==

Systems@ ETH ziicn

Exercise Session 14

Systems Programming and Computer Architecture

Devices

Fall Semester 2024

Disclaimer

. Website: n.ethz.ch/~falkbe/
. (Extra) Demos on GitHub: github.com/falkbe
. Kahoots: now on website n.ethz.ch/~falkbe/

My exercise slides have additional slides (which are not official part
of the course) having a blue heading

For the exam only the official exercise slides are relevant, if in doubt
always check the ones on the official moodle page

Overview

* Lecture Recap: Devices
* SPCA in a nutshell

* Exam Remarks

* SPCA in perspective

* Questions

SPCA Exercise Session 14

Devices

Devices and Device Drivers

Systems Programming and Computer Architecture

Devices

* Devices: Device Registers/Dealing with caches

* Device Driver: Operating System Part of the device

SPCA Exercise Session 14

Devices

* Devices: Device Registers/Dealing with caches

* Device Driver: Operating System Part of the device

SPCA Exercise Session 14

SPCA Devices

Address Decoder

M

¢dM

¥lesgy

CLK
MemWrite
Processor (2ddress Memory H Fi
WriteData igure 8.28 Support hardware for
.) memory-mapped 1/0
CLK

.
00
/O o1 ReadData
en| | Device 1 0
-

SR
170

en| | Device 2
-

SPCA Exercise Session 14

SPCA Devices

CPU socket 1156
PS/2 keyboard 1
and mouse - |
connectors
% DDRS3
Graphics =% memory
connectors sockets
uUSB
connectors
|
Ee Power
Ethernet]
: : & supply
Jack !!, connector
Audio — R e
jack N 0 S
PClexpress & = e —
x16 slot | ————
PCl slots —§ SATA
connectors

PCl express
x1 slot

dF LA cXercise >ession 14

Devices

* Input/Output (1/0) systems are used to connect a computer with external devices called

peripherals (keyboards, monitors, etc.)

® Processor accesses an |/O device using the address/data busses the same way as it
accesses memory

* Part of address space is dedicated to 1/O devices rather than memory: a store sends
data to the device, with a load we recieve data from the device

® =>This method of communicating is called memory mapped 1/O

Devices

What is a device?

Specifically, to an OS programmer:
* Piece of hardware visible from software
* Occupies some location on a bus

* Set of registers
* Memory mapped or I/O space

* Source of interrupts
* May initiate Direct Memory Access transfers

SPCA Exercise Session 14

10

Devices

Registers

* CPU can load from device registers:
* Obtain status info
* Read input data

* CPU can store to device registers:

» Set device state and configuration
* Write output data
* Reset states

SPCA Exercise Session 14

11

Devices

Addressing registers

1. Memory mapped:
* Registers appear as memory locations
* Access using loads/stores (movb/movw/movl1/movq)

2. “l/O instructions”:
* Different (16 bit) address space for older I/O devices
* Specific (these days) to x86 architecture
* Special instructions: inb, outb, etc.

SPCA Exercise Session 14

12

Devices

Registers are not memory

Device registers don’t behave like RAM!

* Register contents change without writes from CPU

 Status words
* Incoming data

* Writes to registers are used to trigger actions

* Sending data
* Resetting state machines

SPCA Exercise Session 14

13

Devices

Dealing with caches

* Reads can’t come from the cache
» Register value changes = cache becomes inconsistent

* Write-back caches (and write buffers) cause problems
* You don’t know when the line will be written

* Reads and writes cannot be combined into cache lines
* Registers might require single word or byte writes only
* Line-size writes stomp on other registers
* Even spurious reads trigger device state changes

—> Device register access must bypass the cache
* Handled in the MMU: PTEs have “no cache” flag
* |/O space access isn’t cached anyway

SPCA Exercise Session 14

14

Devices

* Devices: Device Registers/Dealing with caches

* Device Driver: Operating System Part of the device

SPCA Exercise Session 14

15

Devices

Basic model

L Operating System J

Driver
(software)

SPCA Exercise Session 14

Device
(hardware)

<

“The Real World”

16

Devices

Very simple UART driver

#define UART_BASE @x3f8

#define UART_THR (UART_BASE + @)
#define UART_RBR (UART_BASE + 0)
#define UART_LSR (UART_BASE + 5)

void serial_putc(char c)

{
// Wait until FIFO can hold more chars
while((inb(UART_LSR) & 0x20)== 0);
// Write character to FIFO
outb(UART_THR, c);

}

char serial_getc()

{
// Wait until there is a char to read
while((inb(UART_LSR) & @x81) == 0);
// Read from the receive FIFO
return inb(UART_RBR);

Register addresses from
data sheet
0x3f8: location on a PC

Send a character (wait
until we can first)

Read a character (spin
waiting until one is there
to read)

SPCA txercise Session 14 17

Devices

Very simple UART driver

 Actually, far too simple!
» But this is how the first version always looks...

* No initialization code, no error handling.
* Uses Programmed 1/0 (PIO)

» CPU explicitly reads and writes all values to and from registers
* All data must pass through CPU registers

* Uses polling
* CPU polls device register waiting before send/receive
* Tight loop!
* Can’t do anything else in the meantime
* Although could be extended with threads and care...
* Without CPU polling, no 1/O can occur

SPCA Exercise Session 14

18

Devices

* Each device operates differently: Different control register layouts,
Unique set of commands, etc.

* Device driver hides these details from the OS: provides a
standardised API (e.g. send packet(), read block()) for OS

* The OS (the OS’s device driver) is responsible for initating DMA

transfers: allocates memory, configures the DMA controller

Devices
Other challenges

1. How to avoid polling all the time?
* How does the CPU know when the device is ready, or finished?
e Solution: interrupts

2. How to avoid the CPU copying all the data?
e (Can the CPU get on with something else?
* Solution: direct memory access (DMA)

3. Where do these register locations come from?
* How can the OS find devices in the physical address space?
* How are the physical addresses allocated?
* Solution: discoverable buses (e.g. PCl)

SPCA Exercise Session 14

20

Devices
DMA, Shared Memory, PCle

Systems Programming and Computer Architecture

Devices

* DMA (Direct Memory Access): Copies data for CPU
* Shared Memory: Buffer/Descriptor Rings
* PCle (Peripheral Component Interconnect): Finding address space for

the devices

Devices

* DMA (Direct Memory Access): Copies data for CPU
* Shared Memory: Buffer/Descriptor Rings
* PCle (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 23

Devices

Direct Memory Access

* Avoid programmed /0 for lots of data
» E.g. fast network or disk interfaces

* Requires DMA controller
* Generally built-in these days

* Bypasses CPU to transfer data directly between 1/O device and
memory
* Doesn’t take up CPU time
e Can save memory bandwidth
* Only one interrupt per transfer

SPCA Exercise Session 14

24

Devices

Very simple DMA transfer

1. OS requests DMA transfer

from disk controller:
CPU * buffer address A
* sizeS
4. DMA controller transfers word
to address A, increments A,
decrements S. Cache
Main memo
DMA/PCI < Frontside (memory) bus i
controller Buffer
5. When S ==0, DMA
controller interrupts CPU to PCl bus D .
indicate transfer complete 2. Disk controller starts
~ DMA transfer of S bytes
IDE disk
3. Disk controller initiates bus
controller request for each data byte
| | from disk

PC, circa 1986

Systems Programming 2023 Ch. 21: Devices

SPCA Exercise Session 14

25

Devices

DMA and Caches

* DMA means memory becomes inconsistent with CPU caches

* Options:
1. CPU can map DMA buffers non-cacheable
= large hit — probably wants to process data anyway

2. Cache can “snoop” DMAC bus transactions
(but doesn’t scale beyond small SMP systems)

3. OS can explicitly flush/invalidate cache regions
—> cache management important part of device drivers!

* ldea: add the DMA device to our cache coherency protocol

SPCA Exercise Session 14

26

Devices
DMA and Virtual Memory

* DMA addresses are physical

* Appear on external bus
* User and OS code deal with virtual addresses (mostly)

* OS (and device drivers) must manually translate virtual <> physical
addresses when programming DMA controllers
* This can require more than just a hardware page table!

* DMA of a single virtual address region might not be contiguous in physical address
space

* Scatter-gather DMA controllers: DMA to/from a list of regions

* Newer systems: provide an IOMMU
* Works like an MMU, but for DMA writes from devices

* Must still be programmed by OS to match MMU state
* Has all kinds of other interesting uses — beyond scope of this course!

