
Exercise Session 14
Systems Programming and Computer Architecture

Devices

Fall Semester 2024



Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are not official part 
of the course) having a blue heading

• For the exam only the official exercise slides are relevant, if in doubt 
always check the ones on the official moodle page
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Overview

• Lecture Recap: Devices

• SPCA in a nutshell

• Exam Remarks

• SPCA in perspective

• Questions
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Devices
Devices and Device Drivers

Systems Programming and Computer Architecture



Devices

• Devices: Device Registers/Dealing with caches

• Device Driver: Operating System Part of the device
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SPCA Devices
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SPCA Devices
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Devices

• Input/Output (I/O) systems are used to connect a computer with external devices called

peripherals (keyboards, monitors, etc.)

• Processor accesses an I/O device using the address/data busses the same way as it

accesses memory

• Part of address space is dedicated to I/O devices rather than memory: a store sends

data to the device, with a load we recieve data from the device

• => This method of communicating is called memory mapped I/O
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Devices

• Devices: Device Registers/Dealing with caches

• Device Driver: Operating System Part of the device
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Devices
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Devices

• Each device operates differently: Different control register layouts, 

Unique set of commands, etc.

• Device driver hides these details from the OS: provides a 

standardised API (e.g. send_packet(), read_block() ) for OS

• The OS (the OS‘s device driver) is responsible for initating DMA 

transfers: allocates memory, configures the DMA controller
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Devices
DMA, Shared Memory, PCIe

Systems Programming and Computer Architecture



Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices
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Devices
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Devices
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• Idea: add the DMA device to our cache coherency protocol



Devices
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Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for
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Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices
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Devices
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Devices
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Devices
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• PCI Address space is

flat: each devie asks for

set of address range

• Result: each device

appears as a set of

contigous address

ranges in memory

space



Devices

SPCA Exercise Session 14 42

• Host Bridge:Connects CPU 

(„host“) to PCI bus

=> It controls the address

mapping

• PCI-PCI Bridge: Connects one

PCI Bus with another one

• BFD (Bus-Device-Function): 

Unique identifier for a device

on a PCI bus

• Example: BDF 00:1f.0

• Bus: 00, Device: 1f, Function: 0

https://astralvx.com/introduction-to-pcie/

• Primary: The bus the system starts with

• Secondary: New bus created

• Subord: Highest numbered bus in secondary



Devices

• Note: The memory mapped regions from PCI for devies are for the

control registers (registers != buffer/descriptor rings)

• Why a tree structure? In PCI, we have PCI buses which are broadcast

=> This yields issues such as bandwith limitation, electrical limtations

(signal degredation and reflactions of noise): use multiple buses, 

connected via PCI-PCI bridge
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Devices
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SPCA in a nutshell

Systems Programming and Computer Architecture



SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7

• 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21
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SPCA in a nutshell
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• C Program: from source code to final executable



SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7
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• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21
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SPCA in a nutshell
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• Caches and Virtual Memory

SPCA in a nutshell



SPCA in a nutshell
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SPCA in a nutshell
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SPCA in a nutshell
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• Devices in combination with the processor



Questions?

Systems Programming and Computer Architecture



SPCA Exam Remarks

Systems Programming and Computer Architecture



SPCA Exam Remarks
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• Know the theory well

• Solve old pen&paper exams

• Solve the exercise sheets again

• You will need to know some stuff by heart (How to caluclate FP bias

etc.)



SPCA Exam Remarks
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• C Programming: most of the exam will be programming

• You will not need GDB: i.e. it will not be „bomb lab“ style

• Training: do all the C code experts

• Some of the Labs

• 1. FP Lab (If issues with bits, then also: Bit lab) 

• 2. Paging Lab

• 3. Cache, Attack and Bomb Lab: help with understanding but most likely not directly

applicatble



SPCA in perspective

Systems Programming and Computer Architecture



SPCA in perspective
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Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems 

• Compiler Design: How to build a compiler



SPCA in perspective
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Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems 

• Compiler Design: How to build a compiler
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Computer Networks: 

Network Stack

SPCA in perspective



SPCA in perspective
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Computer Networks: 

From intra- and 

interdomain rounting

protocols (OSPF, IS-IS, 

BGP) to protocols on 

LANs like ARP, DHCP 

etc.



SPCA in perspective
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Grundlagenfächer
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SPCA in perspective
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Data Modelling and 

Databases: Database 

systems are as complex

as operating systems

today



SPCA in perspective
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Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems 

• Compiler Design: How to build a compiler



SPCA Exercise Session 14 93

Computer Systems (OS 

Part): What is an 

Operating System: how

to execute processes

(Kernel, Processes, 

Scheduling, IO, VM, File 

Systems, Network 

Stack, VMs)

SPCA in perspective
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Computer Systems (DS 

Part): Byzantine

Agreement, Quorum 

Systems, Game Theory, 

Advanced Blockchain 

(Bitcoin, Ethereum)

SPCA in perspective
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Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems 

• Compiler Design: How to build a compiler



SPCA in perspective
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Compiler Design: Build your own 

Compiler for the OAT language
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Merry Christmas
and all the best in 
the new year!



