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Disclaimer
• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are 
not official part of the course) having a blue heading

• For the exam only the official exercise slides are 
relevant, if in doubt always check the ones on the 
official moodle page
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Agenda

• Virtual Memory: Recap and Quiz

• Lecture Recap: Multiprocessing

• Symmetric Multiprocessing (SMP)

• Cache Coherency: MSI, MESI, MOESI, MESIF

• Memory Consistency Models

• Sync: TAS, CAS, TTAS/CAS Spinlock

• NUMA
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Virtual Memory Recap

Systems Programming and Computer 
Architecture
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Virtual Memory Recap

Caches

Systems Programming and Computer 
Architecture
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Virtual Memory Recap
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• Memory hiearachy



Virtual Memory Recap
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• Memory hiearachy



Caches: Direct Mapped

• Direct 
mapped: each 
set contains 
one block

• Bottom 2 bits 0 
because its 
word (here 4 
byte) aligned

• Next log2(S)=3 
bits indicate 
set (mod 8)
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Caches: N-way Set Associative
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• Advantage: the higher the associativity, the less conflicts we 
have

• Set associative caches generally have lower miss rate (only 
need to evict if both ways are full)



Caches: Fully Associative Cache
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• Fully associative: B ways (number of blocks), i.e. no conflict 
misses anymore

• Issue: need a lot of comparators (compare 8 values in parallel)



Virtual Memory Recap

Virtual memory

Systems Programming and Computer 
Architecture
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Virtual Memory Recap
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• Memory hiearachy



Virtual Memory

• Virtual Memory: divided into virtual pages (typically 4KB size)

• Physical Memory: divided into physical pages (same size)

• Virtual page may be located in i) physical memory (DRAM) or 
on hard drive (disk)
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Virtual Memory
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• 2GB=231-byte virtual memory

• 128MB=227-byte physical memory

• 4KB= 212-byte pages

• 231/ 212 = 219 virtual pages (19 bit 
VPN)

• 227/ 212 = 215 physical pages (15 bit 
PPN)

• Physical memory can hold 1/16 of 
virtual pages at a time



Virtual Memory

• Address translation: Process of determining physical address, 
given a virtual address
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Virtual Memory
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• Processor uses page table to translate 
VPN->PPN

• Contains entry for each virtual page: 
Valid bit (if currently in physical 
memory)

• Indexed with virtual page number

• Entry 5: specifies virtual page 5 maps 
to physical page 1

• Entry 6: Invalid (V=0) so located on disk



Virtual Memory

• Page Table 
Number: indexes 
1st level page 
table (gives base 
address of 
second tbale)

• Page Table 
Offset: indexes 
2nd level page 
table
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Virtual Memory
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Caches and Virtual Memory
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Virtual Memory Recap

Quiz

Systems Programming and Computer 
Architecture
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Virtual Memory Quiz
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• Recall: TLBI, TLBT, CI, CO, CT positions



Virtual Memory Quiz
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Virtual Memory Quiz
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Symmetric Multiprocessing (SMP)

Systems Programming and Computer 
Architecture
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SMP
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• Computer Architecture: processor design



SMP
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• Last time: sequential processor design 

• Issue?



SMP
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• Power wall + ILP Wall + memory wall => End of serial 
hardware



SMP
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• This time: multiple processors per chip



SMP

29



Cache Coherency

Systems Programming and Computer 
Architecture
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Cache Coherency
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Cache Coherency
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Cache Coherency
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• Cache Coherence: if one processor updates a value 
in its cache, other processor see this update when 
accessing the same value

• Cache Coherence in Write-through caches: we 
“snoop” reads/writes from the bus: if someone 
writes to a memory location we keep in our cache we 
invalidate our cache line

• Cache Coherence in Write-back caches: issue: we 
don’t get to know if someone updates the cache!!



Cache Coherency
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• Cache Coherency Protocol: defines how caches 
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI



Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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• Cache Coherency Protocol: defines how caches 
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI



Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency

52



Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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Cache Coherency
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• Cache Coherency Protocol: defines how caches 
communicate to enforce coherent view of memory

• 1. MSI: Basic protocol

• 2. MESI: Advanced MSI

• 3. MOESI: AMD Advanced MESI

• 3. MESIF: Intel Advanced MESI



Cache Coherency
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Cache Coherency
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Memory Consistency Models

Systems Programming and Computer 
Architecture
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Consistency Models
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Consistency Models
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• Cache coherence give guarantees to individual memory 
locations

• Memory consistency models make guarantees on ordering of 
operations across multiple memory locations

• => Cache coherence is lower level mechanism helping 
maintain a consistent view of memory on hardware level