SPCA Exercise Session 14

27

Devices

* DMA (Direct Memory Access): Copies data for CPU
e Shared Memory: Buffer/Descriptor Rings
* PCle (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 28

Devices

Basic model

Data:

Register writes
DMA reads

Events:
Register writes
Register reads

)

>
(—

<

[Operating System J

Dri Data:
river Register reads
(SOftWa re) * DMA writes

Events:
Interrupts

H

“The Real World”

Device
(hardware)

* Driver and device are both state machines
* Data must be transferred between them
* Events signal state transitions

SPCA Exercise Session 14

Devices

Device << CPU communication

1. Writing a device register
e CPU - device, synchronous

2. Reading a device register
e CPU & device, synchronous

3. Device requests interrupt
 Device & CPU, synchronous

4. Shared memory
e CPU writes to memory, DMA reads
* DMA writes to memory, CPU reads Neither device nor software need
* Asynchronous to communicate simultaneously!

SPCA Exercise Session 14

30

Devices

Buffer (or descriptor) rings

Tail
Example for transmit ring:
The device reads from head
and the OS adds to the tail.

Head

Logical View
Ring consists of:
— Buffers contiguous in memory

or

— Pointers (descriptors) to other bits of
memory

SPCA Exercise Session 14

High Memory

Tail »

» Queue Size

Head »

Low Memory

Physical View in Memory

31

Devices

Buffer (or descriptor) rings (for transmit)

Tail

(OS writes to) \

Last buffer
written by
the OS

Ring consists of:

— Buffers contiguous in memory
or

— Pointers (descriptors) to other bits of
memory

SPCA Exercise Session 14

messs Owned by OS
=mmm Owned by device

Last buffer
sent by the

EE—— device
Device sends a
packet
™~ Head

(device reads from)

32

Devices

Buffer (or descriptor) rings (for transmit)

Tail
(OS writes to) \
Last buffer
written by
the OS

Ring consists of:

— Buffers contiguous in memory
or

— Pointers (descriptors) to other bits of
memory

Head

SPCA Exercise Session 14

Last buffer
sent by the
device

(device reads from)

messs Owned by OS
m=mms Owned by device

Device sends a
packet

33

Devices

Overruns and underruns (receive)

* Device has no buffers for received packets
—> starts discarding packets
* Not as bad as it sounds
* Will start copying them to memory when a buffer is free Head
* Signals that it’s lost some in a status register (device writes to)

* CPU reads all received packets = it must wait il N
e Can spin polling, but inefficient (05 reads from)
* Signals device to interrupt it when a new packet has been received
* Goes off to do something else

SPCA Exercise Session 14

34

Devices

Tulip descriptors

Word 0
Word 1
Word 2
Word 3

31

OWN

Control
bits

bits
0
Status
Byte-count Byte-count
Buffer 2 Buffer 1

Each descriptor

Buffer address 1 can refer to
two areas of

Buffer address 2 memory

The Tulip has 2 rings of descriptors in main memory -
One for transmit, one for receive

SPCA Exercise Session 14

35

Devices

Descriptor rings

CSR3 or4

Descriptor
address in
memory

Descriptor O

f Buffer 1
_/—) Buffer 2

Descriptor 1

> Buffer 1

I — Buffer 2

Descriptor 2

- Buffer 1

Buffer 2

Descriptor n

\
N Buffer 1
X

Buffer 2

SPCA Exercise Session 14

36

Devices

Descriptor rings — chain mode

CSR3or4

AN

Descriptor 0 —X
Buffer 1

Descriptor 1
\ Buffer 1

Descriptor 2

1)

Descriptor n X_)
\V Buffer 1

Null
(end of list)

SPCA Exercise Session 14

Buffer 1

37

Devices

* DMA (Direct Memory Access): Copies data for CPU
* Shared Memory: Buffer/Descriptor Rings
* PCle (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 38

Devices

PCl is...

Peripheral Component Interconnect

* An electrical standard for connecting devices
* Asis PCMCIA, PCI-X, PCI-Express, etc.

A standard for physical connectors
A set of “bus protocols” for communication between devices

* A software-visible interface to I/O hardware

PCle has succeeded PCl, but extends the same software-visible
interface

SPCA Exercise Session 14

39

Devices

PCl tries to solve many problems:

* Device discovery
* Finding out which devices are in the system

* Address allocation
* Which addresses should each device’s registers appear at?

* Interrupt routing

* Which interrupt signals from the device should map to which exception
vectors?

* Intelligent DMA

» “Bus mastering” devices no longer need a DMA controller

SPCA Exercise Session 14

40

Devices

CPU K l% RAM
* PCI Address space is PCl root
_ bridge
flat: each devie asks for !
/
set of address range ’ ! v v
PCI-PCI
: NIC . SATA GPU
* Result: each device bridge 8
appears as a set of A ! A
. / PCl bridges form a hierarchy
contigous address Sound USB Wireless Also:
* PCI-ISA
ranges in memory - PCI-USB
* PCI-SATA

space

SPCA Exercise Session 14

Etc.

41

Devices

Host Bridge:Connects CPU
(,host”) to PCl bus

=> |t controls the address
mapping

PCI-PCI Bridge: Connects one
PCl Bus with another one
BFD (Bus-Device-Function):
Unique identifier for a device
on a PCl bus

Example: BDF 00:1f.0

® Bus: 00, Device: 1f, Function: O

Primary: The bus the system starts with
Secondary: New bus created

Subord: Highest numbered bus in secondary

>

Processor Processor Processor Processor
[Adaress Port | Dsts Pont | [Adaress Port || Dsts Port_|
Host/PCl Bridge €—p M::':rv) Host/PCl Bridge
Bus=0 Bus=4
Subord=3 Subord=5
T PCl Bus 0 T PCiBus 4
<€ I <€ '
PCl-to-PCl | g @ aStraIVx PCl-to-PCI
Bridge Bridge
Endpoint Pri =0 Endpoint ~
(xHCI controller) Uit (TB3 controller) S:L"r:ad’:ry s
Subord=3 Subord=5
BDF: 01.00.0 + PCl Bus 1 BDF: 05.00.0 f PCl Bus 5
| = P
PCI-to-PCI PCl-t0-PCI
l Bridge Bridge
Primary = 1 Primary =1
Secondary =2 | Secondary =3
| Subord=2 | | Subord=3 | Endpoint Endpoint Endpoint
f (NIC) (Nvidia) (Nvidia)
PCl Bus 2
>
PCI Bus 3 BDF: 03.00.0 BDF: 03.01.0 BDF: 03.01.1

<

httos://astralvx.com/introduction-to-pcie/

Devices

* Note: The memory mapped regions from PCI for devies are for the
control registers (registers |= buffer/descriptor rings)

* Why a tree structure? In PCl, we have PCl buses which are broadcast

=> This yields issues such as bandwith limitation, electrical limtations

(signal degredation and reflactions of noise): use multiple buses,

connected via PCI-PCl bridge

Devices

PCI devices are self-describing

* Each device has a configuration header
* Accessed through parent bridge, initially

* Some of the fields:

Bits | Description |

16 Manufacturer ID (identifies Intel, 3Com, NVidia, etc.
16 Model ID (specific to manufacturer)

24 Class code (what kind of device is this?)

8 Version identifier

* Plus:
* Allocated/required address ranges (BAR values)

* |nterrupts
* Electrical information

* Etc.

