HE =
Hazard unit J

Figure 7.58 Pipelined processor with full hazard handling

Systems @ ETH zirin

25



SMP
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* Last time: sequential processor design
* |ssue?

____________________________________

: ) , e B
. CLK Processor Chip i

i Y4 D r’\l/ D i Mai -
' | ain

| < Hard

'| CPU |«» Cache || Memory Drive

i (. J - /

N o o o o e e o e . v

26



SMP
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 Power wall + ILP Wall + memory wall => End of serial

hardware

Trends

42 Years of Microprocessor Trend Data

. l T I T 2
100 F “ | Transistors
A ta 2 (thousands)
106 | . ‘&: “AAA ]
a AR, n .
10° | BERUE, W V..V SO S e Single-Thread
‘ v LA Performance
104 g L Ly | (SpecINT x 10°)
 aa aaRa el Frequency (MHz
10° | A "A‘:'Gzﬁ,“*‘ sy e | Freaueney (9
A Y 3 ol * Typical Power
102 b e o L] 'u;v;;gw"v""f %5 o (Watts)
A = Y. v *
B R m T TRy T 4pdf | Numberof
10 SR s = o ¢ :‘# ¢ Logical Cores
Fy v v v vy
10° —‘: T e 00-&-«»-%%14--- .
1 | | |
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SMP
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* This time: multiple processors per chip
Cache Cache Cache Cache
[ |
@ SMP only works because of caches!

* Shared memory rapidly
RAM becomes bottleneck

28



SMP
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Multicore processors

* Multiple processor cores per chip
* This is what computing looks like today

* Mostly so far: shared memory multiprocessors
* Single physical address space shared by all processors
* Communication between processors happens through shared variables in
memory
* Hardware typically provides cache coherence

* This chapter is about this kind of machine.

29
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Cache Coherency

Systems Programming and Computer
Architecture
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Cache Coherency
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Coherency and Consistency

* With several processors,
memory can change under a cache
* Leads to 2 important concepts:

1. Coherency:
* Values in caches all match each other
* Processors all see a coherent view of memory

2. Consistency:
* The order in which changes to memory are seen by different processors

31



Cache Coherency
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Cache coherency

 Most CPU cores on a modern machine are
cache coherent

* Behave as if all accessing a single memory array
* We'll see what this really means in a moment

* Big advantage: ease of programming
e Shared-memory programming models work!
* Pthreads, OpenMP, etc.
* Disadvantages:
» Complex to implement (lots of transistors, bug-prone)
* Memory is slower as a result

32



Cache Coherency Ej
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* Cache Coherence: if one processor updates a value
in its cache, other processor see this update when
accessing the same value

* Cache Coherence in Write-through caches: we
“snoop” reads/writes from the bus: if someone
writes to a memory location we keep in our cache we
invalidate our cache line

e Cache Coherence in Write-back caches: issue: we
don’t get to know if someone updates the cache!!



Cache Coherency E;
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Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

1. MSI: Basic protocol

2. MESI: Advanced MSI

3. MOESI: AMD Advanced MESI
3. MESIF: Intel Advanced MESI

34



Cache Coherency E;

Systems @ ETH zirin

Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

1. MSI: Basic protocol

2. MESI: Advanced MSI

3. MOESI: AMD Advanced MESI
3. MESIF: Intel Advanced MESI

35



Cache Coherency
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* Simplest protocol: MSI
* Each line has 3 states: Modified, Shared, Invalid
* Line can only be dirty in one cache

* Cache logic must respond to:
* Processor reads and writes
* Remote bus reads and writes

e and must:
* Change cache line state
» Write back data (flush) if required

36



Cache Coherency E;
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MSI state machine: local (processor)
transitions

) Inva"d\“:ss Modified.

37



Cache Coherency E;

Systems @ ETH zirin

MSI state machine: local (processor)
transitions

Local write
miss

. /Localre:d\ B
Invalid . _
miss ( Modifi:i)
Local read or
- write

. Shared 3

Local read U

38



Cache Coherency E;
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MSI state machine: local (processor)
transitions

Local write
miss

/I.ocalre:d\

Invalid Local write

: _ miss ——> Modifi:l)
Local read or
I write
Evicti
— : Shared )

Local read U

39



Cache Coherency E;
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MSI state machine: local (processor)
transitions

_—>  Modified

Local read or
write

Systems Programming 2023 Ch. 20: Multicore 40
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Cache Coherency E;
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MSI state machine: remote (snooped)

transitions

Invalid | -
: - ~ Modified
Remote write\ _omn :
- Shared
Remote
read miss

41



Cache Coherency E;
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MSI state machine: remote (snooped)
transitions

Remote write =
write back block

© Invalid p
| . Modified

Remote write\ - /
~ Shared

Remote read miss

= write back block
Remote

read miss "
42



Cache Coherency
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MSI state machine: all transitions

Eviction
= write back block
Remote write =
write back block

Local write
miss

S Local read )
Invalid - ° Local write

miss _——>  Modified

Local read or

i write
Remote write P
Eviction
Shared _
Cache write back

Local read Rem?te read miss

= write back block
Remote
read miss 13

43



Cache Coherency
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MSI invariants

- A block can only be in Modified state in up to one cache
- Multiple blocks can be in Shared state (if no cache has the block in Modified)

v
v v

44



Cache Coherency E;
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Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

1. MSI: Basic protocol

2. MESI: Advanced MSI

3. MOESI: AMD Advanced MESI
3. MESIF: Intel Advanced MESI

45



Cache Coherency
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MESI protocol

* Add a new line state: “exclusive”
Modified: This is the only copy, it’s dirty
Exclusive: This is the only copy, it’s clean
Shared: This might be one of several copies, all clean
Invalid

* HIT signal
 Signals to a remote processor that its read hit in local cache.

e Cache can load a block into either “shared” or “exclusive” states based on
whether the block is a HIT in remote processor caches

* First x86 appearance in the Pentium

46



Cache Coherency
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MESI state machine

Terminology:

*  PrRd: processor read
PrWr: processor write

* BusRd: bus read

*  BusRdX: bus read excl

Processor-initiated

PrRd >

Issue BusRd,
if shared... /\
Invalid Shared

||
PrWr >
Prid -> issue

If line not BusRdX
shared

J

Exclusive - Modified

47



Cache Coherency

Systems @ ETH zirin

MESI state machine

Terminology:

L]

L]
L]
L]

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

No transaction

/' Exclusive

PrRd >

Issue BusRd,
if shared PrRd =
\/—\ No transaction
Invalid ~ Shared )

PrWr >
PrRd > issue

If line not BusRdX
shared

- Modified i<\

J" ) k/ PrRd, PrWr >

No transaction

45



Cache Coherency
MESI state machine

Terminology:

*  PrRd: processor read S

. Issue BusRd,
*  PrWr: processor write if shared... /_\
* BusRd: bus read No transaction
*  BusRdX: bus read excl P

