
Exercise Session 13
Computer Architecture and

Systems Programming

Virtual Memory

Herbstsemester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer
• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are
not official part of the course) having a blue heading

• For the exam only the official exercise slides are
relevant, if in doubt always check the ones on the
official moodle page

2

Agenda

• Virtual Memory: Recap and Quiz

• Lecture Recap: Multiprocessing

• Symmetric Multiprocessing (SMP)

• Cache Coherency: MSI, MESI, MOESI, MESIF

• Memory Consistency Models

• Sync: TAS, CAS, TTAS/CAS Spinlock

• NUMA

3

Virtual Memory Recap

Systems Programming and Computer
Architecture

4

Virtual Memory Recap

Caches

Systems Programming and Computer
Architecture

5

Virtual Memory Recap

6

• Memory hiearachy

Virtual Memory Recap

7

• Memory hiearachy

Caches: Direct Mapped

• Direct
mapped: each
set contains
one block

• Bottom 2 bits 0
because its
word (here 4
byte) aligned

• Next log2(S)=3
bits indicate
set (mod 8)

8

Caches: N-way Set Associative

9

• Advantage: the higher the associativity, the less conflicts we
have

• Set associative caches generally have lower miss rate (only
need to evict if both ways are full)

Caches: Fully Associative Cache

10

• Fully associative: B ways (number of blocks), i.e. no conflict
misses anymore

• Issue: need a lot of comparators (compare 8 values in parallel)

Virtual Memory Recap

Virtual memory

Systems Programming and Computer
Architecture

11

Virtual Memory Recap

12

• Memory hiearachy

Virtual Memory

• Virtual Memory: divided into virtual pages (typically 4KB size)

• Physical Memory: divided into physical pages (same size)

• Virtual page may be located in i) physical memory (DRAM) or
on hard drive (disk)

13

Virtual Memory

14

• 2GB=231-byte virtual memory

• 128MB=227-byte physical memory

• 4KB= 212-byte pages

• 231/ 212 = 219 virtual pages (19 bit
VPN)

• 227/ 212 = 215 physical pages (15 bit
PPN)

• Physical memory can hold 1/16 of
virtual pages at a time

Virtual Memory

• Address translation: Process of determining physical address,
given a virtual address

15

Virtual Memory

16

• Processor uses page table to translate
VPN->PPN

• Contains entry for each virtual page:
Valid bit (if currently in physical
memory)

• Indexed with virtual page number

• Entry 5: specifies virtual page 5 maps
to physical page 1

• Entry 6: Invalid (V=0) so located on disk

Virtual Memory

• Page Table
Number: indexes
1st level page
table (gives base
address of
second tbale)

• Page Table
Offset: indexes
2nd level page
table

17

Virtual Memory

18

Caches and Virtual Memory

19

Virtual Memory Recap

Quiz

Systems Programming and Computer
Architecture

20

Virtual Memory Quiz

21

• Recall: TLBI, TLBT, CI, CO, CT positions

Virtual Memory Quiz

22

Virtual Memory Quiz

23

Symmetric Multiprocessing (SMP)

Systems Programming and Computer
Architecture

24

SMP

25

• Computer Architecture: processor design

SMP

26

• Last time: sequential processor design

• Issue?

SMP

27

• Power wall + ILP Wall + memory wall => End of serial
hardware

SMP

28

• This time: multiple processors per chip

SMP

29

Cache Coherency

Systems Programming and Computer
Architecture

30

Cache Coherency

31

Cache Coherency

32

Cache Coherency

33

• Cache Coherence: if one processor updates a value
in its cache, other processor see this update when
accessing the same value

• Cache Coherence in Write-through caches: we
“snoop” reads/writes from the bus: if someone
writes to a memory location we keep in our cache we
invalidate our cache line

• Cache Coherence in Write-back caches: issue: we
don’t get to know if someone updates the cache!!