SPCA Exercise Session 14

44

SPCA in a nutshell

Systems Programming and Computer Architecture

SPCA in a nutshell

* 1. Programming Language C: Ch. 1-7
e 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

* 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14

46

SPCA in a nutshell

* 1. Programming Language C: Ch. 1-7
* 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

e 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14

47

SPCA in a nutshell
GNU gcc Toolchain

gcc -E foo.c

gcc -S foo.c

.C,.h .C .S
gcc -c foo.c

as

gcc -o bar foo.c bar.c

SPCA Exercise Session 14

M

48

SPCA in a nutshell

Control flow statements
(like Java or C# or C++) Control flow statements

if (Boolean expression) Statement_when_true

else Statement when_false (I i ke Java O r C# O r C++)

switch (Integer expression) {

case Constant_1 : Statement; break; .
case Constant 2 : Statement; break; for (Initial; Test; Increment) Statement

case Constant_n: Statement; break;

. CSEIRR Sefda i) SEELE while (Boolean expression) Statement

do Statement while (Boolean expression)
return (Expression)

Systems Programming 2024 Ch. 2: Introduction to C

SPCA Exercise Session 14 49

SPCA in a nutshell

Encoding integers

Unsigned Two’s complement
w-=1 w=2
B2U(X) = Z x; - 2! B2T(X) = —x,,_ 1 LWty Z x; - 2
i=0
short int x = 15213; \\\\\ Sign
short int y = -15213; Bit

* AC short is 2 bytes long:

| Decmal | Hoc | meay

X 15213 3B6D

90111011 01101101
y -15213 C4 93

11000100 10010011
* Sign bit

* For 2's complement, most significant bit = 1 indicates negative

Systems Programming 2024 Ch. 3: Representing Integers

SPCA Exercise Session 14

50

SPCA in a nutshell

OxFFFFFFFF - -
Loa d I n g * Kernel virtual memory L\:I)eur::rr\é;rl;zccesmble
0x 0000000 User stack PrEVIOUS
. (created at runtime) .
« When the OS loads a program, it: | «—Stack pointer Frame
* creates an address space A
hd inspects the executable file to see Memory-mapped region for Frame Pointer: >
what’s in it shared libraries)
0x40000000
« (lazily) copies regions of the file ‘ Frame for
into the right place in the address T — brk proc
Space Run-time heap
* does any final linking, relocation, (created by malloc) Stack Pointer: ———
or other needed preparation Read/write segment Loaded
prep (.data, .bss) f:‘om re ﬁ
the
Read-only segment executable
(.init, . text, .rodata) file StaCk ”TO p”
)
x@8048000 Unused -
0x00000000

5
Systems @ ETH zun

SPCA Exercise Session 14 51

SPCA in a nutshell

External fragmentation
Dynamic memory all

* Occurs when there is enough aggregate heap memory, but no single free block is large enough

 Memory allocator? pl = malloc(4)
* VM h/w and kernel allocate pag 02 = malloc(s)
» Application objects typically sm:
. - 3 = malloc(6
« Allocator manages objects withi p3 = malloc(6)
* Allocation free(p2) |
* A memory allocator doles out m b4 = malloc(6) Oops! (what would happen now?)
* “block”: contiguous range of byt * Depends on the pattern of future requests
* of any size, in this context * Thus, difficult to measure

SPCA Exercise Session 14 52

SPCA in a nutshell

Recall: how C code runs as a process on CPU

Preprocessor

Compiler

ccl

Assembler Linker

as Id

SPCA Exercise Session 14

Kernel virtual memory

User stack
(created at runtime)

'
t

Memory-mapped region for
shared libraries

Loader

executable

execve f

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

I Memory

invisible to
user code

+~—%rsp
(stack
pointer)

«— brk

Loaded
from

the
executable
file

Unused

53

SPCA in a nutshell

* 1. Programming Language C: Ch. 1-7
e 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

* 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14

54

SPCA in a nutshell

Instruction Set Architecture

e Assembly Language View

* Processor state
* Registers, memory, ...
* |nstructions
 addl, movq, leal, ..
* How instructions are encoded as
bytes

 Layer of Abstraction

» Above: how to program machine

* Processor executes instructions in a
sequence

* Below: what needs to be built

. %Jse variety of tricks to make it run
ast

* E.g., execute multiple instructions
simultaneously

SPCA Exercise Session 14

ISA

Application
Program

Compiler

CPU
Design

Circuit
Design

Chip
Layout

0S

55

SPCA in a nutshell

Moving data

%rax

%rbx

movx Source, Dest:

| %rcx

| %rdx

* Operand Types

| %rsi

* Immediate: Constant integer data e

* Example: $0x400, $-533 —
* Like C constant, but prefixed with *$’ —
* Encoded with 1, 2, 4, 8 bytes

* Register: One of 16 integer registers
* Example: %eax, %rlad
* Note some (e.g. %rsp, %rbp) reserved for special use
* Others have special uses for particular instructions

| %r8

|

| %r9

%rlie
%rl1l
%rl2
%ri3
%ri4
%r15

%rled

%rlld

%ri2d

%rl3d

%rldd

%r15d

* Memory: 1,2,4, or 8 consecutive bytes of memory at address given by register

» Simplest example: (%rax)
* Various other “address modes”

SPCA Exercise Session 14

56

SPCA in a nutshell

Source code:

Compiling into assembly

C code Generated x86 assembly
int sum(int x, int y) sum:
{ endbr64
int t = x+y; pushq %rbp
return t; movq %»rsp, %rbp
} movl %edi, -20(%rbp)
mov1l %esi, -24(%rbp)
mov1l -20(%rbp), %edx
mov1l -24(%rbp), %eax
addl %»edx, %eax
Obtain with command mov1l %eax, -4(%rbp)
gcc —00 -S code.c movl -4(%rbp), %eax
popq %rbp
Produces file code.s ret

SPCA Exercise Session 14

SPCA in a nutshell

Recall: how C code runs as a process on CPU

: Memo
Kernel virtual memor I i y
invisible to

User stack user code
(created at runtime)
+~—%rsp

. . k
Preprocessor ~ Compiler Assembler Linker Loader ; Lo
Memory-mapped region for
shared libraries
as Id executable . execve I -
Run-time heap :
(created by malloc)
Read/write segment Loaded
.0 (.data, .bss) from
the
Read-only segment executable
(.init, .text, .rodata) file
Unused
0
58

SPCA Exercise Session 14

SPCA in a nutshell

Object code

e Assembler
* Translates .s into .o
* Binary encoding of each instruction
* Nearly-complete image of executable code
* Missing linkages between code in different files

e Linker
* Resolves references between files

* Combines with static run-time libraries
* E.g., code for malloc, printf

* Some libraries are dynamically linked
* Linking occurs when program begins execution

SPCA Exercise Session 14

Code for sum.o

<sum>:

. 89
: 8b
: 5d
]

f3 of

: 55
. 48
: 89
. 89
: 8b
: 8b

o1

le fa

e Total of 26 bytes

e Each instruction
1, 2, or 3 bytes

e Starts at address
0x401040

59

SPCA in a nutshell

Alternate disassembly

Within gdb debugger:

(gdb) disassemble sum

Dump of assembler code for function sum:

0x0000000000000000 <+0>:
0Xx0000000000000004 <+4>:
0x0000000000000005 <+5>:
0x0000000000000008 <+8>:

0x000000000000000b <+11>:
0x000000000000000e <+14>:
0x0000000000000011 <+17>:
0x0000000000000014 <+20>:
0x0000000000000016 <+22>:
0x0000000000000019 <+25>:
0Xx000000000000001C <+28>:
0x000000000000001d <+29>:

End of assembler dump.

endbré64

push %rbp

mov %rsp,%rbp

mov %edi, -0x14(%rbp)
mov %esi, -0x18(%rbp)
mov -0x14(%rbp) ,%edx
mov -0x18(%rbp) ,%eax
add %edx,%eax

mov %eax, -0x4(%rbp)
mov -0x4(%rbp) , %eax
pop %rbp

retq

SPCA Exercise Session 14

60

SPCA in a nutshell

Recall: how C code runs as a process on CPU

Preprocessor

Compiler

Assembler Linker

Id

SPCA Exercise Session 14

Kernel virtual memory

User stack
(created at runtime)

'
t

Memory-mapped region for
shared libraries

Loader

executable

execve f

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

I Memory

invisible to
user code

+~—%rsp
(stack
pointer)

«— brk

Loaded
from

the
executable
file

Unused

61

SPCA in a nutshell
Static linking

Disassembly of section .data:

0000000000000000 <bufpO>:
9: 00 00 00 00 00 00 00 00

@: R_X86_64 64 buf

Disassembly of section .bss:

0000000000000000 <bufpl>:
9: 00 00 00 00 00 00 00 00

* Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -o p main.c swap.c

unix> ./p
main.c swip.c Source files
Translators TranSIators
(cpp,ccl,as) (cpp,ccl,as)
1_ 1 Separately compiled
ma in -0 Swip -0 relocatable object files
Linker (1d)

l Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c
Systems Programming 2024 Ch. 12: Linking

SPCA Exercise Session 14

push
mov
movq

mov
mov
mov
mov
mov
mov
mov
mov

mov
mov

%rbp
%rsp,%rbp

$0x60103c,0x200b3c(%rip) #

0x200b25(%rip),%rax
(%rax) ,%eax

%eax, -0x4(%rbp)
0x200b19(%rip),%rax
0x200b22(%rip),%rdx
(%rdx) ,%edx

%edx, (%rax)
0x200b17(%rip),%rax

-0x4(%rbp) ,%edx
%edx. (%rax)