Invalid | ~ Shared )
\
Processor-initiated \ PrWr =>
PrRd > e
If line not BusRdX
shared
Prwr >
issue
BusRdX

\ g

/: Exclusive'

Modified <\

Svstems @ ETH ziich

PrRd >

PrRd = \ PrRd, Prwr =
No transaction J / k/ No transaction

Prwr -
No transaction

Systems Programming 2023 Ch. 20: Multicore

52



Cache Coherency

MESI state machine

Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Snoop-initiated

Invalid

BusRdX =

discard

Exclusive’

BusRdX =
discard

Shared

BusRdX >
Write back

Modified

Systems @ ETH zirin

BusRd =
Write back
Signal HIT



Cache Coherency

MESI state machine

Terminology:

*  PrRd: processor read
*  PrWr: processor write
* BusRd: bus read

*  BusRdX: bus read excl

Snoop-initiated

Systems @ ETH zirin
/— BusRdX > \ f—\
_ N discard Sl R
Invalid Shared — SignalHIT
BusRd =
Write back
BusRdX
BusRdX - w‘,: :te ba:)k Signal HIT
discard \ /
Exclusive—  Buskd > Modified
\ y Signal HIT y

ol



Cache Coherency

MESI state machine

Terminology:
*  PrRd: processor read Iss::R:u;)Rd
*  PrWr: processor write if shared...

Systems @ ETH zirin

PrRd =

* BusRd: bus read /— No transaction
BusRdX ->
*  BusRdX: bus read excl : / A Ve

discard

Invalid

Processor-initiated \ Prwr =
HALEESS issue
Snoop-initiated Iflinenot g, pax
shared...
PrWr =
issue BusRdX
BusRdX - 2

discard

\

Exclusive — BusRd >

PrWr =
No transaction

Systems Programming 2023 Ch. 20: Multicore

Shared —

BusRdX Write back

\ |

- Modified -
Signal HIT <\

- AN S

BusRd =
Signal HIT

BusRd =>
Write back
Signal HIT

PrRd, PrWr =
No transaction

55 52




Cache Coherency
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MESI invariants

* Allowed combination of states for a line between any pair of caches:

v

v

v

v

* Protocol must preserve these invariants

”

MSI invariants: v \|Y

vi vy

53



Cache Coherency E;
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Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

1. MSI: Basic protocol

2. MESI: Advanced MSI

3. MOESI: AMD Advanced MESI
3. MESIF: Intel Advanced MESI

54



Cache Coherency
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MOESI protocol (AMD)

Add new “Owner” state: allow line to be modified, but other dirty copies to exist in
other caches.

Modified:

No other cached copies exist, local copy dirty
Owner:

Multiple dirty copies exist (all consistent).

This copy has sole right to modify line.
Exclusive:

No other cached copies exist, local copy clean
Shared:

Other cached copies exist (all consistent, but might be dirty or clean).

One other copy might be able to write (state Owner)
Invalid:

Not in cache.

55



Cache Coherency

Systems @ ETH zirin

MOESI invariants

* Can quickly satisfy read request for dirty cache line without writeback
to memory
e Owner cache must respond with line.

* Read requests for clean, shared line must be served by memory
* Good if latency of remote cache < latency of main memory

v

AN NI NN

v v

v v vV V|V
Systems Programming 2023 Ch. 20: Multicore 58




Cache Coherency E;
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Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

1. MSI: Basic protocol

2. MESI: Advanced MSI

3. MOESI: AMD Advanced MESI
3. MESIF: Intel Advanced MESI

57



Cache Coherency
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MESIF protocol (Intel)

Add new “Forward” state: '
designates at-most-one Shared line to serve remote requests.

Modified:

No other cached copies exist, local copy dirty
Exclusive:

No other cached copies exist, local copy clean
Shared:

Other cached copies exist, all copies are clean
At most one other (clean) copy might be in Forward state.

Invalid:
Not in cache.

Forward:
As Shared, but this is the designated responder for requests
Always the most recent cache to request line

58



Cache Coherency

MESIF invariants

* At most one copy is in Forward state.
* Most recent cache to request line
* Avoids incast storm if line is widely shared

* If none, request served by main memory
 Even if shared copies exist

AN

AN

NESESENE

Systems @ ETH zirin
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Memory Consistency Models

Systems Programming and Computer
Architecture
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Consistency Models
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Coherency and Consistency

* With several processors,
memory can change under a cache
* Leads to 2 important concepts:

1. Coherency:
* Values in caches all match each other
* Processors all see a coherent view of memory

2. Consistency:
* The order in which changes to memory are seen by different processors

61



Consistency Models
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Cache coherence give guarantees to individual memory
locations

Memory consistency models make guarantees on ordering of
operations across multiple memory locations

=> Cache coherence is lower level mechanism helping
maintain a consistent view of memory on hardware level

=> MCMs provide higher level guarantees on order of
operations: effective cache coherence models are essential to
implement MCM

62



Consistency Models
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Memory consistency

* When several processors are reading and writing memory, what value
is read by each processor?
* Not an easy question to answer
* “Last value written”:
* By which processor?
* What do we mean by “last”?
* Important to have an answer!

* Defines semantics of order-dependent operations
* E.g. does Dekker’s algorithm work?
* How to ensure that it does work?

* There are many memory consistency models

63



Consistency Models
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Consistency models: terminology

* Program order: order in which a program on a processor appears to
issue reads and writes
* Refers only to local reads/writes
* Even on a uniprocessor # order the CPU issues them!
* Write-back caches, write buffers, out-of-order execution, etc.

* Visibility order: order which all reads and writes are seen by one or
more processors
» Refers to all operations in the machine
* Might not be the same for all processors
* Each processor reads the value written by the last write in visibility order

64



Consistency Models E;
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* There are two consistency models we looked at in
this course

* 1. Sequential Consistency
* 2. Processor Consistency

65



Consistency Models E;

Systems @ ETH zirin

* There are two consistency models we looked at in
this course

* 1. Sequential Consistency
* 2. Processor Consistency

66



Consistency Models
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Sequential consistency

1. Operations from a processor appear (to all others) in program order

2. Every processor’s visibility order is the same interleaving of all the
program orders.

Requirements:

* Each processor issues memory ops in program order
* RAM totally orders all operations
* Memory operations are (globally) atomic
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Sequential consistency

* Switch metaphor:
* All processors issue loads and stores in program order

* Memory chooses a processor, performs a memory operation to completion, then chooses
another processor, ...