Overview

• Assignment 11

• Devices Recap

• Hints for Assignment 12

• Exam Strategies
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Question 1a: MSI
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n State CA Value CA State CB Value CB Value M

1
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Question 1a: MSI
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n State CA Value CA State CB Value CB Value M

1 S 10 I – 10

2 S 10 S 10 10

3 M 0 I – 10

4 S 0 S 0 0

5 I – M 20 0



Question 1b: MESI
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n State CA Value CA State CB Value CB Value M

1
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Question 1b: MESI

SPCA Exercise Session 14 102

n State CA Value CA State CB Value CB Value M

1 E 10 I – 10

2 S 10 S 10 10

3 M 0 I – 10

4 S 0 S 0 0

5 I – M 20 0

Only 
difference 
between 
MESI and 

MSI



Question 2a

• 3 cores

• 128B direct-mapped write-back 
cache, 8B cache line size

• X = 0xA0C0

Q2a: Which cache line will be 
used by the three processors?

• 8B line size 🡪 CO = 3 bits

• 128B direct mapped 🡪 16 
sets/lines total 🡪 CI = 4 bits

• CI = bits [6:3]

• 0xA0C0 = 0b1010 0000 1100 0000

• CI = 8
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S = 2s sets

10 32 54 76tagv

10 32 54 76tagv

10 32 54 76tagv

10 32 54 76tagv



Question 2b
• 3 cores
• 128B direct-mapped write-back cache, 8B cache line 

size

• X = 0xA0C0

• Two-byte loads and stores in order:
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n State C1 State C2 State C3 Remarks

1

2

3

4

5

6

7

8

9



Question 2b
• 3 cores
• 128B direct-mapped write-back cache, 8B cache line 

size

• X = 0xA0C0

• Two-byte loads and stores in order:
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n State C1 State C2 State C3 Remarks

1 S I I

2 S I I

3 M I I

4 S S I P1 writes back, P2 waits for writeback

5 S S I

6 I M I

7 I S S P2 writes back, P3 waits for writeback

8 I S S

9 I I M



Devices Recap
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Device



Devices
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How to access devices?

• Memory mapped

– Write & Read to devices as 
you have done with normal 
memory (mov…)

– Use of the MMU & Page 
Tables
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How to access devices?

• IO Ports

– Special address space (16 bit)

– Write to an IO port

– special instructions

inb, outb
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Memory Mapped Devices

• Device represented as [Base Address, Length]
– Base address refers to the physical address where the device starts

• cf: your beginning of the stack frame
• agreed upon by OS and device driver upon device startup

– Length refers to the total size of the memory region occupied by the device
• cf: the size of your stack frame
• includes devices registers and if required descriptor ring

– Set of registers within Base, Base+Length
• cf: your variables on the stack
• used to set control bits etc.
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Devices are NOT memory

• Contents of device registers may change unexpectedly from 
view of CPU

– Data received

• Writing to a register may trigger actions

– Shutdown device/machine

– Perform reset
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ns16550 registers (each 8 bits)

Addr. Name Description Notes

0 RBR Receive Buffer Register (read only) DLAB=0

0 THR Transmit Holding Register (write only) DLAB=0

1 IER Interrupt Enable Register DLAB=0

2 IIR Interrupt Identification Register (read only)

2 FCR FIFO Control Register (write only)

3 LCR Line Control Register

4 MCR MODEM Control Register

5 LSR Line Status Register

6 MSR MODEM Status Register

7 SCR Scratch Register

0 DLL Divisor Latch (LSB) DLAB=1

1 DLM Divisor Latch (MSB) DLAB=1
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DLAB = bit 7 of the LCR register



Too simple UART driver
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1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. char *lsr =  (char *) UART_LSR;
4. char *thr =  (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

What’s the problem here?



Too simple UART driver
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What’s the problem here?

• Compiler does not know this is 
a device register!

• Loop gets optimized away!

• Add: volatile keyword

1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. volatile char *lsr =  (char *) UART_LSR;
4. volatile char *thr =  (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

Again: this volatile is not the same 
as in java



Device Register Contents

• Each bit may have a different meaning

• Lots of configurations possible!
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Device Drivers

• Writing device drivers is tedious

– Setting a single bit wrong and the device does not work

– Debugging is hard: Likely to set a bit wrong due to a wrong shift & 
mask

– Device manuals not always available
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Devices and Caches

• Device registers cannot be cached due to inconsistency problem, i.e. 
register content changes without CPU write!