#

601050

601040

601040
601050

601050

62

<buff

<buff

<buff
<bufy

<buff

SPCA in a nutshell

Linking with static libraries Dynamic linking at load-time

main2.c vector.h

addvec.o multvec.o unix> gcc -shared -o libvector.so
l 1 l addvec.c multvec.c
Translators /
main2.c vector.h Archiver (cpp, ccl, as) libc.so
(ar) l libvector.so
Relocatable s .
Translators object file main2.o Belocanon and symbol table
(cpp, ccl, as) libvector.a libc.a Static libraries info
\ | Linker (1d) |
Rel.ocatt:".'b!e main2.o addvec.o printf.o andany o_ther Partially linked lﬁ
object files \ modules called by printf.o executable object file Pl i
ibc.so
Linker (ld) | Loader (execve) | libvector.so
| Jmemmm
Fully linked Fully linked y
executable object file executable Dynamic linker (1d-1inux. so)
in memory

Systems Programming 2024 Ch. 12: Linking

SPCA Exercise Session 14 63

SPCA in a nutshell

Recall: how C code runs as a process on CPU

Preprocessor

Compiler

Assembler Linker

SPCA Exercise Session 14

Kernel virtual memory

User stack
(created at runtime)

'
t

Memory-mapped region for
shared libraries

Loader

executable

execve f

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

I Memory

invisible to
user code

+~—%rsp
(stack
pointer)

«— brk

Loaded
from

the
executable
file

Unused

64

SPCA in a nutshell

Buffer overflow stack

Input: 1234567901234567901234

Stack Frame
formain

Backto ??? e [LBULRCEE LGRSl <= %rSp+0X18

o e e e - k-

36 35 34 33 32 31 30 39

38 37 36 35 34 33 32 31 pummub{e3s)
(ex7fffffffe210)

What about something more interesting than crashing?

SPCA Exercise Session 14

65

SPCA in a nutshell
Original precisions

|EEE 754 Single Precision (32 bits):

s | exp frac
1 8 23

|EEE 754 Double Precision (64 bits):

s | exp frac
1 11 52

(Intel Extended Precision (80 bits):

s | exp i frac
1 15 1 63

SPCA Exercise Session 14

66

SPCA in a nutshell

Optimizing compilers

* Use optimization flags,
default can be no optimization (-00)!

* Good choices for gcc:
-02, -03, -march=xxx, -m64

* Try different flags and maybe different
compilers
* icc is often faster than gcc

SPCA Exercise Session 14

-0

67

SPCA in a nutshell

Recall: how C code runs as a process on CPU

Preprocessor

Compiler

A\ssembler Linker

as Id

SPCA Exercise Session 14

Kernel virtual memory

User stack
(created at runtime)

'
t

Memory-mapped region for
shared libraries

Loader

executable

execve f

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

I Memory

invisible to
user code

+~—%rsp
(stack
pointer)

«— brk

Loaded
from

the
executable
file

Unused

68

SPCA in a nutshell

* C Program: from source code to final executable

I.sec‘tiun __TEXT,__text,regular,pure_instructions POAAEAEA: 11001111 11111010
ilTC-LUde S'tdlo .build_version macos, 15, 0O sdk_version 15, 0O 0O0BO00S: HOOEODED BOEBO0O1

.globl _main ## -- Begin function main

#include "functions.h" .p2align 4, 0x90 POOPABGCc: OPOONOLL DOAPAOOOO
—main: ## @nain POOPON12: 0OOORONO DEDOROOO
-cfi_startproc 00000018: 00000000 0O1OO000

1 t 3 (1 I n %k).[## %bb.0:)
int main{1int argc, charl argv pushqg %rbp 0000001e: 0OOOOOBE 000DOOOO
printf("hello, world\n"); .cfi_def_cfa_offset 16 0OPBA024: 10001000 0OOAOON1

.) .cfi_offset %rbp, -16 0000B02a: 00GOOOGO 0COEBOGO
e - . o n . o o
pr‘ln'tf(square of 3: /od\n ' Squal‘e(3)) : movg %rsp, %rbp 00PROEN30: 0ODDPNOO OEOROEEEE

.cfi_def_cfa_register %rbp

return 0O; suby $16. %rsp 00000036: 00BRBOBO 00BOO0O

} movl $8, -4(%rbp) 0000003c: 00000000 000000
Cerl S, G 00000042: 0000000 000000
I oy S p00BE48: 80101080 DOOEEE1E
movb $0. %al 0000004e: 000OOOO0 0OOOOOOO
callg _printf 00000054: 0OBREOBO 0OBOOOO
oy $i;.ufié'i 0000005a: 000000 00000
Cor G Srus 00000060: 00000100 00000000
leag L_.str.l(%rip), %rdi 00000066: 0OBABOOO 0OBOHOO
movb $8, %al 0000006c: 01111000 01110100
callg _printf 00000072: 0OOEEOEE 000HAOOO
i e e pOAEOO78: 01011111 01611111
popg %rhp 000000 7e: DODOOOOOO DOOEEOOO
retq 00000084: 00BRBOOO 00BOOOOO
BT vt End funetion 0000008a: 0OBOOOOO DOOOOOOO
.section __TEXT,__cstring,cstring_literals 00000096: 01066110 00EOOOEO
@.str 00000096: 000000O0 00000

-asciz "hello, world\n" 0000009c: 00000100 00000000
000000a2: 000000 000000
000000a8: 000POOO0 000100
000000ae: 0OBABOOO 0OBOHOOO
.subsections_via_symbols 000000b4: 0000000 00000

00bOEOba: 01160011 01110011

L

L_.str.1: ## @.str.1
.asciz "square of 3: %d\n"

SPCA in a nutshell

* 1. Programming Language C: Ch. 1-7
e 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

e 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14

70

SPCA in a nutshell

Wirite back

L —
Pipelined hardware S L

Clock cycle Memory -
3 4 5 6 7 8

o 1 2
[] |ﬁ||—]_el5_|—| o [o] [oelen]]
*E Beh
Waiting . -
instructions . . . Executg
CINNN
o T X XXX [Efeew [| o | o | o Jee]on]s A| E|
% Stage 2: Decode &&D-.-&&& ry @&IM
'ne_- Stage 3: Execute g & g \:l . . . & E Decode Heg\ster) o !
Stage 4: Write-back & & & ‘Z D . . . % [b
—
(1R [Dfcsfen]a [we [[e] |
Completed |:| . . T TmsIumen r_'—’lpc ’ﬁgict
instructions D - Fotch memory increment
e ipc Select . M walA
|:| " rc e o

F redPC
| [=] -

Systems Programming 2024 Ch. 16: Architecture and Optimization 16

Systems@ ETH .

SPCA Exercise Session 14

SPCA in a nutshell

CLK CLK CLK
| RegWriteD RegWriteE RegWriteM RegWriteW
Coni.;ol MemtoRegD MemtoRegE MemtoRegM MemtoRegW
uni
MemWriteD MemWriteE MemWriteM
ALUControlD, ALUControlE,,
31:26
Op ALUSrcD ALUSICE
5:0
Funct RegDstD RegDstE
BranchD
~— 1
CLK CLK EqualD[™ PCSreD — CLK
CLK & —] 1
: WE3 = WE
A RD InstrD 2521 A4 RD1 0 8? SrcAE
[1 :|10 >3 ALUOuUtM A RDH ReadDataW
Instruction :
20180 Ap RD2 [0 < Data
memory I—
A3 Regist _-IJ B WriteDataM memory
i riteDatal
WD3 eg:: er WriteDataE WD :
25:21 RsD RsE ALUOUtW IJ—
: RtD RtE ~
2016 07 WriteRegE., WriteRegM, o WriteRegW,,
15:11 RdE RdE D ——
= SignimmD SignimmE
15:0 1gn
extend
<<2
= +
PCPlus4F o PCPlus4D o
1 '::! L 2| L] L]
PCBranchD
ResultW
=
3|z 2|3 gz g3 7
z 2|2 22 2|8 Z|8 g
- 8 5|8 i 5|8 CA = =
2] 3 5|5 9 S5 | = =5 =
2 2 g HE g L EH £(3 g
T o [s] o|o m m|m m|m == =
L Hazard unit

Figure 7.58 Pipelined processor with full hazard handling

72

SPCA in a nutshell

Request: 12

Historical Problem:
Processor-memory bottleneck Cache

Processor performance
doubled about

every 18 months Bus bandwidth
evolved much slower
< > Main
CPU | Reg
Memory
T Memory