Cache Coherency

34

• Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI

Cache Coherency

35

• Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI

Cache Coherency

36

Cache Coherency

37

Cache Coherency

38

Cache Coherency

39

Cache Coherency

40

Cache Coherency

41

Cache Coherency

42

Cache Coherency

43

Cache Coherency

44

Cache Coherency

45

• Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI

Cache Coherency

46

Cache Coherency

47

Cache Coherency

48

Cache Coherency

49

Cache Coherency

50

Cache Coherency

51

Cache Coherency

52

Cache Coherency

53

Cache Coherency

54

• Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI

Cache Coherency

55

Cache Coherency

56

Cache Coherency

57

• Cache Coherency Protocol: defines how caches
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI

Cache Coherency

58

Cache Coherency

59

Memory Consistency Models

Systems Programming and Computer
Architecture

60

Consistency Models

61

Consistency Models

62

• Cache coherence give guarantees to individual memory
locations

• Memory consistency models make guarantees on ordering of
operations across multiple memory locations

• => Cache coherence is lower level mechanism helping
maintain a consistent view of memory on hardware level

• => MCMs provide higher level guarantees on order of
operations: effective cache coherence models are essential to
implement MCM

Consistency Models

63

Consistency Models

64

Consistency Models

65

• There are two consistency models we looked at in
this course

• 1. Sequential Consistency

• 2. Processor Consistency

Consistency Models

66

• There are two consistency models we looked at in
this course

• 1. Sequential Consistency

• 2. Processor Consistency

Consistency Models

67

Consistency Models

68

Consistency Models

69

Consistency Models

70

• Advantage

• Easy to understand for programmer (analyze,
write code)

• Disadvantage

• Too slow to be practical: cannot reorder
reads/writes (not in the compiler; not even in one
single processor)

Consistency Models

71

• There are two consistency models we looked at in
this course

• 1. Sequential Consistency

• 2. Processor Consistency

Consistency Models

72

Consistency Models

73

Consistency Models

74

Consistency Models

75

• With a weak consistency models, we have fast
execution but low guarantees

• What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

• Solution: use barriers (aka fences)

• 1. Compiler barriers: prevents compiler from
reordering

• 2. Memory barriers: prevent CPU from reordering

Consistency Models

76

• With a weak consistency models, we have fast
execution but low guarantees

• What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

• Solution: use barriers (aka fences)

• 1. Compiler barriers: prevents compiler from
reordering

• 2. Memory barriers: prevent CPU from reordering

Consistency Models

77

Consistency Models

78

• With a weak consistency models, we have fast
execution but low guarantees

• What if in certain cases we really want guarantees
(to argue for correctness of algorithms etc.)?

• Solution: use barriers (aka fences)

• 1. Compiler barriers: prevents compiler from
reordering

• 2. Memory barriers: prevent CPU from reordering

Consistency Models

79

Synchronisation methods

Systems Programming and Computer
Architecture

80

Synchronisation methods

81

• Fences assure that the compiler/cpu doesn’t reorder
instructions

• But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

• 1. TAS (TTAS Lock)

• 2. CAS

Synchronisation methods

82

• Fences assure that the compiler/cpu doesn’t reorder
instructions

• But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

• 1. TAS (TTAS Lock)

• 2. CAS

Synchronisation methods

83

• TAS (Test-and-Set)

• 1. Reads current value of a memory location

• 2. Set memory location to a 1 (to indicate
”locked”)

• 3. Returns original value

• Memory bus must be locked during the execution of
the instruction (need hardware support for TAS)

Synchronisation methods

84

Synchronisation methods

85

Synchronisation methods

86

• Fences assure that the compiler/cpu doesn’t reorder
instructions

• But they do not prevent race conditions: what can
we do if multiple processor access the same memory
location?