Processor Processor Processor Processor
0 1 2 3
Memory
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Sequential consistency example

Assume *p =0, *q = 0 to begin with

a;: *p=1; b;: u=*q;
Results: ' '

e (u=1, v=1):
* Possible under SC: (a,, a,, by, b,)
* (a;, @) and (b4, b,) are both program orders
e (u=1, v=0):
* Impossible under SC:
* No interleaving of program orders that generates this result
* Would require: a, > b, >b, >a,

a;: *q=1, b,: v="%*p;
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 Advantage

e Easy to understand for programmer (analyze,
write code)

* Disadvantage

* Too slow to be practical: cannot reorder
reads/writes (not in the compiler; not even in one
single processor)
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* There are two consistency models we looked at in
this course

* 1. Sequential Consistency
* 2. Processor Consistency
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Processor Consistency

* Standard for 64-bit x86 processors
» Sometimes called Total Store Ordering (TSO)
* Earlier 32-bit x86 implemented PRAM — weaker!

e Write-to-read relaxation:
later reads can bypass earlier writes
» All processors see writes from one processor in the order they were issued.
* Processors can see different interleavings of writes from different processors.
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Processor Consistency (PC)

Assume *p =0, *q = 0 to begin with

* (u,v) = (0,0) is possible in PC - cuA

* a2 read bypasses al write a;: *p=1; by: *q=1;
* b2 read bypasses b1 write ay u=%*q by: v =*p;
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Other consistency models

Reads after reads
Reads after writes

Writes after reads

AN NN
Y BN
AN NN
AN NN

Writes after writes

Dependent reads

R N SR NN

Ifetch after write
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With a weak consistency models, we have fast
execution but low guarantees

What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

Solution: use barriers (aka fences)
1. Compiler barriers: prevents compiler from
reordering

2. Memory barriers: prevent CPU from reordering
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With a weak consistency models, we have fast
execution but low guarantees

What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

Solution: use barriers (aka fences)
1. Compiler barriers: prevents compiler from

reordering
2. Memory barriers: prevent CPU from reordering
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Compiler barriers

* Prevents the compiler from reordering visible loads and stores
* May still reorder register access (private)

* Typically part of compiler intrinsics

* GCC:
_asm____volatile (

* Intel ECC:
__memory_barrier()

* Microsoft Visual C & C++:
__ReadWriteBarrier()

:: "memory");
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With a weak consistency models, we have fast
execution but low guarantees

What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

Solution: use barriers (aka fences)
1. Compiler barriers: prevents compiler from

reordering
2. Memory barriers: prevent CPU from reordering
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Memory barriers on x86

* MFENCE instruction
* Prevents the CPU reordering any loads or stores past it

C Store |
Load

| -
Q
2
© Store
£ Allowed - | NOT alltzwed
: . MFENCE
% instruction (crosses fence)
g reorderings | Stre |
Load Also:

Store e LFENCE: Ioads
C Load . SFENCE: stores

Systems Programming 2023 Ch. 20: Multicore 81
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Synchronisation methods

Systems Programming and Computer
Architecture
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Fences assure that the compiler/cpu doesn’t reorder
instructions

But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

1. TAS (TTAS Lock)
2. CAS
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Fences assure that the compiler/cpu doesn’t reorder
instructions

But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

1. TAS (TTAS Lock)
2. CAS
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 TAS (Test-and-Set)
e 1. Reads current value of a memory location

e 2.Set memory location to a 1 (to indicate
”locked”)

e 3. Returns original value

* Memory bus must be locked during the execution of
the instruction (need hardware support for TAS)
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Using Test-And-Set

* Acquire a mutex with TAS:

void acquire( int *1lock) {
while ( TAS(lock) == 1)

J

}

* This is a spinlock: keep trying in a tight loop
* Often fastest if lock is not held for long

* Release is simple: void release( int *lock) {
*lock = 0;
}
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Test And Test-And-Set

* Replace most of RMW cycles with simple reads:

void acquire( int *lock) {
do {
while (*lock == 1);
} while ( TAS(lock) == 1);

}

* Think about cache traffic:
* Reads hit in the spinner’s cache

* Write due to release invalidates cache line
= load from main memory, returns 0
= triggers further RMW cycle from spinner

 Highly likely to succeed (unless contention)
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Fences assure that the compiler/cpu doesn’t reorder
instructions

But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

1. TAS (TTAS Lock)
2. CAS
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Compare and Swap

CAS( location, old, new) atomically
{
1. Load location into value
2. If value == “old” then store
“new” to location
3. Return value
}

Interesting features:
* Theoretically more powerful than TAS, FAA, etc.
* Canimplement almost all wait-free data structures
* Requires bus locking, or similar, in the memory system
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The ABA problem

* CAS has a problem:
* Reports when a single location is different
* Does not report when it is written (with the same value)

 Leads to the “ABA” problem:
1. CPU A reads value as x
2. CPU B writesy to value
3. CPU B writes x to value
4. CPU A reads value as x = concludes nothing has changed

* Many problemes:
* E.g., what if the value is a software stack pointer?
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Solving the ABA problem

* Basic problem:
* Value used for CAS comparison has not changed
e But the data has

* CAS doesn’t say whether a write has occurred,
only if a value has changed.

* Solution:
* Ensure the value always changes!

* Split value into:
* Original value
* Monotonically increasing counter

* CAS both halves in a single instruction

Systems @ ETH zirin

89



Systems @ ETH zirin

NUMA

Systems Programming and Computer
Architecture
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* NUMA (Non-Uniform-Memory-Access)

* ldea: each CPU has its own memory that it can
access faster

* Accessing local memory has lower latency and
higher bandwidth

* Accessing remote memory introduces latency

* So the latency is not the same (not uniform) when
accessing memory: thus NUMA
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SMP architecture

More cores
brings more
cycles

...not necessarily
proportionately more
cache

To main memory
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CPU1 CPU 2 CPU3 CPU 4

Cache Cache Cache Cache
% i

in memory I/O system
More cores and faster
cores use more
memory bandwidth
Systems Programming 2023 Ch. 20: Multicore 123

e Until now we used a BUS (which is broadcast)
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CPU1 CPU 2 CPU 3 CPU 4
Cache Cache Cache Cache
\
in memory |/O syste
More cores and faster Buses replaced with
cores use more interconnection
memory bandwidth networks
Systems Programming 2023 Ch. 20: Multicore 124

e |dea: Use interconnect (no broadcast)
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CPU1 CPU2 CPU3 CPU4

RAM & directory

* DSM/NUMA
* Message-passing, eg clusters
* Could scale to 100s or 1000s of cores

CPUs + RAM

CPUs + RAM

CPUs + RAM

CPUs + RAM

Systems @ ETH ziic

* ldea: Divide multiple processors into one node

(NUMA Node)

* Give each Numa Node its own part of physical

memory (RAM)

95



NUMA E;

Systems @ ETH zirin

CPUO CPU 1

Cache < > Cache

@ Interconnect @

RAM RAM

* How many CPUs we want per node can vary
* Here: we only put one CPU per NUMA node
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CPUO

Cache >

M ]

* Interconnect is not a bus any more: it’s a network link
* Carries messages between nodes (usually processor sockets)
* Read/write request/response, cache invalidate, etc.