Intel Haswell: Intel Haswell:

Can process at least Bandwidth: 10 Bytes/cycle

512 Bytes/cycle Latency: 100 cycles

(1 SSE two operand add and mult)

SPCA Exercise Session 14 73

SPCA in a nutshell

Other caches: AMD Warsaw (Opteron 6380)

I-cache

Main
memory

L1 D-cache

SPCA Exercise Session 14

74

SPCA in a nutshell

Recall: how C code runs as a process on CPU

Kernel virtual memory

User stack.
(created at runtime)

Preprocessor ~ Compiler ~ Assembler Linker

N
Csource |/ /| PP > ccl

—

shared libraries

‘ Memory-mapped region for
I

- (created by mallac)

Read/write segment Loag
S5 L - .0 (.data, .bss) e
the
Read-only segment excdiillle

(.init, .text, .rodata) file

c.h | A

Process 1 “

Physical memory

mapping

Virtual memory

Process n ﬁ

Systems Programming 2024 Ch. 19: Virtual Memory 4

75

CDr A
Core

*A bit simplified

im A rmnadclhAall

i7 memory system*

32/64 L2, L3, and
CPU [Result <« .
\ main memory
Virtual address (VA)
36 N 12
VPN VPO L1 hit L1 miss
32\ 4
TL?T el | L1 d-cache
LB (64 sets, 8 lines/set)
Miss :
/]
L1 TLB (16 sets, 4 entries/set) T T
9 g 9 9 40 12
v A4 40 6 6
VPN1 | VPN2 | VPN3 | VPN4 PN PO > o alco
Physical N
CR3
address (PA)
Page tables 7
Systems @ ETH zunch

SPCA Exercise Session 14

76

SPCA in a nutshell

* Caches and Virtual Memory

N\

CPU

~N

Cache

Physical
Page

Number Physical Addresses

Virtual Addresses

0x7FFFF000 - Ox7FFFFFFF

0x7FFFEQQ00 - 0OX7FFFEFFF

0x7FFFDO00 - 0x7FFFDFFF

0x7FFFC000 - 0x7FFFCFFF

0x7FFFB000 - 0x7FFFBFFF

0x7FFFAQ00 - Ox7FFFAFFF

0x7FFF9000 - 0x7FFFOFFF

0x00006000 - 0x00006FFF

7FFF [[Ox7FFF000 - OX7FFFFFE

0x00005000 - 0x00005FFF

7FFE | 0x7FFEQQO - OX7FFEFFF

0x00004000 - 0xO0004FFF

0x00003000 - 0xO0003FFF

0x00002000 - 0x00002FFF

0001 | 0x0001000 - 0x0001FFF

0x00001000 - 0x00001FFF

0000 | 0x0000000 - 0X0000FFF

0x00000000 - 0x00000FFF

Physical Memory

Main
Memory

—
—

SPCA Exercise Session 14

Virtual Memory

Hard
Drive

Virtual
Page
Number

7FFFF
7FFFE
7FFFD
7FFFC
7FFFB
7FFFA
7FFF9

00006
00005
00004
00003
00002
00001
00000

>

-

77

SPCA in a nutshell

Symmetric multiprocessing (SMP)

CPU1

CPU 3 ‘

CPUO CPU 2
Cache Cache Cache Cache
I
@ SMP only works because of caches!
 Shared memory rapidly
RAM becomes bottleneck

SPCA Exercise Session 14

78

SPCA in a nutshell

Physical connections: PCl is a tree

CPU RAM
PCl root
bridge
< NIC rere! SATA % GPU
ridge
* PCl bridges form a hierarchy
Sound USB Wireless * Also:
* PCI-ISA
* PCI-USB
« PCI-SATA

* Etc.

/89

79

SPCA in a nutshell

* Devices in combination with the processor

Address Decoder J

CLK

MemWrite /TVE £

Address
WriteData

=)
M
W3am

CLK

¥lesgy

Processor Memory M

Figure 8.28 Support hardware for
.) memory-mapped 1/0
CLK

.
00
/O o1 ReadData
en| | Device 1 0
-

SR

170

en| | Device 2
-

SPCA Exercise Session 14 80

Questions?

Systems Programming and Computer Architecture

SPCA Exam Remarks

Systems Programming and Computer Architecture

SPCA Exam Remarks

 Know the theory well
* Solve old pen&paper exams

* Solve the exercise sheets again

* You will need to know some stuff by heart (How to caluclate FP bias

etc.)

SPCA Exercise Session 14

83

SPCA Exam Remarks

®* C Programming: most of the exam will be programming

®* You will not need GDB: i.e. it will not be ,bomb lab“ style

® Training: do all the C code experts

* Some of the Labs

® 1. FP Lab (If issues with bits, then also: Bit lab)

® 2. Paging Lab

® 3. Cache, Attack and Bomb Lab: help with understanding but most likely not directly
applicatble

SPCA Exercise Session 14

SPCA in perspective

Systems Programming and Computer Architecture

SPCA In perspective

Grundlagenfacher

* Computer Networks: How does the internet work

 Data Modelling and Data Bases: How to store huge amount of data
Kernfacher

* Computer Systems: Operating- and Distributed Systems

* Compiler Design: How to build a compiler

SPCA Exercise Session 14

86

SPCA In perspective

Grundlagenfacher

* Computer Networks: How does the internet work

 Data Modelling and Data Bases: How to store huge amount of data
Kernfacher

* Computer Systems: Operating- and Distributed Systems

* Compiler Design: How to build a compiler

SPCA Exercise Session 14

87

SPCA in perspective HTTP, SMTP, FTP, SIP, ...

TCP, UDP, SCTP

Computer Networks: "

Network Stack

| . . — —
- N w S ($)]

Twisted pair, fiber, coaxial cable, ...

-— Computer Sending machine Receiving machine
Network
Application Packet Packet
: 4+— Operating System Frame
Network
P Driver Link Header | Payload field | Trailer Header | Payload field | Trailer
Link
Lk Network Interface ____{i;_ty_@!_gigtﬁgigaﬂh]

________ /’—‘ Card (NIC) | |

PRy
Physical ‘ Actual data path ‘
~—— Cable (medium)

SPCA Exercise Session 14 88

Ethernet, Wifi, (A/V)DSL, WIMAX, LTE, ...

BGP announcements carry complete AS-level path information
instead of distances

SPCA In perspective

Computer Networks:
From intra- and

interdomain rounting

protocols (OSPF, IS-IS,

BGP) to protocols on
LANs like ARP, DHCP

etc.

AS20 , AS30
QY“* AS10

AS50

129.132.0.0/16 \ /
/ Path: 40

129.132.0.0/16
ETH/UNIZH Camp Net

N 129.132.0.0/16

: ;‘ Path: 40
|__As40

ETH:ziirich
Unmodified computers at home Looks like one
l / computer outside

ISP

SPCA Exercise Session 14 89

SPCA In perspective

Grundlagenfacher

* Computer Networks: How does the internet work

* Data Modelling and Data Bases: How to store huge amount of data
Kernfacher

* Computer Systems: Operating- and Distributed Systems

* Compiler Design: How to build a compiler

SPCA Exercise Session 14

90

SPCA In perspective

Data Modelling and
Databases: Database
systems are as complex
as operating systems

today

dvdrental=# select title,

release_year, length,

replacement_cost from film

dvdrental-# where length > 120 and replacement_cost >
dvdrental-# order by title desc;

West Lion

Virgin Daisy

Uncut Suicides
Tracy Cider

Song Hedwig
Slacker Liaisons
Sassy Packer

River Outlaw

Right Cranes

Quest Mussolini
Poseidon Forever
Loathing Legally
Lawless Vision
Jingle Sagebrush
Jericho Mulan
Japanese Run
Gilmore Boiled
Floats Garden
Fantasia Park
Extraordinary Conquerer
Everyone Craft
Dirty Ace

Clyde Theory
Clockwork Paradise
Ballroom Mockingbird
(25 rows)

SPCA Exercise Session 14

release_year

a3

[epIe)) o) B} o) B« p R o) B e) B e Tie) B @) B o) B«) B} M@) B o) BN o) IR e p RN @) B e 2 I @) |

29.50

91

SPCA In perspective

Grundlagenfacher

* Computer Networks: How does the internet work

 Data Modelling and Data Bases: How to store huge amount of data
Kernfacher

* Computer Systems: Operating- and Distributed Systems

* Compiler Design: How to build a compiler

SPCA Exercise Session 14

92

General model of OS structure

SPCA In perspective

(daemon)