• 1. TAS (TTAS Lock)

• 2. CAS

Synchronisation methods

87

Synchronisation methods

88

Synchronisation methods

89

NUMA

Systems Programming and Computer
Architecture

90

NUMA

91

• NUMA (Non-Uniform-Memory-Access)

• Idea: each CPU has its own memory that it can
access faster

• Accessing local memory has lower latency and
higher bandwidth

• Accessing remote memory introduces latency

• So the latency is not the same (not uniform) when
accessing memory: thus NUMA

NUMA

92

NUMA

93

• Until now we used a BUS (which is broadcast)

NUMA

94

• Idea: Use interconnect (no broadcast)

NUMA

95

• Idea: Divide multiple processors into one node
(NUMA Node)

• Give each Numa Node its own part of physical
memory (RAM)

NUMA

96

• How many CPUs we want per node can vary

• Here: we only put one CPU per NUMA node

NUMA

97

NUMA

98

NUMA

99

NUMA

100

• What issue does NUMA induce?

NUMA

101

• What issue does NUMA induce?

• Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

• 1. Bus emulation

• 2. Cache Directory

NUMA

102

• What issue does NUMA induce?

• Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

• 1. Bus emulation

• 2. Cache Directory

NUMA

103

NUMA

104

• What issue does NUMA induce?

• Our cache coherence protocol have an issue: if we
have a interconnect instead of a BUS things don’t get
broadcast anymore

• 1. Bus emulation

• 2. Cache Directory

NUMA

105

• Idea: the home node maintains a directory of the
other nodes which currently have the line

• They store node ID of the owner

• 1 bit per node indicating of presence of the line

• Its like having a ”per node” cache coherence system:
where each node watches out for its assigned
memory

NUMA

106

NUMA: Practical

Systems Programming and Computer
Architecture

107

NUMA

108

• This is not just some theoretical concept having no
relevance for you in practice

• Let us look at some actual processor features

• 1. Maximus and Euler login node

• 2. Piora Cluster, Swiss National Supercomputing
Center

NUMA

109

• This is not just some theoretical concept having no
relevance for you in practice

• Let us look at some actual processor features

• 1. Maximus and Euler login node

• 2. Piora Cluster, Swiss National Supercomputing
Center

NUMA

110

NUMA

111

NUMA

112

• This is not just some theoretical concept having no
relevance for you in practice

• Let us look at some actual processor features

• 1. Maximus and Euler login node

• 2. Piora Cluster, Swiss National Supercomputing
Center

NUMA

113

NUMA

114

NUMA

115

• This is the structure we have just seen (note its not
the same processor, but the concepts are the same)

NUMA

116

NUMA

117

Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz

Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz

Question 4)

• Exam Hint:

– Do some pre-processing of the given values

– Bit numbers of: VPN, VPO, PPN, PPO

– TLB: Number of sets / entries per set

– Cache: Offset, Index and Tag bits

120

Question 4) Walk-through

121

Assumptions (we have a TLB and L1 Cache)

• Byte addressable memory

• The page size is 64 bytes

• Virtual addresses are 14 bits wide

• Physical addresses are 12 bits wide

• TLB is 2-way associative with 8 total entries

• The L1 (data) cache is physically addressed,

direct mapped, and has a 4-byte block size;

there are 16 sets.

Conclusions

 #offset bits = 6

 #VPN bits = 14 – 6 = 8

 #PPN bits = 12 – 6 = 6

 TLB has 4 sets

#TLBI bits = 2

#TLBT bits = 8 – 2 = 6

 #CO bits = 2

#CI bits = 4

#CT bits = 12 – 2 – 4 = 6

Question 4a) Walk-through

122

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

TLBT TLBI

• VA=0x268

Question 4a) Walk-through

• VA=0x268

123

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 2 6 8

0 0 0 0 1 0 0 1 1 0 1 0 0 0

VPN VPO

TLBT TLBI

VPN = 0x9 HIT

Question 4a) Walk-through

• VA=0x268

124

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 2 6 8

0 0 0 0 1 0 0 1 1 0 1 0 0 0

VPN VPO

TLBT TLBI

TLBT= 0x2 TLBI= 0x1

HIT

Question 4a) Walk-through

• VA=0x268

125

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO (=VPO)