• => MCMs provide higher level guarantees on order of 
operations: effective cache coherence models are essential to 
implement MCM



Consistency Models
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Consistency Models
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Consistency Models
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• There are two consistency models we looked at in 
this course

• 1. Sequential Consistency

• 2. Processor Consistency



Consistency Models
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• There are two consistency models we looked at in 
this course

• 1. Sequential Consistency

• 2. Processor Consistency



Consistency Models
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Consistency Models
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Consistency Models
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Consistency Models
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• Advantage

• Easy to understand for programmer (analyze, 
write code)

• Disadvantage

• Too slow to be practical: cannot reorder 
reads/writes (not in the compiler; not even in one 
single processor)



Consistency Models
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• There are two consistency models we looked at in 
this course

• 1. Sequential Consistency

• 2. Processor Consistency



Consistency Models
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Consistency Models
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Consistency Models
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Consistency Models

75

• With a weak consistency models, we have fast 
execution but low guarantees 

• What if in certain cases we really want guarantees 
(to argue for correctness of algorithms etc.)?

• Solution: use barriers (aka fences)

• 1. Compiler barriers: prevents compiler from 
reordering

• 2. Memory barriers: prevent CPU from reordering
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• With a weak consistency models, we have fast 
execution but low guarantees 

• What if in certain cases we really want guarantees 
(to argue for correctness of algorithms etc.)?
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Consistency Models
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Synchronisation methods

Systems Programming and Computer 
Architecture
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Synchronisation methods

81

• Fences assure that the compiler/cpu doesn’t reorder 
instructions

• But they do not prevent race conditions: what can 
we do if multiple processor access the same memory 
location?

• 1. TAS (TTAS Lock)

• 2. CAS
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• Fences assure that the compiler/cpu doesn’t reorder 
instructions

• But they do not prevent race conditions: what can 
we do if multiple processor access the same memory 
location?

• 1. TAS (TTAS Lock)
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Synchronisation methods
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• TAS  (Test-and-Set)

• 1. Reads current value of a memory location

• 2. Set memory location to a 1 (to indicate 
”locked”)

• 3. Returns original value

• Memory bus must be locked during the execution of 
the instruction (need hardware support for TAS)



Synchronisation methods

84



Synchronisation methods

85



Synchronisation methods
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• Fences assure that the compiler/cpu doesn’t reorder 
instructions

• But they do not prevent race conditions: what can 
we do if multiple processor access the same memory 
location?

• 1. TAS (TTAS Lock)

• 2. CAS



Synchronisation methods
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Synchronisation methods

89



NUMA

Systems Programming and Computer 
Architecture

90



NUMA
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• NUMA (Non-Uniform-Memory-Access)

• Idea: each CPU has its own memory that it can 
access faster

• Accessing local memory has lower latency and 
higher bandwidth

• Accessing remote memory introduces latency

• So the latency is not the same (not uniform) when 
accessing memory: thus NUMA



NUMA
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NUMA
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• Until now we used a BUS (which is broadcast)



NUMA
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• Idea: Use interconnect (no broadcast)



NUMA
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• Idea: Divide multiple processors into one node 
(NUMA Node)

• Give each Numa Node its own part of physical 
memory (RAM)



NUMA
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• How many CPUs we want per node can vary

• Here: we only put one CPU per NUMA node



NUMA
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NUMA
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NUMA
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NUMA
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• What issue does NUMA induce?



NUMA

101

• What issue does NUMA induce?

• Our cache coherence protocol have an issue: if we 
have a interconnect instead of a BUS things don’t get 
broadcast anymore

• 1. Bus emulation

• 2. Cache Directory



NUMA
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• What issue does NUMA induce?

• Our cache coherence protocol have an issue: if we 
have a interconnect instead of a BUS things don’t get 
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• 1. Bus emulation

• 2. Cache Directory



NUMA
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• Idea: the home node maintains a directory of the 
other nodes which currently have the line

• They store node ID of the owner

• 1 bit per node indicating of presence of the line

• Its like having a ”per node” cache coherence system: 
where each node watches out for its assigned 
memory



NUMA
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NUMA: Practical

Systems Programming and Computer 
Architecture
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NUMA
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• This is not just some theoretical concept having no 
relevance for you in practice

• Let us look at some actual processor features

• 1. Maximus and Euler login node

• 2. Piora Cluster, Swiss National Supercomputing 
Center



NUMA
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• This is not just some theoretical concept having no 
relevance for you in practice

• Let us look at some actual processor features

• 1. Maximus and Euler login node

• 2. Piora Cluster, Swiss National Supercomputing 
Center
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NUMA
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NUMA
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• This is the structure we have just seen (note its not 
the same processor, but the concepts are the same)