System Library System Library System Library

LSystem calls

Computer Systems (OS ;

User mode

Privileged mode

Part): What is an Kernel

= = B B g ~—_ S e

Operating System: how o) ou wwl

to execute processes

(Kernel, Processes,

VM VM VM VM VM

SChEdUhng, IO, VM, Flle | VFdriver |; VFdriver I; | Vdriver UNICdrvr | PRdriver

Systems, Network

Stack, VMs)

on on on
Virtual ethernet bridge/switch, packet classifier

SPCA Exercise Session 14

SPCA In perspective

Computer Systems (DS
Part): Byzantine
Agreement, Quorum
Systems, Game Theory,
Advanced Blockchain

(Bitcoin, Ethereum)

SPCA Exercise Session 14 94

SPCA In perspective

Grundlagenfacher

* Computer Networks: How does the internet work

 Data Modelling and Data Bases: How to store huge amount of data
Kernfacher

* Computer Systems: Operating- and Distributed Systems

* Compiler Design: How to build a compiler

SPCA Exercise Session 14

95

I.SECtiUn TEXT text,regular,pure_instructions

.build_version macos, 0 sdk_version 15

[]]
.globl _main ## - in function main
.p2align 4
_main: ## @main

.cfi_startproc
N

pushq %rbp

.cfi_def_cfa_offset

Hinclude <stdio.h> .cfi_offset %rbp
.I : . .lcj #include "fUﬂCtiDﬂS.h" ‘ﬁ:idﬁ%ﬁgﬁgﬁzw»%mp
Compiler Design: Build your own By

mov'l

int main(int argc, char*x argv)d -

printf("hello, world\n"); TZZ
1 i ("squar © %d\n", (3)); o
Compiler for the OAT language Prante(sauere of 31 AT, square(s

movl
} callq _square
movl %eax, %esi
leaq L_.str.1(%rip), %rdi
movh $0, %al
callg _printf
xorl %eax, %eax
addq $16, %rsp
popq p
retq
.cfi_endproc

-- End function

.section _TEXT cstring,cstring_literals
tr

.asciz "hello, world\n"

L_.str.1:
.asciz "sqg

.subsections_via_symbols

Preprocessor Compiler ~ Assembler Linker Loader : o)
Memory-mapped region for
shared libraries
Id executable execve !
«— brk
Run-time heap
(created by malloc)
Read/write segment | Loaded
(.data, .bss) from
} the
Read-only segment executable

(.init, .text, .rodata) file
)

Unused

96

=g

Systems@ ETH zirich

Merry Christmas
and all the best in
the new year!

) D &3
V¥V oV U
\T T

T TN &L

m N
Y w

SPCA Exercise Session 14 97

Overview

* Assignment 11
* Devices Recap
* Hints for Assighment 12

* Exam Strategies

SPCA Exercise Session 14

==

Systems@ ETH ziicn

98

Question 1la: MSI

C, .
P, |- —
Cp 3
-
Pp =X -
Y
n | Py Pgp CDmment
1 | mov (X),rl Py:rl = (X) | 1
2 1110V (X)I‘4 Pp:r (X) 2
3 | mov $0,(X) Py: (X) =0 3
4 mov (X),r5 | Pp:r5:= (X) | 4
5 mov $20,(X) | Pg: () =20 | ¢

SPCA Exercise Session 14

10

==

Systems@ ETH zincn

o [StateC, |Value , [soteCy |Value Gy |value M

99

Question 1la: MSI

==

Systems@ ETH zincn

Py | - M
. 10 |X
Cp I
Pp =X —

AR A— ST o e, Bt et v
1 | mov (X),rl Pairl:=(X) | 1 s |

2 mov (X),r4 Pp: rd := (X) 2 S 10 S 10 10

3 | mov $0,(X) Py: (X) =0 |13 M 0 | - 10

4 mov (X),r5 Pp:15:=(X) | 4 ¢ 0 S 0 0

5 mov $20,(X) | Pg: () =20 | & | _ M 20 0

SPCA Exercise Session 14 100

Question 1b: MESI

C, .
P, |- —
Cp 3
-
Pp =X -
Y
n | Py Pgp CDmment
1 | mov (X),rl Py: 1l :=(X) | 4
2 mov (X),rd | Pp:rd:=(X) | ,
3 | mov $0,(X) Py: (X) =0 3
4 mov (X),r5 | Pp: 15:=(X) | ,
5 mov $20,(X) | Pg: () =20 | ¢

SPCA Exercise Session 14

10

==

Systems@ ETH zincn

o [stateC, [Volue, [StaieCy Value | Vlue M-

101

Question 1b: MESI

Systems@ ETH zincn
Ca A Iy
PA Aﬁ-— -
. 0| X
o X
-
P B ‘-(—\'Qv’l- —
\

IR [|5t C,

1 | mov (X),rl P/ e 10 | _ 10
difference

2 mov (X),rd | P
between 2 S 10 S 10 10

3_| mov $0,(X) _ W \MES! and 3 M 0 | - 10

f — gg}‘;’{ i MSI 4 S 0 s 0 0

5 mov ,(X) 5 = | ~ N 50 0

SPCA Exercise Session 14 102

Question 2a E

Systems@ ETH ziicn

8B line size CO = 3 bits

 128B direct mapped @ 16
sets/lines total @ CI = 4 bits

e 3 cores

e 128B direct-mapped write-back
cache, 8B cache line size

. X = OXAOCO * Cl = bits [6:3]
 OxAOCO =0b1010 0000 1100 0000
: : : e C|=8 (v tag o] 1| 2] 3] 45|67
Q2a: Which cache line will be
used by the three processors? e JLellelslflol
S=2sets 4 [tag | [o] 1] 2] 3] 4[s]6 7

Question 2b

3 cores

128B direct-mapped write-back cache, 8B cache line

size

X = 0xA0CO
Two-byte loads and stores in order:

—
—

P

P

P3

D 00 =1 O O = Wk =

1d ri1, [X]
add ri1,1
st ri, [X]

1d r2, [X+2]
and r2,0FH
st r2, [X+2]

1d r3, [X+6]
sub r3,rl,r5
st r3, [X+6]

T SoteCl | State@ | Ste G

O 00 N o U o W N B

SPCA Exercise Session 14

Invalid

Remote write
Eviction

Local write
miss

Eviction
=> write back black
Remote write =»
write back block

L e Local write
nixs ///ffﬂﬁsa Modified
Shared
Cache write back
Remote resd miss
"';':'“ read U = write back block
read miss
104

Local read or
write

Question 2b

3 cores

128B direct-mapped write-back cache, 8B cache line

size

X = 0xA0CO
Two-byte loads and stores in order:

n| P P Py

1 | 1d r1, [X]

2 | add ri1,1

3 | st r1,[X] | ...

4 1d r2, [X+2]

5 and r2,0FH

6 st r2, [X+2] | ...

7 1d r3, [X+6]
8 sub r3,r1,r5
9 st r3, [X+6]

O 00 N o U o W N B

S | |

S I
M

S

S

(/)U)ZU)U?

SPCA Exercise Session 14

Invalid

Remote write
Eviction

ZU)U)

Eviction

=> write back black

Local write
miss

Local read

Local write

Remote write =»
write back block

miss _—> Modified

>

Shared

Cache write back

Remote resd miss
Local read
R U = write back block

read miss

P1 writes back, P2 waits for writeback

P2 writes back, P3 waits for writeback

105

Local read or
write

Devices Recap Devce

Systems@ ETH zincn

SAMSUNG

WENONT IR
WEDIL .

@ ‘L%=‘||/.

Caybowh '40-.»- USS dover TW Webiare Modewa Covmrn Cord resdens

& e IS N ¥ \ |
] - E
Hundhabds USH dunges USD e COM cables USH TADY SR Adwien

1D cond scanemns Morna Monitoring

" 0 e o] D

MICE Whrwiei Mester un-ml USH Sutelts 50 Mand Doves USD DVD Divas iwatee
& s Hecarss P~ 3 3 o Oraptis ibiets Ploen, Cothes
Piroew ® o ¢ B 1
L’J | aal USH sound Dt oA mumum AT Wivwed stapten hotoiah o aptars 2,
e crdy Mo et L MMO » e
. =
NG . % & o -
USE Graphic Purponad vides Portable VSR VOIP Solwes Dufined Univarsd UED Scadee Bwrcode St
Msagter Pecosder Tharmometers (Shype) Phore Recelvwr remohe conkrol weewrs Cwd Raadery

@ e N\ D ® e g

CrediCard Dguo TUto NS0 USD Winkst INIES MW
DMt " padert Mirdwwe Acclrstor Precenter USD interface Copth Sweis Dol TV Turwe 10 Frinder

USE Moriter

SPCA Exercise Session 14 106

Devices

QPI

QPI

x4 DMI?
(PCIe* 2.0 speed)

x4 PCIe* uplink
for SAS: -D, -T

Serial Attached
SCSI (SAS)
4 ports, 3Gb/s
8 portson -D, -T

Super I/0

SPCA Exercise Session 14

S}I’E tems@ ETH ziicn

107

==

How to access devices? 0x00..0

Systems@ ETH ziicn

e Memory mapped

— Write & Read to devices as
you have done with normal
memory (Imov...)