1 0 1 0 0 0

CT CI CO

Question 4a) Walk-through

• VA=0x268

126

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 0

1 0 0 0 0 0 1 0 1 0 0 0

CT CI CO

Question 4a) Walk-through

• VA=0x268

127

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 0

1 0 0 0 0 0 1 0 1 0 0 0

CT CI CO

CT= 0x20 CI= 0xa CO= 0x0

Question 4a) Walk-through

• VA=0x268

128

CT= 0x20

CI= 0xa

CO= 0x0

HIT

Interlude: Reverse
Engineering Caches

Getting the Cache Line Size

• Experiment: Traversal of a linked list with
varying element size

Systems Programming and
Computer Architecture

130

1. struct listelem {
2. struct listelem *next;
3. uint64_t padding[NUMPAD];
4. }

So
u

rc
e:

 J
en

s
Te

u
b

n
er

,
D

at
a

P
ro

ce
ss

in
g

o
n

 M
o

d
er

n
 H

a
rd

w
a

re
, F

a
ll

 2
0

1
2

Experiment Results: Sequential

Systems Programming and
Computer Architecture

131

Prefetcher
working

No Prefetcher effect

CPU starts to outrun
prefetch speed

Experiment Results: Random

Systems Programming and
Computer Architecture

132

Sequential (i5-1135G7 2.42GHz)

Systems Programming and
Computer Architecture

133

0

10

20

30

40

50

60

T
im

e
 p

e
r

E
le

m
e

n
t

(n
s

)

Working Set Size

in order traversal

 8 bytes 16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes

Random (i5-1135G7 2.42GHz)

Systems Programming and
Computer Architecture

134

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 p

e
r

E
le

m
e

n
t

(n
s

)

Working Set Size

random traversal

 8 bytes 16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes

Comparison (i5-1135G7 2.42GHz)

Systems Programming and
Computer Architecture

135

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 p

e
r

E
le

m
e

n
t

(n
s

)

Working Set Size

comparison traversal

random 8 random 16 random 32 random 64 random 128 random 256 random 512

order 8 order 16 order 32 order 64 order 128 order 256 order 512

Getting Information about
the Cache
Linux:
Read files in /sys/devices/system/cpu/cpu*/cache/index*/

size

ways_of_associativity

number_of_sets

Windows:
GetLogicalProcessorInformationEx

X86 in general:
cpuid instruction

Suggested Reading

• “What Every Programmer Should Know About
Memory”

• http://www.akkadia.org/drepper/cpumemory.
pdf

Systems Programming and
Computer Architecture

137

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf

Simulating Caches

Insominac Games: Cachesim
https://github.com/InsomniacGames/i
g-cachesim

Cache Grind:
https://valgrind.org/docs/manual/cg-
manual.html

https://github.com/InsomniacGames/ig-cachesim
https://github.com/InsomniacGames/ig-cachesim
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html

Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz

Symmetric multiprocessing
(SMP)

CPU 0

Cache

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

RAM

SMP only works because of caches!
• Shared memory rapidly

becomes bottleneck 140

Coherency and Consistency

• As with DMA, memory can change under a cache

– Writes from other processors to memory

– Leads to 2 important concepts:

1. Coherency:

– Values in caches all match each other

– Processors all see a coherent view of memory

2. Consistency:

– The order in which changes to memory are seen by
different processors

141

Sequential Consistency
with a snoopy cache

• Cache “snoops” on reads/writes from other
processors

• If a line is valid in local cache:

– Remote (other processor) write to line
 invalidate local line

• Requires a write-through cache!

– But coherency mechanism sequential consistency

• Line can be valid in many caches, until a write

142

What about write-back caches?