DW

Interconnect

CPU 1

Cache

y

RAM

* All memory is globally addressable
» But local is faster (to varying degrees)

Systems @ ETH zirin
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8-socket 32-core AMD Barcelona (c.2007)

o le)
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Cache access latency

Memory is a bit faster than L3, but it’s complicated... 143
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e What issue does NUMA induce?
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What issue does NUMA induce?

Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

1. Bus emulation
2. Cache Directory
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What issue does NUMA induce?

Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

1. Bus emulation
2. Cache Directory

102



NUMA

NUMA cache coherence

Can’t snoop on the bus any more: it’s not a bus!
* NUMA use a message-passing interconnect

Solution 1: Bus emulation
* Similar to snooping, but without a shared bus
* Each node sends a message to all other nodes
* E.g. “Read exclusive”

* Waits for a reply from all nodes before proceeding
* E.g. “Acknowledge”

* Example: AMD coherent HyperTransport

Systems @ ETH zirin

Much more
complicated than it
sounds...
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What issue does NUMA induce?

Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

1. Bus emulation
2. Cache Directory
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* Idea: the home node maintains a directory of the
other nodes which currently have the line

* They store node ID of the owner
* 1 bit per node indicating of presence of the line

* Its like having a “per node” cache coherence system:
where each node watches out for its assigned
memory
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Solution 2: Cache Directory

* Augment each node’s local memory with a cache directory:

Cache line data Owner 01 2 3 456 7

0 |
|

|

|
]

Memory itself 1 bit per node

Node ID of

(usually DRAM or owner of indicating
part of the . presence of
cache line .
last-level cache) line
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NUMA: Practical

Systems Programming and Computer
Architecture
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This is not just some theoretical concept having no
relevance for you in practice

Let us look at some actual processor features
1. Maximus and Euler login node

2. Piora Cluster, Swiss National Supercomputing
Center

108
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This is not just some theoretical concept having no
relevance for you in practice

Let us look at some actual processor features
1. Maximus and Euler login node

2. Piora Cluster, Swiss National Supercomputing
Center
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:~$ lscpu
Architecture: X86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz
CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 2
Caches (sum of all):
Lld: 64 KiB (2 instances) e
L1i: 64 KiB (2 instances) available: 1 nodes (0)
L2: 2 MiB (2 instances) node 0 cpus: 6 1
L3: 49.5 MiB (2 instances) node 0 size: 4877 MB

NUMA : node 0 free: 2532 MB

NUMA node(s): node distances:
NUMA node® CPU(s): 0,1 node 0

0: 10
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falkbe@eu-login-41:~$ 1lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPUC(s): 4
On-1line CPU(s) 1list: 0-3
Vendor ID: GenuinelIntel
Model name: Intel(R) Xeon(R) CPU E3-1284L v4 (@ 2.90GHz

sum o :
L1d: 128 KiB (4 instances)
L1i: 128 KiB (4 instances)
L2: 1 MiB (4 instances)
L3: 6 MiB (1 instance)
L4: 128 MiB (1 instance)
NUMA:
NUMA node(s):
NUMA node® CPU(s):

falkbe@eu-login-41:~$ numactl -H
available: 1 nodes (0)

node O cpus: 0 1 2 3

node 0 size: 32020 MB

node 0 free: 10519 MB
node distances:
node 0
0: 10 111
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This is not just some theoretical concept having no
relevance for you in practice

Let us look at some actual processor features
1. Maximus and Euler login node

2. Piora Cluster, Swiss National Supercomputing
Center
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[bfalk@piora5 ~1$ lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-1line CPU(s) list: 0-127
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7742 64-Core Processor
CPU family: 23
Model: 49

Thread(s) per core: 1
Core(s) per socket: 64

. Snrkotlic)- 2
Virtualization features:
Virtualization: AMD-V
Caches (sum of all):
L1d: 4 MiB (128 instances)
L1i: 4 MiB (128 instances)
L2: 64 MiB (128 instances)
L3: 512 MiB (32 instances)
NUMA:
NUMA node(s): 8
NUMA node® CPU(s): 0-15
NUMA nodel CPU(s): 16-31
NUMA node2 CPU(s): 32-47
NUMA node3 CPU(s): 48-63
NUMA node4 CPU(s): 64-79
NUMA node5 CPU(s): 80-95
NUMA nodeé CPU(s): 96-111

NUMA node7 CPU(s): 112-127



Machine (504GB total)
Package L#0
Group® L#0 ETH i
NUMANode L#0 (P#0 63GB)
L3 L#0 (16MB)
L2 L#0 (512KB) + Lid L#0 (32KB) L#0 (32KB) Core L#0 PU L#0
L2 L#1 (512KB) + Lid L#1 (32KB) L#1 (32KB) Core L#1 PU L#1
L2 L#2 (512KB) + L1d L#2 (32KB) L#2 (32KB) Core L#2 PU L#2
L2 L#3 (512KB) + L1d L#3 (32KB) L1i L#3 (32KB) Core L#3 PU L#3
L3 L#1 (16MB)
L2 L#4 (512KB) L1d L#4 (32KB) L1i L#4 (32KB) Core L#4 PU L#4
L2 L#5 (512KB) L1d L#5 (32KB) L1i L#5 (32KB) Core L#5 PU L#5
L2 L#6 (512KB) Lid L#6 (32KB) L1i L#6 (32KB) Core L#6 PU L#6
L2 L#7 (512KB) Lid L#7 (32KB) L1i L#7 (32KB) Core L#7 PU L#7
L3 L#2 (16MB)
L2 L#8 (512KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8 + PU L#8
L2 L#9 (512KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9 + PU L#9
L2 L#10 (512KB) L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10 + PU
L2 L#11 (512KB) L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11 + PU
L3 L#3 (16MB)
L2 L#12 (512KB) Lid L#12 (32KB) L1i L#12 (32KB) Core L#12 PU
L2 L#13 (512KB) L1d L#13 (32KB) L1i L#13 (32KB) Core L#13 PU
L2 L#14 (512KB) L1d L#14 (32KB) L1i L#14 (32KB) Core L#14 PU
L2 L#15 (512KB) Lid L#15 (32KB) L1i L#15 (32KB) Core L#15 PU
HostBridge
PCIBridge
PCI 62:00.0 (Ethernet)
Net "enp98s0Of0"
PCI 62:00.1 (Ethernet)
Net "enp98sOfl"
PCIBridge
PCIBridge
PCI 65:00.0 (VGA)
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e This is the structure we have just seen (note its not
the same processor, but the concepts are the same)

8-socket 32-core AMD Barcelona (c.2007)