— Use of the MMU & Page
Tables

(not to scale)

PTE

SPCA Exercise Session 14 108

How to access devices? 14000 Ej

Systems@ ETH zincn

* |O Ports

— Special address space (16 bit)
— Write to an 10 port

. . . 0x80...0
— ()
special instructions oxoooo T 5
. (@)
Inb, outb o “
s &
S 5
wn ©
¥ <
S ©
o Rt
< g

OXFFFF OXFF...F

SPCA Exercise Session 14 109

Memory Mapped Devices :3:

Systems@ ETH ziicn

* Device represented as [Base Address, Length]

— Base address refers to the physical address where the device starts
 cf: your beginning of the stack frame
» agreed upon by OS and device driver upon device startup

— Length refers to the total size of the memory region occupied by the device
 cf: the size of your stack frame
* includes devices registers and if required descriptor ring

— Set of registers within Base, Base+Length
 cf: your variables on the stack
* used to set control bits etc.

SPCA Exercise Session 14 110

Devices are NOT memory Ej

Systems@ ETH zincn

* Contents of device registers ma edly from

view of CPU ‘)

— Data received

SPCA Exercise Session 14 111

ns16550 registers (each 8 bits)

s Lnome [owepion o ___

R ©& N O uu B W NN P OO

THR
TER
TIR
FCR
LCR
MCR
LSR
MSR
SCR
DLL
DLM

Receive Buffer Register (read only) DLAB=0
Transmit Holding Register (write only) DLAB=0
Interrupt Enable Register DLAB=0

Interrupt Identification Register (read only)
FIFO Control Register (write only)
Line Control Register
MODEM Control Register
Line Status Register
MODEM Status Register
Scratch Register
Divisor Latch (LSB) DLAB=1
Divisor Latch (MSB) DLAB=1
DLAB = bit 7 of the LCR register

SPCA Exercise Session 14

Systems@ ETH ziicn

112

Too simple UART driver

A w N R

A W N R

vi A W N

#define UART_BASE 0x12345000

#define UART_THR (UART_BASE + 0)
#define UART_RBR (UART_BASE + 4)
#define UART LSR (UART BASE + 8)

void serial putc(char c)

{
char *1sr = (char *) UART_LSR;

char *thr = (char *) UART_THR;

// Wait until FIFO can hold more chars
while((*1sr & 0x20)== 0);

*thr = C

SPCA Exercise Session 14

What's the problem here?

Systems@ ETH ziicn

113

Too simple UART driver

Systems@ ETH ziicn
1. #define UART_BASE 0x12345000 What's the problem here?
2. #define UART_THR (UART_BASE + 0)
3. ##define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8) Compiler does not know this is
vice register!
1. void serial putc(char c) a device registe
2. { * Loop gets optimized away!
3. volatile char *1sr = (char *) UART_LSR; .
4. volatile char *thr = (char *) UART_THR; * Add: volatile keyword
1. // Wait until FIFO can hold more chars
2. while((*1sr & 0x20)== 0);
3. Again: this volatile is not the same
* — . .
- } thr = ¢ as in java
5.

SPCA Exercise Session 14 114

Device Register Contents :Ei

Systems@ ETH ziicn

* Each bit may have a different meaning

* Lots of configurations possible!
0 74

DR | OE | PE | FE | BI |THRE|TEMT|ERRF

A A A A A A A N

—— Error in Receiver FIFO

Transmitter Empty

Transmit Holding Register Empty

Break Interrupt

Framing Error

Parity Error

Overrun Error

Data Ready

SPCA Exercise Session 14 115

Device Drivers E;

Systems@ ETH ziicn

* Writing device drivers is tedious
— Setting a single bit wrong and the device does not work

— Debugging is hard: Likely to set a bit wrong due to a wrong shift &
mask

— Device manuals not always available

SPCA Exercise Session 14 116

Devices and Caches :3:

Systems@ ETH ziicn

e Device registers cannot be cached due to inconsistency problem, i.e.
register content changes without CPU write!

 What about cache lines? Would overwrite other register values
when writing back

* Set the “no-cache” flag in the page table entry

SPCA Exercise Session 14 117

Interrupts

A W N R

A W N R

ui »h W N

#define UART_BASE 0x12345000
#define UART_THR (UART_BASE +
#define UART RBR (UART_BASE +
#define UART _LSR (UART_BASE +

void serial putc(char c)

{

volatile char *1sr
volatile char *thr

// Wait until FIFO

while((*1lsr & 0x20)== 0);

*thr = C

(char
(char

can hold

0)
4)
8)

*) UART_LSR;
*) UART_THR;

more chars

SPCA Exercise Session 14

Systems@ ETH zincn

What's the problem with this code?

Efficiency problem: Polling...

e CPU can’t do any useful work while
busy waiting

Solution: Use Interrupts, i.e. tell device to
“call this function when data ready”

Register polling

wasted CPU cycles

118

Data transfer E:‘:

Systems@ ETH ziicn

* Don’t want to waste CPU cycles just copying data
* Use Direct Memory Access instead
* Now CPU and DMA can work in parallel

* need to make sure we maintain consistency with CPU caches!

SPCA Exercise Session 14 119

Direct Memory Access (DMA) L

CPU writes data
to memory i.e.
also cache

DMA controller
autonomously
transfers data
CPU to/from devices,
skipping CPU
entirely

CPU

Caches

Caches
Data path goes

Through CPU

Any Problems with DMA?

SPCA Exercise Session 14 120 120

DMA and Caches E;

Systems@ ETH zuich

* DMA is like device registers! "
Changes the contents w/o CPU
write.

* Cannot “no-cache”:
Bad performance since large data

* Need to explicitly invalidate cache!

SPCA Exercise Session 14 121

DMA Addressing :3:

Systems@ ETH ziicn

* Deal with physical addresses only!
— Any problems with that?

* Programs deal with virtual addresses: need translation!

* Physical Range may not be contiguous
* Scatter-gather DMA controllers: DMA to/from a list of regions

 How about security?

SPCA Exercise Session 14 122

DMA Vulnerability

Systems@ ETH zincn

Process O

1) Attacker initiates DMA transfer

3) Attacker gets
interrupt when
secret is leaked

Attack done by
external devices i.e.

Process 1 firewire / thunderbolt

2) DMA Engine copies secret region

https://en.wikipedia.org/wiki/DMA attack

SPCA Exercise Session 14 123

DMA and Cache Problems :3:

Systems@ ETH ziicn

* On DMA read:
— Before: Flush (= write back all) the cache to update main memory
— After: Invalidate (= clear all) the cache to avoid old values seen

* On DMA write:
— Before: flush or invalidate the cache to update main memory
— After: invalidate CPU cache

SPCA Exercise Session 14 124

Buffer/Descriptor Rings :;

Systems@ ETH ziicn
Actual View in Memory: .)
Logical View:
< Tail
wraps around — Tail
— Head

SPCA Exercise Session 14 125

Buffer/Descriptor Rings E:‘:

Systems@ ETH ziicn

Buffer Ring Descriptor Ring

* ring holds metadata and actual data * ring holds metadata and pointer

e data must be fixed size (descriptor) to actual data

- data is contigous * data can be variable sized
e data doesn’t have to be contigous

=> can make descriptor chain

SPCA Exercise Session 14 126

X-Max Assignment 12 E;

Systems@ ETH zuor

A shaded Pascal Triang

SR 1=TI3| 8 sy ascal s [T oo

Shaded Pascal Trian

SPCA Exercise Session 14 127

An unknown MPFC (?) device appeared

'

Systems@ ETH zincn

[]lgnore [X] Write Driver

SPCA Exercise Session 14 128

Task E:‘:

Systems@ ETH ziicn

 You will write a device driver for a MPFC device

* Device Specs

— Uses single descriptor ring

— Uses DMA transfers

— Uses interrupts for “new item” or “no buffer” signals
— Memory Mapped Device

SPCA Exercise Session 14 129

Assignment TO-DO :3:

Systems@ ETH ziicn

* Initialize the device (reset) and setting up the in memory data
structures

e Start the device

e Startissuing DMA requests to the device

e Activate interrupt and go to sleep

* Do not terminate! Hand back the buffers to the device once used

SPCA Exercise Session 14 130

Hints: Interrupts E:‘:

Systems@ ETH ziicn

* You will need to register a handler which is called for
received interrupts

* |Interrupt received:
— Wake the sleeping thread
— Acknowledge the interrupt

SPCA Exercise Session 14 131

Hints: Buffer Ring :3‘:

Systems@ ETH ziicn

* Allocate enough memory
* Keep track of who owns the buffer

* Tell the device where to find the buffer rings!