• Cache lines can now be “dirty” (modified)
• Requires a cache coherency protocol
• Simplest protocol: MSI

– Each line has 3 states: Modified, Shared, Invalid
– Line can only be dirty in one cache

• Cache logic must respond to:
– Processor reads and writes
– Remote bus reads and writes

• and must:
– Change cache line state
– Write back data (flush) if required

143

MSI state machine:
local (processor) transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

144

MSI state machine:
local (processor) transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local read
or write

Local read

145

MSI state machine:
local (processor) transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Local read
or write

Local read

146

Eviction

MSI state machine:
local (processor) transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Local read
or write

Local read

147

Eviction

Eviction
 write back block

MSI state machine:
local (processor) transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Local read
or write

Cache write back

Local read

148

MSI state machine:
remote (snooped) transitions

Modified

Shared

Invalid

Remote write

Remote
read miss 149

MSI state machine:
remote (snooped) transitions

Modified

Shared

Invalid

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Remote
read miss 150

Eviction

Eviction
 write back block

MSI state machine:
all transitions

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

151

MSI Model

Systems Programming and
Computer Architecture

152

Core 1

Core 0

Cache line is not in cache

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI Model

Systems Programming and
Computer Architecture

153

Core 1

Core 0

Core 0 reads

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI Model

Systems Programming and
Computer Architecture

154

Core 1

Core 0

Core 1 writes,

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI Model

Systems Programming and
Computer Architecture

155

Core 1

Core 0

Core 0 reads again

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI Model

Systems Programming and
Computer Architecture

156

Core 1

Core 0

Core 0 writes,

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI Model

Systems Programming and
Computer Architecture

157

Core 1

Core 0

Core 1 writes,

Eviction

Eviction
 write back block

Modified

Shared

Invalid

Local write
miss

Local read
miss

Local write

Remote write miss
 write back block

Remote write

Remote read miss
 write back block

Local read
or write

Remote
read miss

Cache write back

Local read

MSI issues

• Assume: Read then Write

• On MSI: Invalid->Shared, Shared->Modified.
Two bus transactions.

• Idea: Introduce exclusive state to perform the
Shared->Modified transition without a bus
transaction.

158

MESI protocol

• Add a new line state: “exclusive”
• Modified: This is the only copy, it’s dirty
• Exclusive: This is the only copy, it’s clean
• Shared: This is one of several copies, all clean

• Invalid

• Add a new bus signal: RdX
– “Read exclusive”
– Cache can load into either “shared” or “exclusive” states
– Other caches can see the type of read

• Also: HIT signal
– Signals to a remote processor that its read hit in local cache.