RAM | RAM  RAM  RAM
CPU, ~ CPU, CPU,  CPU, CPU, = CPU, CPU,  CPU,
PCI < L2 L2 L2 L2 L2 24 L2 L2
SATA <: PCle | cpu, | cpy, {cpy, | cpy, | cPU,  CPU, { cpu, | cpy,
L2 L 2 L 2 L L2 L2
1GbE <l ) - 13 13 13
a CPU, ~ CPU, cPU, | cPU, |
PCI < 2 12 N Nk
SATA < | PCle ‘ U, | ey,
1GbE 13 13 13

.~ RAM |

"~ RAM

. RAM

. RAM
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e

[bfalk@Epiora5 ~]1$ numactl -H
available: 8 nodes (0-7)
node 0 cpus: @12 3 45 67 8 9 10 11 12 13 14 15

node 0 size: 64323 MB
node 0 free: 58103 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 SyStEMS@E'HZﬁrich
node 1 size: 64465 MB
node 1 free: 62236 MB
node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 2 size: 64506 MB
node 2 free: 62096 MB
node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
node 3 size: 64494 MB
node 3 free: 623380 MB
node 4 cpus: 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 4 size: 64506 MB
node 4 free: 46135 MB
node 5 cpus: 80 81 82 83 84 85 86 87 88 8% 90 91 92 93 94 95
node 5 size: 64506 MB
node 5 free: 62674 MB
node 6 cpus: 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
node 6 size: 64506 MB
node 6 free: 63770 MB
node 7 cpus: 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
node 7 size: 64502 MB
node 7 free: 61637 MB
d

node distances:
node 0 1 2 3 4 5 6 7
0: 10 12 12 12 32 32 32 32
12 10 12 12 32 32 32 32
12 12 10 12 32 32 32 32
12 12 12 10 32 32 32 32
32 32 32 32 10 12 12 12
32 32 32 32 12 10 12 12
32 32 32 32 12 12 10 12
32 32 32 32 12 12 12 10

. -2 BB

1
=] O~ U1 I~ N
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Cache access latency

Memory is a bit faster than L3, but it’s complicated... 143
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Overview E;
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* Part of Assignment 10
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* Exam Hint:
— Do some pre-processing of the given values

— Bit numbers of: VPN, VPO, PPN, PPO
— TLB: Number of sets / entries per set

— Cache: Offset, Index and Tag bits

120



Question 4) Walk-through

Assumptions (we have a TLB and L1 Cache)

* Byte addressable memory

* The page size is 64 bytes

* Virtual addresses are 14 bits wide

* Physical addresses are 12 bits wide

* TLB is 2-way associative with & total entries

 The L1 (data) cache s addressed,
direct mapped, and has a 4-byte block size;

there are 16 sets.

Systems @ ETH zirin
Conclusions
= #offset bits =
— #VPN bits=14-6=8
— #PPN bits=12-6=6
—> TLB has 4 sets

HTLBI bits =

HTLBT bits=8—-2=6
— #CO bits =2

#Cl bits =4

#CT bits=12-2-4=6
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* VA=0x268
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VPN

VPO

TLBT

TLBI




Question 4a) Walk-through
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* VA=0x268

TLBT TLBI

Page table: (all values are hexadecimal)

VPN |[ PPN [ Valid VPN || PPN | Valid
0o
* VPN = 0x9 | | e w2 [ 1t | HIT
02 | 03 | 1
03 b
01 0c
05 od | 02 | 1
06 | 22 | 1 0
07 | 22 | 1 0f




Question 4a) Walk-through
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* VA=0x268

TLBT TLBI

» TLBT= Ox2 TLBI= Ox1 TLR: o tdll values are hexadecimal)

Set ||| Tag | PPN | Valid | Tag | PPN | Valid
E :l ':l

T i 29 1 02 0

HIT



Question 4a) Walk-through
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TLB: (all values are hexadecimal)

* VA=0x268

Set ||| Tag | PPN | Valid || Tag | PPN | Valid
0 05 0 12 12 1
1 02 20 1 04 32 1
2 01 22 1 07 0
3 01 22 1 02 0

/7165141312 ]1]0

PPN PPO (=VPO)

CT Cl CO




Question 4a) Walk-through
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TLB: (all values are hexadecimal)

* VA=0x268

Set Tag | PPN | Valid | Tag | PPN | Valid
£ 12 12 1

04 32 1

2 4 07 0

3 01 Y. 4 1 02 0
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* VA=0x268
1110 9 | 8

PPN PPO

-+ CT=0x20 Cl=0Oxa CO=0x0



Question 4a) Walk-through

* VA=0x268 e

Cl= Oxa

CT=0x20 -

CO=0x0

Systems @ ETH zirin
(all values are hexadecimal)

Index ([ Tag | Valid | Block[0] | Block[1] | Block[2] | Block[3]
00 00 1 de ad fa ce
01 31 0

02 24 1 02 13 el de
03 22 1 22 23 e2 2e
04 21 0

(05 22 0

06 18 0

07 HIT 22 | Oa 01 00 de
o= [ 0

(10 . 7 | 8. la (4 Ce
Oa 1 1f f1 do
0h 3a 0

e 3T L)

(d 24 1 he fh 57 02
Oe 23 0

0f 22 1 cf 7a Oh al
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Interlude: Reverse
Engineering Caches



Getting the Cache Line Size :Ej
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* Experiment: Traversal of a linked list with
varying element size

Y

struct listelem {
struct listelem *next;
uint64_t padding[NUMPAD];

} r//—\ ! “'f..f"‘”ﬂ__‘_'"'““
3, A U N, ] L |

\ANA \\Mg

A w N R

Paddin

Systems Programming and
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Source: Jens Teubner, Data Processing on Modern Hardware, Fall 2012



Experiment Results: Sequential

No Prefetcher effect

Time Per Element (nS)

8 Bytes
16 Bytes
32 Bytes
64 Bytes
128 Bytes
256 Bytes
512 Bytes
L1
L2/DTLB
L3

STLB

EEREERERRE

Prefetcher
working

e— e — — —
————— T — .