• What about cache lines? Would overwrite other register values 
when writing back

• Set the “no-cache” flag in the page table entry
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Interrupts
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Efficiency problem: Polling…

• CPU can’t do any useful work while 
busy waiting

Solution: Use Interrupts, i.e. tell device to 
“call this function when data ready”

1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. volatile char *lsr =  (char *) UART_LSR;
4. volatile char *thr =  (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

What’s the problem with this code?

Register polling
= 

wasted CPU cycles



Data transfer

• Don’t want to waste CPU cycles just copying data

• Use Direct Memory Access instead

• Now CPU and DMA can work in parallel 

• need to make sure we maintain consistency with CPU caches!
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Direct Memory Access (DMA)

SPCA Exercise Session 14 120120

DeviceDevice

RAM RAMFILE FILE

CPU

Caches

CPU

Caches

DMA

CPU writes data 
to memory i.e. 
also cache

Data path goes 
Through CPU

Any Problems with DMA?

DMA controller 
autonomously 
transfers data 
to/from devices, 
skipping CPU 
entirely



DMA and Caches

• DMA is like device registers! 
Changes the contents w/o CPU 
write.

• Cannot “no-cache”:
Bad performance since large data

• Need to explicitly invalidate cache!
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Device

RAMFILE

CPU

Caches

DMA

F



DMA Addressing

• Deal with physical addresses only!

– Any problems with that?

• Programs deal with virtual addresses: need translation!

• Physical Range may not be contiguous
• Scatter-gather DMA controllers: DMA to/from a list of regions

• How about security?
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DMA Vulnerability
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https://en.wikipedia.org/wiki/DMA_attack

Process 0

Process 1

Secret

DMA

Leaked Secret
1) Attacker initiates DMA transfer

2) DMA Engine copies secret region 

3) Attacker gets 
interrupt when 
secret is leaked

Attack done by 
external devices i.e. 
firewire / thunderbolt



DMA and Cache Problems

• On DMA read:

– Before: Flush (= write back all) the cache to update main memory

– After: Invalidate (= clear all) the cache to avoid old values seen

• On DMA write:

– Before: flush or invalidate the cache to update main memory

– After: invalidate CPU cache
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Buffer/Descriptor Rings
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Actual View in Memory:

⃪ Head

⃪ Tail wraps around

Logical View:

⃪ Tail 



Buffer/Descriptor Rings

Buffer Ring

• ring holds metadata and actual data

• data must be fixed size

• data is contigous

Descriptor Ring

• ring holds metadata and pointer 
(descriptor) to actual data

• data can be variable sized

• data doesn’t have to be contigous

=> can make descriptor chain
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X-Max Assignment 12
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An unknown MPFC (?) device appeared

[ ] Ignore [x] Write Driver



Task

• You will write a device driver for a MPFC device

• Device Specs

– Uses single descriptor ring

– Uses DMA transfers

– Uses interrupts for “new item” or “no buffer” signals

– Memory Mapped Device
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Assignment TO-DO

• Initialize the device (reset) and setting up the in memory data 
structures

• Start the device

• Start issuing DMA requests to the device

• Activate interrupt and go to sleep

• Do not terminate! Hand back the buffers to the device once used
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Hints: Interrupts

• You will need to register a handler which is called for 
received interrupts

• Interrupt received:

– Wake the sleeping thread

– Acknowledge the interrupt
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Hints: Buffer Ring

• Allocate enough memory 

• Keep track of who owns the buffer

• Tell the device where to find the buffer rings!

– (Normally you would have to give the physical address, but we 
stay virtual this time)
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Hints: Buffer Ring
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For receive:
Driver = read-pointer
Device = write-pointer 

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;



Hints: Buffer Ring
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typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device



Hints: Buffer Ring
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Hints: Buffer Ring

SPCA Exercise Session 14 136

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device



Hints: Buffer Ring
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typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device



Hints: Buffer Ring

• Overruns and underruns (receive)
• Device has no buffers for received packets

• Then it starts discarding packets and signals that to CPU

• CPU reads all received packets 
• Spin poll or tell device to do an interrupt when more data ready

• Overruns and underruns (transmit)
• Device has no more packets to send

• It must wait and either poll memory or tell CPU to wake it up

• CPU has no more slots to send packets
• Must wait until more slots are free, again either polling or tell the device to send 

interrupt
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Semester Recap

C Pointers
Dynamic 
Memory

x86

CoroutinesLinkingVulnerabilitiesFloats

Optimisations
Virtual 

Memory
Caches Devices
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Exam Strategy

• 1 point ≈ 1 minute

• read through all the exam first => start with what you know!

• practice C coding

• C intuition is built through practice

• labs, code expert, old exercises in C, AoC in C, etc …

• Stay calm :)
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Merry Christmas
and all the best in 
the new year!
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