• First x86 appearance in the Pentium

159

MESI state machine

160

PrRd →
Issue BusRd,
if shared…

PrRd →
If line not

shared

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated

MESI state machine

161

PrRd →
Issue BusRd,
if shared…

PrRd →
If line not

shared

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrRd →
No transaction

PrRd →
No transaction

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated

MESI state machine

162

PrRd →
Issue BusRd,
if shared…

PrRd →
If line not

shared

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrRd →
No transaction

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated

PrWr →
No transaction

MESI state machine

163

Invalid

Exclusive Modified

Shared

BusRdX →
Write back

BusRdX →
discard

BusRdX →
discard

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Snoop-initiated

BusRd →
Write back
Signal HIT

MESI state machine

164

Invalid

Exclusive Modified

Shared

BusRd →
Signal HIT

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRdX →
discard

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Snoop-initiated

BusRd →
Write back
Signal HIT

MESI state machine

165

PrRd →
Issue BusRd,
if shared…

PrRd →
If line not

shared

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrRd →
No transaction

BusRd →
Signal HIT

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRdX →
discard

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated

Snoop-initiated

BusRd →
Write back
Signal HIT

PrWr →
No transaction

MESI

Systems Programming and
Computer Architecture

166

Core 1

Core 0

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

Systems Programming and
Computer Architecture

167

Core 1

Core 0

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

Systems Programming and
Computer Architecture

168

Core 1

Core 0

Core 1: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

Systems Programming and
Computer Architecture

169

Core 1

Core 0

Core 0: read

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

Systems Programming and
Computer Architecture

170

Core 1

Core 0

Core 0: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

Systems Programming and
Computer Architecture

171

Core 1

Core 0

Core 0: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr →
issue

BusRdX

Invalid

Exclusive Modified

Shared

PrWr →
issue

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT

MESI

• Problems:

– Need to write back dirty data (no cache-cache
transfer)

– Either clean or dirty in (exactly) one cache

Systems Programming and
Computer Architecture

172

Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz

Assignment 11

• Part 1: Pen & Paper

• Understanding cache coherence protocols

(MSI and MESI)

• Part 2: Programming Part

• Implement page table

174

Check correctness

• $./correctness

– Executes the executable of your pagetables.c (pt)

– dropAddresses removes all dynamic address
from the page-table entries in your output

– Compares your page-table entries to solution

• Match

• Not match: save diff into a temporary file

Hints

• Makefile
– $ make pt

– gcc $(CFLAGS) pagetables.c $(LIBS) -o pt

• Functions
– Links a static library libdump.a (providing function

dump_pagetable(pdbr);)

– Generates executable pt (needed for./correctness
script)

Hints

• posix_memalign

– The function posix_memalign() allocates size
bytes and places the address of the allocated
memory in *memptr. The address of the allocated
memory will be a multiple of alignment, which
must be a power of two and a multiple of
sizeof(void *).

Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz (following slides cover solutions only)

Question 1

• VA: Virtual Address

• PA: Physical Address

• VPN: Virtual Page Number

• VPO: Virtual Page Offset

• PPN: Physical Page Number

• PPO: Physical Page Offset

• TLB: Translation Lookaside Buffer

• TLBI: TLB Index

Question 1

• TLBT: TLB Tag

• CT: Cache Tag

• CI: Cache Index

• CO: Cache Offset

Question 2

a) How much memory can a process address?

2^VA = 2^14 = 16 KB

b) How much memory can the processor address?

2^PA = 2^12 = 4 KB

c) How large are the VPN, VPO, PPN, PPO in bits?

VPO/PPO = 6 bits, VPN = 8 bits, PPN = 6 bits

d) How many pages can be referenced by a virtual
address?

2^VPN = 2^8 = 256
181

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct

mapped; 4-byte block & 16 sets

Question 2

182

e) How many physical pages can the page table address?

2^PPN = 2^6 = 64

f) How many sets does the TLB have?

4 sets (8 total entries / 2 due to associativity)

g) How large are the TLBI and TLBT in bits?

TLBI = 2 bits (4 sets), TLBT = VPN – TLBI = 8 – 2 = 6

h) How large are the CT, CI and CO?

CO = 2 bits <= 4-byte blocks
CI = 4 bits, <= 16 direct mapped sets
CT = 6 bits <= PA – CO – CI = 12 – 2 – 4

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct

mapped; 4-byte block & 16 sets

Question 2

183

i) What would it mean if the cache were virtually
addressed?

If the cache were virtually addressed, the cache would be
used before the translation of virtual to physical addresses.
This would mean that the cached values would only be
valid for a single process and its virtual address space

j) How large would CT, CI and CO be in that case?

CO = 2 bits <= 4-byte blocks
CI = 4 bits, <= 16 direct mapped sets
CT = 8 bits <= VA – CO – CI = 14 – 2 – 4

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct

mapped; 4-byte block & 16 sets

Question 2

184

k) How would a memory access work in that case
(virtually addressed cache)?

The processor would first look in the virtually addressed
cache.
On a miss, the virtual address would be translated by the
MMU and the physical address then used for a lookup in a
physically addressed cache or into memory.