CPU starts to outrun
prefetch speed

Systems @ ETH zirin

—f

L

-

T T T
1IKBE  2KB 4KB

Systems Programming and
Computer Architecture

T T T T T T
16KE 32KB 64KB 128KB 256KB 512KB
Working Set Size (Bytes)

T T T
IMBE 2MB  4MB

1

|

T T T T
8ME 1eMB 32MB 6&4MB




Experiment Results: Random
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Random Traversal

120 { —— 8 Bytes
—— 16 Bytes
—— 32 Bytes
100 1 —— 64 Bytes
—— 128 Bytes

G-jz" 256 Bytes
= 801 —— 512 Bytes
3 -——-u
§ 0] ~~° L2/DOTLB
E -—- 13
a --- STLB
18}
£ 401
F_

20 -

L

0 - _— +

T T T T T T T T T T T T T T T T
1KB 2KB 4KB 8KB 16KB 32KB ©64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB
Working Set Size (Bytes)
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Sequential (i5-1135G7 2.42GHz)

in order traversal
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60

50

Time per Element (ns)
w B
o (@]

N
o

10

o ™ o Ve P Ve o

— e e — — —

N2 N2 > N2 Q Q Q Q Q Q Q Q
SIS L A A e

g N g N Y Y Q Q Q0
Vv )
Working Set Size
=& 3 bytes 16 bytes == 32 bytes === 64 bytes =M= 128 hytes 256 bytes == 512 bytes
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Time per Element (ns)

Systems Programming and

Random (i5-1135G7 2.42GHz)

random traversal
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=& 3 bytes #= 16 bytes === 32 bytes == 64 bpytes ==¥= 128 bytes o= 256 bytes === 512 bytes
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Comparison (i5-1135G7 2.42GHz)
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Systems Programming and

Systems @ ETH zirin
comparison traversal
random 8 === random 16 ==e==random 32 <==l==random 64 ==#==random 128 random 256 ==a=random 512
efi=Oorder 8 order 16 e=fil=order 32 === order 64 == order 128 order 256 === order 512
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Working Set Size
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Getting Information about E;
th e CaCh e Systems @ ETH ziiicy

Linux:

Read files in /sys/devices/system/cpu/cpu*/cache/index*/
size

ways_of associativity

number_of sets

Windows:
GetlLogicalProcessorinformationEx

X86 In general:
cpuid instruction




Suggested Reading E;

Systems @ ETH zirin

* “What Every Programmer Should Know About
Memory”

* http://www.akkadia.org/drepper/cpumemory.
pdf

Systems Programming and
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Simulating Caches Ej

Systems @ ETH zirin

Insominac Games: Cachesim
https://github.com/InsomniacGames/|

g-cachesim

Cache Grind:
https://valgrind.org/docs/manual/cg-
manual.html



https://github.com/InsomniacGames/ig-cachesim
https://github.com/InsomniacGames/ig-cachesim
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html

Overview E;

Systems @ ETH zirin

e Recap Cache Coherence



Symmetric multiprocessing

(S IVI P ) Systems @ ETH ziri
CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache

RAM

SMP only works because of caches!
 Shared memory rapidly
becomes bottleneck 140



Coherency and Consistency Ej

Systems @ ETH zirin

* As with DMA, memory can change under a cache
— Writes from other processors to memory
— Leads to 2 important concepts:
1. Coherency:
— Values in caches all match each other
— Processors all see a coherent view of memory
2. Consistency:

— The order in which changes to memory are seen by
different processors

141



Sequential Consistency :E;

Wlt h d SNO0O0 py CcacC h e Systems @ ETH ziricy

Cache “snoops” on reads/writes from other
pProcessors

If a line is valid in local cache:

— Remote (other processor) write to line
= invalidate local line

Requires a write-through cache!

— But coherency mechanism = sequential consistency

Line can be valid in many caches, until a write



What about write-back caches? E;

Systems @ ETH zirin

Cache lines can now be “dirty” (modified)
Requires a cache coherency protocol
Simplest protocol: MSI

— Each line has 3 states: Modified, Shared, Invalid
— Line can only be dirty in one cache

Cache logic must respond to:

— Processor reads and writes
— Remote bus reads and writes

and must:

— Change cache line state
— Write back data (flush) if required

143



MSI state machine:
local (processor) transitions — ¥stemseEmHu.,

Local write
miss

Local read
miss Modified
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MSI state machine:
local (processor) transitions — ¥stemseEmHu.,

Local write
miss

Local read
miss Modified I

Local read
or write

Local read
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MSI state machine:
local (processor) transitions — ¥stemseEmHu.,

Local write
miss

L0C3|‘ read Local write
miss MOd Ifled '

Local read
or write

Local read
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MSI state machine:
local (processor) transitions — ¥stemseEmHu.,

Local write
miss

L0C3|‘ read Local write
miss MOd Ifled '

Local read
or write

Local read
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MSI state machine:
local (processor) transitions — ¥stemseEmHu.,

Eviction
= write back block

Local write
miss

L0C3|‘ read Local write
miss MOd Ifled '

Local read
or write

Eviction
Cache write back

Local read

148



MSI state machine:
remote (snooped) transitions  stemseETHz.

Remote \m

[ Remote j%
read miss 140




MSI state machine:
remote (snooped) transitions  stemseETHz.

Remote write miss
= write back block

[ Remote m

Remote read miss
= write back block

[ Remote j%
read miss 50




MSI state machine:

all transitions Systemms @ ETHo

Eviction
= write back block

Remote write miss
= write back block

Local write
miss

Local write

Modified I

Local read
or write

Local read
Cache write back

miss
[ Remote write
Eviction
[ Remote read miss }

Local read
= write back block

[ Remote ]%
read miss -




MSI Model

Core 1l

Systems @ ETH zirin

Eviction
= write back block

Cache line is not in cache

Remote write miss
= write back block

Local write
miss

' Local read Local write
l miss Modified I
Local read
[ Remote write or write
Eviction

Cache write back

Remote read miss
Local read
= write back block

Remote
Systems Programming and read miss 152
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m

M S I M O d € I Systems @ ETH zirich

Eviction
= write back block

Core O reads

Remote write miss
= write back block

Local write
miss

Local read
miss

Local write

Modified l

Local read
or write

[ Remote m

Eviction

Cache write back

Remote read miss
Local read
= write back block

Remote
Systems Programming and read miss 153
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M S I M O d e I Systems @ ETH zirin

Eviction
= write back block

Core 1 writes,

Remote write miss
= write back block

Local write
miss

Local read
miss

Local write

Modified l

Local read
or write

4\
[ Remote write

Eviction

Cache write back

Remote read miss
Local read
= write back block

Remote
Systems Programming and read miss 154
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M S I M O d e I Systems @ ETH zirin

Eviction
= write back block

Core 0 reads again

Remote write miss
= write back block

Local write
miss

LocaI‘ read Local write a
s { Modifi

[ Remote m

ed |)

Eviction <
Cache write back

Remote read miss
= write back block

Local read

Remote
Systems Programming and read miss

Computer Architecture

Local read
or write
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Core 0

m IVI S I M O d = I Systems @ ETH zirich

Eviction
= write back block

Core 0O writes,

Remote write miss
= write back block

Local write
miss
"4
v | W
| v
Local read Local write

miss

— Modified I
\ Local read
) or write
[ Remote V\% e e |
Eviction \
‘ Shared ’
Cache write back
- - __—A
./

Local read Rem(?te read miss
= write back block
Remote
Systems Programming and read miss -

Computer Architecture



Core 0

m IVI S I M O d = I Systems @ ETH zirich

Eviction
= write back block

Core 1 writes,

Remote write miss

= write back block
Local write
miss
o
o |
||
LocaI- read Local write
miISsS
Local read
. or write
[ Remote V\%
Eviction
Cache write back
Local read Rem(?te read miss
= write back block
Remote
Systems Programming and read miss 157
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MSI issues E;

Systems @ ETH zirin

e Assume: Read then Write

* On MSI: Invalid->Shared, Shared->Modified.
Two bus transactions.