NUMA
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NUMA
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Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz
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Question 4)

• Exam Hint: 

– Do some pre-processing of the given values

– Bit numbers of: VPN, VPO, PPN, PPO

– TLB: Number of sets / entries per set

– Cache: Offset, Index and Tag bits

120



Question 4) Walk-through
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Assumptions (we have a TLB and L1 Cache)

• Byte addressable memory

• The page size is 64 bytes

• Virtual addresses are 14 bits wide

• Physical addresses are 12 bits wide

• TLB is 2-way associative with 8 total entries

• The L1 (data) cache is physically addressed, 

direct mapped, and has a 4-byte block size; 

there are 16 sets.

Conclusions

 #offset bits = 6

 #VPN bits = 14 – 6 = 8

 #PPN bits = 12 – 6 = 6

 TLB has 4 sets

#TLBI bits = 2

#TLBT bits = 8 – 2 = 6

 #CO bits = 2

#CI bits = 4

#CT bits = 12 – 2 – 4 = 6



Question 4a) Walk-through
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

TLBT TLBI

• VA=0x268



Question 4a) Walk-through

• VA=0x268
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 2 6 8

0 0 0 0 1 0 0 1 1 0 1 0 0 0

VPN VPO

TLBT TLBI

VPN = 0x9 HIT



Question 4a) Walk-through

• VA=0x268
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 2 6 8

0 0 0 0 1 0 0 1 1 0 1 0 0 0

VPN VPO

TLBT TLBI

TLBT= 0x2 TLBI= 0x1

HIT



Question 4a) Walk-through

• VA=0x268
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11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO (=VPO)

1 0 1 0 0 0

CT CI CO



Question 4a) Walk-through

• VA=0x268
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11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
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1 0 0 0 0 0 1 0 1 0 0 0

CT CI CO



Question 4a) Walk-through

• VA=0x268
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11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 0

1 0 0 0 0 0 1 0 1 0 0 0

CT CI CO

CT= 0x20 CI= 0xa CO= 0x0



Question 4a) Walk-through

• VA=0x268
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CT= 0x20

CI= 0xa

CO= 0x0

HIT



Interlude: Reverse 
Engineering Caches



Getting the Cache Line Size

• Experiment: Traversal of a linked list with 
varying element size

Systems Programming and 
Computer Architecture
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1. struct listelem {
2. struct listelem *next;
3. uint64_t padding[NUMPAD];
4. }
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Experiment Results: Sequential

Systems Programming and 
Computer Architecture
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Prefetcher 
working

No Prefetcher effect

CPU starts to outrun 
prefetch speed



Experiment Results: Random

Systems Programming and 
Computer Architecture
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Sequential (i5-1135G7 2.42GHz)

Systems Programming and 
Computer Architecture
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Random (i5-1135G7 2.42GHz)
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Comparison (i5-1135G7 2.42GHz)
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Getting Information about 
the Cache
Linux:
Read files in /sys/devices/system/cpu/cpu*/cache/index*/

size 

ways_of_associativity

number_of_sets

Windows:
GetLogicalProcessorInformationEx

X86 in general:
cpuid instruction



Suggested Reading

• “What Every Programmer Should Know About 
Memory”

• http://www.akkadia.org/drepper/cpumemory.
pdf

Systems Programming and 
Computer Architecture
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http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf


Simulating Caches

Insominac Games: Cachesim
https://github.com/InsomniacGames/i
g-cachesim

Cache Grind: 
https://valgrind.org/docs/manual/cg-
manual.html

https://github.com/InsomniacGames/ig-cachesim
https://github.com/InsomniacGames/ig-cachesim
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
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Symmetric multiprocessing 
(SMP)

CPU 0

Cache

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

RAM

SMP only works because of caches!
• Shared memory rapidly 

becomes bottleneck 140



Coherency and Consistency

• As with DMA, memory can change under a cache

– Writes from other processors to memory

– Leads to 2 important concepts:

1. Coherency:

– Values in caches all match each other

– Processors all see a coherent view of memory

2. Consistency:

– The order in which changes to memory are seen by 
different processors
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Sequential Consistency
with a snoopy cache

• Cache “snoops” on reads/writes from other 
processors

• If a line is valid in local cache:

– Remote (other processor) write to line 
 invalidate local line

• Requires a write-through cache!

– But coherency mechanism  sequential consistency

• Line can be valid in many caches, until a write
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What about write-back caches?