— (Normally you would have to give the physical address, but we
stay virtual this time)

SPCA Exercise Session 14 132

Hints: Buffer Ring

typedef struct {
size t size;
void *buffer;
char owned;

} mpfc_desc;

For receive:
Driver = read-pointer
Device = write-pointer

SPCA Exercise Session 14

Systems@ ETH zincn

133

Hints: Buffer Ring

typedef struct {
size t size;
void *buffer;
char owned;

} mpfc_desc;

SPCA Exercise Session 14

==

Systems@ ETH zincn

Owned by driver
Owned by device

134

Hints: Buffer Ring

typedef struct {
size t size;
void *buffer;
char owned;

} mpfc_desc;

SPCA Exercise Session 14

==

S}I’E tems@ ETH ziicn

Owned by driver
Owned by device

135

Hints: Buffer Ring

typedef struct {
size t size;
void *buffer;
char owned;

} mpfc_desc;

SPCA Exercise Session 14

==

Systems@ ETH zincn

Owned by driver
Owned by device

136

Hints: Buffer Ring

typedef struct {
size t size;
void *buffer;
char owned;

} mpfc_desc;

SPCA Exercise Session 14

==

S}I’E tems@ ETH ziicn

4

Owned by driver
Owned by device

137

Hints: Buffer Ring :3:

Systems@ ETH ziicn

e Overruns and underruns (receive)
* Device has no buffers for received packets
 Then it starts discarding packets and signals that to CPU

* CPU reads all received packets
* Spin poll or tell device to do an interrupt when more data ready

* Overruns and underruns (transmit)
* Device has no more packets to send
* |t must wait and either poll memory or tell CPU to wake it up

 CPU has no more slots to send packets

* Must wait until more slots are free, again either polling or tell the device to send
interrupt

SPCA Exercise Session 14 138

=g

Systems@ ETH zirich

Linking ‘ Coroutines

Semester Recap

Optimisations VITEUE » Devices
Memory

SPCA Exercise Session 14 139

Exam Strategy E:‘:

Systems@ ETH ziicn

* 1 point = 1 minute
* read through all the exam first => start with what you know!

* practice C coding

e Cintuition is built through practice

* labs, code expert, old exercises in C, AoCin C, etc ...

e Stay calm)

SPCA Exercise Session 14 140

=g

Systems@ ETH zirich

Merry Christmas
and all the best in
the new year!

) D &3
V¥V oV U
\T T

T TN &L

m N 1
oy W J

SPCA Exercise Session 14 141

	Slide 1: Exercise Session 14
	Slide 2: Disclaimer
	Slide 3: Overview
	Slide 4
	Slide 5: Devices
	Slide 6: Devices
	Slide 7: SPCA Devices
	Slide 8: SPCA Devices
	Slide 9: Devices
	Slide 10: Devices
	Slide 11: Devices
	Slide 12: Devices
	Slide 13: Devices
	Slide 14: Devices
	Slide 15: Devices
	Slide 16: Devices
	Slide 17: Devices
	Slide 18: Devices
	Slide 19: Devices
	Slide 20: Devices
	Slide 21
	Slide 22: Devices
	Slide 23: Devices
	Slide 24: Devices
	Slide 25: Devices
	Slide 26: Devices
	Slide 27: Devices
	Slide 28: Devices
	Slide 29: Devices
	Slide 30: Devices
	Slide 31: Devices
	Slide 32: Devices
	Slide 33: Devices
	Slide 34: Devices
	Slide 35: Devices
	Slide 36: Devices
	Slide 37: Devices
	Slide 38: Devices
	Slide 39: Devices
	Slide 40: Devices
	Slide 41: Devices
	Slide 42: Devices
	Slide 43: Devices
	Slide 44: Devices
	Slide 45
	Slide 46: SPCA in a nutshell
	Slide 47: SPCA in a nutshell
	Slide 48: SPCA in a nutshell
	Slide 49: SPCA in a nutshell
	Slide 50: SPCA in a nutshell
	Slide 51: SPCA in a nutshell
	Slide 52: SPCA in a nutshell
	Slide 53: SPCA in a nutshell
	Slide 54: SPCA in a nutshell
	Slide 55: SPCA in a nutshell
	Slide 56: SPCA in a nutshell
	Slide 57: SPCA in a nutshell
	Slide 58: SPCA in a nutshell
	Slide 59: SPCA in a nutshell
	Slide 60: SPCA in a nutshell
	Slide 61: SPCA in a nutshell
	Slide 62: SPCA in a nutshell
	Slide 63: SPCA in a nutshell
	Slide 64: SPCA in a nutshell
	Slide 65: SPCA in a nutshell
	Slide 66: SPCA in a nutshell
	Slide 67: SPCA in a nutshell
	Slide 68: SPCA in a nutshell
	Slide 69: SPCA in a nutshell
	Slide 70: SPCA in a nutshell
	Slide 71: SPCA in a nutshell
	Slide 72: SPCA in a nutshell
	Slide 73: SPCA in a nutshell
	Slide 74: SPCA in a nutshell
	Slide 75: SPCA in a nutshell
	Slide 76: SPCA in a nutshell
	Slide 77
	Slide 78: SPCA in a nutshell
	Slide 79: SPCA in a nutshell
	Slide 80: SPCA in a nutshell
	Slide 81
	Slide 82
	Slide 83: SPCA Exam Remarks
	Slide 84: SPCA Exam Remarks
	Slide 85
	Slide 86: SPCA in perspective
	Slide 87: SPCA in perspective
	Slide 88
	Slide 89: SPCA in perspective
	Slide 90: SPCA in perspective
	Slide 91: SPCA in perspective
	Slide 92: SPCA in perspective
	Slide 93
	Slide 94
	Slide 95: SPCA in perspective
	Slide 96: SPCA in perspective
	Slide 97
	Slide 98: Overview
	Slide 99: Question 1a: MSI
	Slide 100: Question 1a: MSI
	Slide 101: Question 1b: MESI
	Slide 102: Question 1b: MESI
	Slide 103: Question 2a
	Slide 104: Question 2b
	Slide 105: Question 2b
	Slide 106: Devices Recap
	Slide 107: Devices
	Slide 108: How to access devices?
	Slide 109: How to access devices?
	Slide 110: Memory Mapped Devices
	Slide 111: Devices are NOT memory
	Slide 112: ns16550 registers (each 8 bits)
	Slide 113: Too simple UART driver
	Slide 114: Too simple UART driver
	Slide 115: Device Register Contents
	Slide 116: Device Drivers
	Slide 117: Devices and Caches
	Slide 118: Interrupts
	Slide 119: Data transfer
	Slide 120: Direct Memory Access (DMA)
	Slide 121: DMA and Caches
	Slide 122: DMA Addressing
	Slide 123: DMA Vulnerability
	Slide 124: DMA and Cache Problems
	Slide 125: Buffer/Descriptor Rings
	Slide 126: Buffer/Descriptor Rings
	Slide 127: X-Max Assignment 12
	Slide 128
	Slide 129: Task
	Slide 130: Assignment TO-DO
	Slide 131: Hints: Interrupts
	Slide 132: Hints: Buffer Ring
	Slide 133: Hints: Buffer Ring
	Slide 134: Hints: Buffer Ring
	Slide 135: Hints: Buffer Ring
	Slide 136: Hints: Buffer Ring
	Slide 137: Hints: Buffer Ring
	Slide 138: Hints: Buffer Ring
	Slide 139: Semester Recap
	Slide 140: Exam Strategy
	Slide 141