* |dea: Introduce exclusive state to perform the
Shared->Modified transition without a bus
transaction.



MESI protocol

Systems @ ETH zirin

Add a new line state: “exclusive”
* Modified: This is the only copy, it’s dirty
e Exclusive: This is the only copy, it’s clean
* Shared: This is one of several copies, all clean
* Invalid
Add a new bus signal: RdX
— “Read exclusive”
— Cache can load into either “shared” or “exclusive” states
— Other caches can see the type of read
Also: HIT signal
— Signals to a remote processor that its read hit in local cache.
First x86 appearance in the Pentium

159



MESI state machine

Terminology:

PrRd: processor read

PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Systems @ ETH zirin

PrRd >
Issue BusRd,
if shared...

PrWr >
PrRd = issue

If linenot | BysRdX

shared
‘ \M

160



MESI state machine

Systems @ ETH zirin
Terminology:
. ) PrRd ->
PrRd: processor rea.d lssue BusRd,
*  PrWr: processor write if shared... PrRd =
* BusRd: bus read No transaction
*  BusRdX: bus read excl
Processor-initiated PrWr =
PrRd > issue
If linenot | BysRdX
shared
Modified
PrRd - PrRd, PrWr >
No transaction No transaction
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MESI state machine

Systems @ ETH zirin
Terminology:
. . PrRd -
PrRd: processor rea.d lssue BusRd,
*  PrWr: processor write if shared... PrRd >
* BusRd: bus read No transaction

e BusRdX: bus read excl

Processor-initiated PrWr >
PrRd = issue
If linenot | BusRdX
shared

Prwr >
issue
BusRdX

Modified

PrRd >
No transaction

PrRd, PrWr =

No transaction
Prwr >

No transaction
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MESI state machine

Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Snoop-initiated

Systems @ ETH zirin

BusRdX >
discard \

BusRd >

BusRdX > Write back

BusRdX > Write back Signal HIT

discard

Modified

163



MESI state machine

Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Snoop-initiated

BusRdX >
discard

BusRdX >
discard

BusRd =
Signal HIT

Systems @ ETH zirin

BusRd -
Signal HIT

BusRdX >
Write back

BusRd >
Write back
Signal HIT

Modified

164




MESI state machine

Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Snoop-initiated

Invalid
PrWr -
PrRd - issue
If linenot | BysRdX
shared
BusRdX >
discard
BusRd >
Signal HIT
PrRd >
No transaction
Prwr >

PrRd >

Issue BusRd,

if shared...

—

No transaction

Systems @ ETH zurin
PrRd >
BusRdX = No transaction
u
discard \ BusRd -
Shared Signal HIT
PrWr - BusRd =
issue | | BusRdX-> | | Write back
BusRdX Write back Signal HIT
Modified

PrRd, PrWr =
No transaction
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Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Snoop-initiated

MESI

PrRd >

Issue BusRd,

if shared..

PrRd -> HIAT
Issue BusRd, L
If line not BusRdX
shared
| |
BusRdX >
discard
BusRd >
Signal HIT

PrRd >

No transaction

Systems Programming and
Computer Architecture

Systems @ ETH zirin

PrRd >
BusRdX => No transaction
us
discard \ BusRd
Signal HIT
PrWr - Bt{st —)k
issue BusRdX -> ‘gf"te Ib:fT
BusRdX Write back Igna
Modified

Prwr >
No transaction

PrRd, PrWr =
No transaction



Terminology:

PrRd: processor read
PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Snoop-initiated

MESI

PrRd >
Issue BusRd,
if shared..

PrRd >
Issue BusRd,
If line not
shared

1 L

.

BusRdX >
discard

PrRd >

No transaction

Systems Programming and
Computer Architecture

Prwr >
issue
BusRdX

BusRd =
Signal HIT

Systems @ ETH zirin
PrRd >
No transaction
BusRdX => \

discard BusRd =
Signal HIT

Prr - HUELIES
issue BusRdX - ‘Q{r'te Ibl_a"ch

BusRdX Write back igna
Modified

Prwr >
No transaction

PrRd, PrWr =
No transaction
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MES

Terminology:

PrRd >

PrRd: processor read lssue BusRd,

Core 1: write

PrWr: processor write if shared.,
BusRd: bus read
BusRdX: bus read excl 1
Processor-initiated PrRd = pr.-Wr—)
tintad Issue BusRd, Issue
Snoop-initiate If line not BusRdX
shared

BusRdX >
discard

BusRdX =>
discard

BusRd =
Signal HIT

PrWr >
issue
BusRdX

PrRd >
No transaction

Prwr -

No transaction

Systems Programming and
Computer Architecture

Systems @ ETH zirin

PrRd >
No transaction

BusRd -
Signal HIT

BusRdX >
Write back

Modified

BusRd >
Write back
Signal HIT

PrRd, PrWr =
No transaction
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Terminology:

MESI

PrRd: processor read
PrWr: processor write

Systems @ ETH zirin
PrRd >
Issue BusRd,
if sharedz/“ PrRd =

BusRd: bus read
BusRdX: bus read excl

Processor-initiated PrRd -

Systems Programming and
Computer Architecture

No transaction

BusRdX =>
discard

BusRd -
Signal HIT

Prwr >

o Issue BusRd, issue
Snoop-initiated If line not BusRdX
. shared PrWr = Bu.st -
issue BusRdX > ‘Q{r'te Ibl_a"ch
Bt::RdXd—) BusRdX Write back IEN3
iscar
Core O: read
BusRd >
v Signal HIT
Y PrRd - PrRd, PrWr >
v v No transaction No transaction
lvilvly Prwr >

No transaction
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Terminology:

PrRd: processor read

PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Snoop-initiated

Core O: write

v

v
v | v
v |viv]v

Systems Programming and
Computer Architecture

MESI

PrRd >
Issue BusRd,
if shared..

PrRd -> HIAT
Issue BusRd, L
If line not BusRdX
shared
1
BusRdX >
discard
BusRd >
Signal HIT

PrRd >

No transaction

BusRdX = | k

-
A

Systems @ ETH zirin

PrRd >
No transaction

BusRd -
Signal HIT

Prwr >
No transaction

| N
[
PrWwr =
issue BusRdX ->
BusRdX Write back
Modified

BusRd >
Write back
Signal HIT

PrRd, PrWr =
No transaction
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Terminology:

PrRd: processor read

PrWr: processor write
BusRd: bus read
BusRdX: bus read excl

Processor-initiated

Snoop-initiated

Core O: write

v

v
v | v
v |viv]v

Systems Programming and
Computer Architecture

PrRd >
Issue BusRd,
If line not

MESI

PrRd >
Issue BusRd,
if shared..