• Cache lines can now be “dirty” (modified)
• Requires a cache coherency protocol
• Simplest protocol: MSI

– Each line has  3 states: Modified, Shared, Invalid
– Line can only be dirty in one cache

• Cache logic must respond to:
– Processor reads and writes
– Remote bus reads and writes

• and must:
– Change cache line state 
– Write back data (flush) if required

143



MSI state machine: 
local (processor) transitions

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

144
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Eviction

MSI state machine: 
local (processor) transitions

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

Local write

Local read 
or write

Local read
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Eviction

Eviction 
 write back block

MSI state machine: 
local (processor) transitions

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

Local write

Local read 
or write

Cache write back

Local read
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MSI state machine: 
remote (snooped) transitions

Modified

Shared

Invalid

Remote write

Remote 
read miss 149



MSI state machine: 
remote (snooped) transitions

Modified

Shared

Invalid

Remote write miss 
 write back block

Remote write

Remote read miss 
 write back block

Remote 
read miss 150



Eviction

Eviction 
 write back block

MSI state machine: 
all transitions

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

Local write

Remote write miss 
 write back block

Remote write

Remote read miss 
 write back block

Local read 
or write

Remote 
read miss

Cache write back

Local read
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MSI Model
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Core 1

Core 0

Cache line is not in cache

Eviction

Eviction 
 write back block

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

Local write

Remote write miss 
 write back block

Remote write

Remote read miss 
 write back block

Local read 
or write

Remote 
read miss

Cache write back

Local read



MSI Model
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Core 1

Core 0

Core 0 reads

Eviction

Eviction 
 write back block

Modified

Shared

Invalid

Local write 
miss

Local read 
miss

Local write

Remote write miss 
 write back block

Remote write

Remote read miss 
 write back block

Local read 
or write

Remote 
read miss

Cache write back

Local read



MSI Model
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Core 1

Core 0

Core 1 writes, 

Eviction

Eviction 
 write back block

Modified

Shared

Invalid

Local write 
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Local write

Remote write miss 
 write back block

Remote write

Remote read miss 
 write back block

Local read 
or write

Remote 
read miss

Cache write back

Local read



MSI Model
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Core 1

Core 0

Core 0 reads again

Eviction

Eviction 
 write back block

Modified

Shared

Invalid

Local write 
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Local read 
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Local write

Remote write miss 
 write back block

Remote write
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 write back block

Local read 
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read miss

Cache write back
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MSI Model
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Core 1
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MSI Model
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Core 1

Core 0

Core 1 writes, 

Eviction

Eviction 
 write back block

Modified
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Invalid
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MSI issues

• Assume: Read then Write

• On MSI: Invalid->Shared,  Shared->Modified. 
Two bus transactions.

• Idea: Introduce exclusive state to perform the 
Shared->Modified transition without a bus 
transaction.
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MESI protocol

• Add a new line state: “exclusive”
• Modified: This is the only copy, it’s dirty
• Exclusive: This is the only copy, it’s clean
• Shared:     This is one of several copies, all clean

• Invalid

• Add a new bus signal: RdX
– “Read exclusive”
– Cache can load into either “shared” or “exclusive” states
– Other caches can see the type of read

• Also: HIT signal
– Signals to a remote processor that its read hit in local cache.

• First x86 appearance in the Pentium
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MESI state machine
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PrRd →
Issue BusRd,
if shared…

PrRd → 
If line not

shared

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated
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Invalid

Exclusive Modified

Shared

BusRdX →
Write back

BusRdX →
discard

BusRdX →
discard

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Snoop-initiated

BusRd →
Write back
Signal HIT
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No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrRd →
No transaction

BusRd →
Signal HIT

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRdX →
discard

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

Processor-initiated

Snoop-initiated

BusRd →
Write back
Signal HIT

PrWr →
No transaction
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Core 1

Core 0

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT
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Core 1

Core 0

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT
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Core 1

Core 0

Core 1: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT
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Core 1

Core 0

Core 0: read

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT



MESI

Systems Programming and 
Computer Architecture

170

Core 1

Core 0

Core 0: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT
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Core 1

Core 0

Core 0: write

Terminology:
• PrRd: processor read
• PrWr: processor write
• BusRd: bus read
• BusRdX: bus read excl

PrRd →
Issue BusRd,
if shared…

Processor-initiated

Snoop-initiated

PrRd, PrWr →
No transaction

PrWr → 
issue 

BusRdX

Invalid

Exclusive Modified

Shared

PrWr → 
issue 

BusRdX

PrRd →
No transaction

PrWr →
No transaction

BusRd →
Signal HIT

BusRdX →
Write back

BusRdX →
discard

BusRd →
Write back
Signal HIT

PrRd →
Issue BusRd,

If line not
shared

BusRdX →
discard

PrRd →
No transaction

BusRd →
Signal HIT
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• Problems:

– Need to write back dirty data (no cache-cache 
transfer)

– Either clean or dirty in (exactly) one cache

Systems Programming and 
Computer Architecture
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Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz



Assignment 11

• Part 1: Pen & Paper

• Understanding cache coherence protocols 

(MSI and MESI)

• Part 2: Programming Part

• Implement page table

174



Check correctness

• $ ./correctness

– Executes the executable of your pagetables.c (pt)

– dropAddresses removes all dynamic address 
from the page-table entries in your output

– Compares your page-table entries to solution

• Match

• Not match: save diff into a temporary file



Hints

• Makefile
– $ make pt 

– gcc $(CFLAGS) pagetables.c $(LIBS) -o pt

• Functions
– Links a static library libdump.a ( providing function 

dump_pagetable(pdbr);)

– Generates executable pt ( needed for./correctness 
script)



Hints 

• posix_memalign

– The function posix_memalign() allocates size
bytes and places the address of the allocated 
memory in *memptr. The address of the allocated 
memory will be a multiple of alignment, which 
must be a power of two and a multiple of 
sizeof(void *). 



Overview

• Part of Assignment 10

• Recap Cache Coherence

• Hints for Assignment 11

• Quiz (following slides cover solutions only)



Question 1 

• VA: Virtual Address

• PA: Physical Address

• VPN: Virtual Page Number

• VPO: Virtual Page Offset

• PPN: Physical Page Number

• PPO: Physical Page Offset

• TLB: Translation Lookaside Buffer

• TLBI: TLB Index



Question 1 

• TLBT: TLB Tag

• CT: Cache Tag

• CI: Cache Index

• CO: Cache Offset



Question 2 

a) How much memory can a process address?

2^VA = 2^14 = 16 KB

b) How much memory can the processor address?

2^PA = 2^12 = 4 KB

c) How large are the VPN, VPO, PPN, PPO in bits?

VPO/PPO = 6 bits, VPN = 8 bits, PPN = 6 bits

d) How many pages can be referenced by a virtual 
address?

2^VPN = 2^8 = 256
181

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct 

mapped; 4-byte block & 16 sets



Question 2 

182

e) How many physical pages can the page table address?

2^PPN = 2^6 = 64

f) How many sets does the TLB have?

4 sets (8 total entries / 2 due to associativity)

g) How large are the TLBI and TLBT in bits?

TLBI = 2 bits (4 sets),       TLBT = VPN – TLBI = 8 – 2 = 6

h) How large are the CT, CI and CO?

CO = 2 bits <= 4-byte blocks
CI = 4 bits, <= 16 direct mapped sets
CT = 6 bits <= PA – CO – CI = 12 – 2 – 4

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct 

mapped; 4-byte block & 16 sets
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i) What would it mean if the cache were virtually 
addressed?

If the cache were virtually addressed, the cache would be 
used before the translation of virtual to physical addresses. 
This would mean that the cached values would only be
valid for a single process and its virtual address space

j) How large would CT, CI and CO be in that case?

CO = 2 bits <= 4-byte blocks
CI = 4 bits, <= 16 direct mapped sets
CT = 8 bits <= VA – CO – CI = 14 – 2 – 4

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct 

mapped; 4-byte block & 16 sets



Question 2 

184

k) How would a memory access work in that case 
(virtually addressed cache)?

The processor would first look in the virtually addressed 
cache. 
On a miss, the virtual address would be translated by the 
MMU and the physical address then used for a lookup in a 
physically addressed cache or into memory.

• Byte addressable
• VA = 14 bits
• PA = 12 bits
• Page is 64 bytes
• TLB: 2-way & 8 total entries
• Cache physically addr. direct 

mapped; 4-byte block & 16 sets



Question 3

• VA=0x01e5
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 e 5

0 0 0 0 0 1 1 1 1 0 0 1 0 1

VPN VPO

TLBT TLBI

VPN = 0x7

HIT
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 e 5

0 0 0 0 0 1 1 1 1 0 0 1 0 1

VPN VPO

TLBT TLBI

TLBT= 0x1 TLBI= 0x3

HIT



Question 3

• VA=0x01e5
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PPN PPO
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CT CI CO



11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2 2

1 0 0 0 1 0 1 0 0 1 0 1

CT CI CO

Question 3

• VA=0x01e5

188

CT= 0x22 CI= 0x9 CO= 0x1



Question 3

• VA=0x01e5

189

CT= 0x22

CI= 0x9

CO= 0x1

HIT



Have a nice rest of week
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