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct

mapped; 4-byte block & 16 sets

Question 3

• VA=0x01e5

185

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 e 5

0 0 0 0 0 1 1 1 1 0 0 1 0 1

VPN VPO

TLBT TLBI

VPN = 0x7

HIT

Question 3

• VA=0x01e5

186

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 e 5

0 0 0 0 0 1 1 1 1 0 0 1 0 1

VPN VPO

TLBT TLBI

TLBT= 0x1 TLBI= 0x3

HIT

Question 3

• VA=0x01e5

187

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 2

1 0 0 0 1 0 1 0 0 1 0 1

CT CI CO

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 2

1 0 0 0 1 0 1 0 0 1 0 1

CT CI CO

Question 3

• VA=0x01e5

188

CT= 0x22 CI= 0x9 CO= 0x1

Question 3

• VA=0x01e5

189

CT= 0x22

CI= 0x9

CO= 0x1

HIT

Have a nice rest of week

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Overview
	Slide 119: Overview
	Slide 120: Question 4)
	Slide 121: Question 4) Walk-through
	Slide 122: Question 4a) Walk-through
	Slide 123: Question 4a) Walk-through
	Slide 124: Question 4a) Walk-through
	Slide 125: Question 4a) Walk-through
	Slide 126: Question 4a) Walk-through
	Slide 127: Question 4a) Walk-through
	Slide 128: Question 4a) Walk-through
	Slide 129: Interlude: Reverse Engineering Caches
	Slide 130: Getting the Cache Line Size
	Slide 131: Experiment Results: Sequential
	Slide 132: Experiment Results: Random
	Slide 133: Sequential (i5-1135G7 2.42GHz)
	Slide 134: Random (i5-1135G7 2.42GHz)
	Slide 135: Comparison (i5-1135G7 2.42GHz)
	Slide 136: Getting Information about the Cache
	Slide 137: Suggested Reading
	Slide 138: Simulating Caches
	Slide 139: Overview
	Slide 140: Symmetric multiprocessing (SMP)
	Slide 141: Coherency and Consistency
	Slide 142: Sequential Consistency with a snoopy cache
	Slide 143: What about write-back caches?
	Slide 144: MSI state machine: local (processor) transitions
	Slide 145: MSI state machine: local (processor) transitions
	Slide 146: MSI state machine: local (processor) transitions
	Slide 147: MSI state machine: local (processor) transitions
	Slide 148: MSI state machine: local (processor) transitions
	Slide 149: MSI state machine: remote (snooped) transitions
	Slide 150: MSI state machine: remote (snooped) transitions
	Slide 151: MSI state machine: all transitions
	Slide 152: MSI Model
	Slide 153: MSI Model
	Slide 154: MSI Model
	Slide 155: MSI Model
	Slide 156: MSI Model
	Slide 157: MSI Model
	Slide 158: MSI issues
	Slide 159: MESI protocol
	Slide 160: MESI state machine
	Slide 161: MESI state machine
	Slide 162: MESI state machine
	Slide 163: MESI state machine
	Slide 164: MESI state machine
	Slide 165: MESI state machine
	Slide 166: MESI
	Slide 167: MESI
	Slide 168: MESI
	Slide 169: MESI
	Slide 170: MESI
	Slide 171: MESI
	Slide 172: MESI
	Slide 173: Overview
	Slide 174: Assignment 11
	Slide 175: Check correctness
	Slide 176: Hints
	Slide 177: Hints
	Slide 178: Overview
	Slide 179: Question 1
	Slide 180: Question 1
	Slide 181: Question 2
	Slide 182: Question 2
	Slide 183: Question 2
	Slide 184: Question 2
	Slide 185: Question 3
	Slide 186: Question 3
	Slide 187: Question 3
	Slide 188: Question 3
	Slide 189: Question 3
	Slide 190: Have a nice rest of week