)

Prwr >
issue
BusRdX

shared

1

BusRdX >
discard

PrRd >

No transaction

BusRd =
Signal HIT

Systems @ ETH zirin

PrRd >
No transaction

BusRd -
Signal HIT

BusRdX =>
discard
PrWr > \
issue BusRdX >
| BusRdX i Write back

Prwr >
No transaction

/

rw

Modified

BusRd >
Write back
Signal HIT

PrRd, PrWr =
No transaction

171



MESI E;

Systems @ ETH ziricn
* Problems:
— Need to write back dirty data (no cache-cache
transfer)

— Either clean or dirty in (exactly) one cache

Systems Programming and

. 172
Computer Architecture



Overview E;

Systems @ ETH zirin

* Hints for Assignment 11



Assignment 11 E;

Systems @ ETH zirin

* Part 1: Pen & Paper

* Understanding cache coherence protocols

(MSI and MESI)

* Part 2: Programming Part

* Implement page table

174



Check correctness E;

Systems @ ETH zirin

e S ./correctness

— Executes the executable of your pagetables.c (pt)

— dropAddresses removes all dynamic address
from the page-table entries in your output
— Compares your page-table entries to solution

* Match
* Not match: save diff into a temporary file



Hints E;

Systems @ ETH zirin

* Makefile
— $ make pt
— gcc $ (CFLAGS) pagetables.c $(LIBS) -o pt

* Functions
— Links a static library libdump.a ( providing function
dump_pagetable(pdbr);)

— Generates executable pt ( needed for. /correctness
script)



Hints Ej

Systems @ ETH zirin

* posix_memalign
— The function posix_memalign() allocates size
bytes and places the address of the allocated
memory in *memptr. The address of the allocated
memory will be a multiple of alignment, which

must be a power of two and a multiple of
sizeof(void *).



Overview :Ej

Systems @ ETH zirin

* Quiz (following slides cover solutions only)



Question 1

VA: Virtual Address
PA: Physical Address

VPN: Virtual
VPO: Virtual
PPN: Physica
PPO: Physica
T
T

Page Number
Page Offset
Page Number

Page Offset

| B: Translation Lookaside Buffer
 Bl: TLB Index

==

Systems @ ETH zirin



Question 1 E;

Systems @ ETH zirin

TLBT: TLB Tag
CT: Cache Tag

Cl: Cache Index
CO: Cache Offset



d)

e Byte addressable
* VA=14bits
Question 2 |; oo
* Pageis 64 bytes
e TLB: 2-way & 8 total entries
e Cache physically addr. direct
mapped; 4-byte block & 16 sets

How much memory can a process address?
2\VA = 2714 =16 KB

How much memory can the processor address?
2N\PA = 2712 =4 KB

How large are the VPN, VPO, PPN, PPO in bits?
VPO/PPO = 6 bits, VPN = 8 bits, PPN = 6 bits

How many pages can be referenced by a virtual

address?
2A\VPN = 218 = 256



e Byte addressable
* VA=14bits
Question 2 |; oo
* Pageis 64 bytes
e TLB: 2-way & 8 total entries
e Cache physically addr. direct
mapped; 4-byte block & 16 sets

e) How many physical pages can the page table address?
2\PPN =276 =64

f) How many sets does the TLB have?
4 sets (8 total entries / 2 due to associativity)

g) How large are the TLBI and TLBT in bits?
TLBI = 2 bits (4 sets), TLBT=VPN-TLBI=8-2=6

h) How large are the CT, Cl and CO?

CO = 2 bits <= 4-byte blocks
Cl =4 bits, <= 16 direct mapped sets
CT =6 bits <=PA-CO-Cl=12-2-4



Question 2

e Byte addressable

* VA=14bits

e PA=12bits

* Pageis 64 bytes

e TLB: 2-way & 8 total entries
e Cache physically addr. direct

mapped; 4-byte block & 16 sets

i) What would it mean if the cache were virtually

addressed?

If the cache were virtually addressed, the cache would be
used before the translation of virtual to physical addresses.
This would mean that the cached values would only be
valid for a single process and its virtual address space

j)  How large would CT, Cl and CO be in that case?

CO = 2 bits <= 4-byte blocks
Cl =4 bits, <= 16 direct mapped sets
CT =8 bits <=VA-CO-Cl=14-2-4




e Byte addressable

VA = 14 bits

PA =12 bits

Page is 64 bytes

TLB: 2-way & 8 total entries
Cache physically addr. direct
mapped; 4-byte block & 16 sets

Question 2

k) How would a memory access work in that case
(virtually addressed cache)?

The processor would first look in the virtually addressed
cache.

On a miss, the virtual address would be translated by the
MMU and the physical address then used for a lookup in a
physically addressed cache or into memory.



Question 3 E;

Systems @ ETH zirin

* VA=0x01e5

TLBT TLBI

Page table: (all values are hexadecimal)

VPN [| PPN | Valid VPN || PPN | Valid

0o 08

> VPN = OX7 01 02 1 09 20 1
02 03 1 Oa
03 Ob
04 De

05 0d 04 1
i ~ De
0f




Question 3 Ej

Systems @ ETH zirin

* VA=0x01e5

TLBT TLBI

» TLBT= Ox1 TLBI= Ox3 TLR: o tdll values are hexadecimal)

Set ||| Tag | PPN | Valid || Tag | PPN | Valid
0 05 0 12 12 1
1 02 20 1 04 32 1
2 22 1 i ()

N | 02 ] | 0

HIT




Question 3 E;

Systems @ ETH zirin

TLB: (all values are hexadecimal)

* VA=0x01e5

Set ||| Tag | PPN | Valid || Tag | PPN | Valid
0 05 0 12 12 1
1 02 20 1 04 32 1
2 22 07 0




Question 3 E;

Systems @ ETH zirin

* VA=0x01e5
11/10| 9 | 8

PPN PPO

=+ CT=0x22 Cl=0x9 CO=0x1



Question 3

* VA=0x01le5,

Cl= 0x9

CT=0x22 =

CO=0x1

Systems @ ETH zirin
ache: (all values are hexadecimal)
Index ([ Tag | Valid | Block[0] | Block[1] | Block[2] | Block[3]
00 00 1 de ad fa ce
01 31 0
02 24 1 02 13 el de
03 22 | 22 23 el 2e
04 21 0
05 22 0
06 18 0
07 HI 22 | Oa 01 00 de
o 0
09 1 83 00 ce
Ua 200 L Ud it il du
0h 3a 0
0e 3T b
(d 24 1 he fh 57 02
Oe 23 0
0f 22 1 cf 7a Oh al
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Have a nice rest of week

Systems @ ETH zirin
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