
Exercise Session 14
Systems Programming and Computer Architecture

Devices

Fall Semester 2024

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• Kahoots: now on website n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are not official part
of the course) having a blue heading

• For the exam only the official exercise slides are relevant, if in doubt
always check the ones on the official moodle page

SPCA Exercise Session 14 2

Overview

• Lecture Recap: Devices

• SPCA in a nutshell

• Exam Remarks

• SPCA in perspective

• Questions

SPCA Exercise Session 14 3

Devices
Devices and Device Drivers

Systems Programming and Computer Architecture

Devices

• Devices: Device Registers/Dealing with caches

• Device Driver: Operating System Part of the device

SPCA Exercise Session 14 5

Devices

• Devices: Device Registers/Dealing with caches

• Device Driver: Operating System Part of the device

SPCA Exercise Session 14 6

SPCA Devices

SPCA Exercise Session 14 7

SPCA Devices

SPCA Exercise Session 14 8

Devices

• Input/Output (I/O) systems are used to connect a computer with external devices called

peripherals (keyboards, monitors, etc.)

• Processor accesses an I/O device using the address/data busses the same way as it

accesses memory

• Part of address space is dedicated to I/O devices rather than memory: a store sends

data to the device, with a load we recieve data from the device

• => This method of communicating is called memory mapped I/O

SPCA Exercise Session 14 9

Devices

SPCA Exercise Session 14 10

Devices

SPCA Exercise Session 14 11

Devices

SPCA Exercise Session 14 12

Devices

SPCA Exercise Session 14 13

Devices

SPCA Exercise Session 14 14

Devices

• Devices: Device Registers/Dealing with caches

• Device Driver: Operating System Part of the device

SPCA Exercise Session 14 15

Devices

SPCA Exercise Session 14 16

Devices

SPCA Exercise Session 14 17

Devices

SPCA Exercise Session 14 18

Devices

• Each device operates differently: Different control register layouts,

Unique set of commands, etc.

• Device driver hides these details from the OS: provides a

standardised API (e.g. send_packet(), read_block()) for OS

• The OS (the OS‘s device driver) is responsible for initating DMA

transfers: allocates memory, configures the DMA controller

SPCA Exercise Session 14 19

Devices

SPCA Exercise Session 14 20

Devices
DMA, Shared Memory, PCIe

Systems Programming and Computer Architecture

Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 22

Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 23

Devices

SPCA Exercise Session 14 24

Devices

SPCA Exercise Session 14 25

Devices

SPCA Exercise Session 14 26

• Idea: add the DMA device to our cache coherency protocol

Devices

SPCA Exercise Session 14 27

Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 28

Devices

SPCA Exercise Session 14 29

Devices

SPCA Exercise Session 14 30

Devices

SPCA Exercise Session 14 31

Devices

SPCA Exercise Session 14 32

Devices

SPCA Exercise Session 14 33

Devices

SPCA Exercise Session 14 34

Devices

SPCA Exercise Session 14 35

Devices

SPCA Exercise Session 14 36

Devices

SPCA Exercise Session 14 37

Devices

• DMA (Direct Memory Access): Copies data for CPU

• Shared Memory: Buffer/Descriptor Rings

• PCIe (Peripheral Component Interconnect): Finding address space for

the devices

SPCA Exercise Session 14 38

Devices

SPCA Exercise Session 14 39

Devices

SPCA Exercise Session 14 40

Devices

SPCA Exercise Session 14 41

• PCI Address space is

flat: each devie asks for

set of address range

• Result: each device

appears as a set of

contigous address

ranges in memory

space

Devices

SPCA Exercise Session 14 42

• Host Bridge:Connects CPU

(„host“) to PCI bus

=> It controls the address

mapping

• PCI-PCI Bridge: Connects one

PCI Bus with another one

• BFD (Bus-Device-Function):

Unique identifier for a device

on a PCI bus

• Example: BDF 00:1f.0

• Bus: 00, Device: 1f, Function: 0

https://astralvx.com/introduction-to-pcie/

• Primary: The bus the system starts with

• Secondary: New bus created

• Subord: Highest numbered bus in secondary

Devices

• Note: The memory mapped regions from PCI for devies are for the

control registers (registers != buffer/descriptor rings)

• Why a tree structure? In PCI, we have PCI buses which are broadcast

=> This yields issues such as bandwith limitation, electrical limtations

(signal degredation and reflactions of noise): use multiple buses,

connected via PCI-PCI bridge

SPCA Exercise Session 14 43

Devices

SPCA Exercise Session 14 44

SPCA in a nutshell

Systems Programming and Computer Architecture

SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7

• 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14 46

SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7

• 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14 47

SPCA in a nutshell

SPCA Exercise Session 14 48

SPCA in a nutshell

SPCA Exercise Session 14 49

SPCA in a nutshell

SPCA Exercise Session 14 50

SPCA in a nutshell

SPCA Exercise Session 14 51

SPCA in a nutshell

SPCA Exercise Session 14 52

SPCA in a nutshell

SPCA Exercise Session 14 53

SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7

• 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14 54

SPCA in a nutshell

SPCA Exercise Session 14 55

SPCA in a nutshell

SPCA Exercise Session 14 56

SPCA in a nutshell

SPCA Exercise Session 14 57

SPCA in a nutshell

SPCA Exercise Session 14 58

SPCA in a nutshell

SPCA Exercise Session 14 59

SPCA in a nutshell

SPCA Exercise Session 14 60

SPCA in a nutshell

SPCA Exercise Session 14 61

SPCA in a nutshell

SPCA Exercise Session 14 62

SPCA in a nutshell

SPCA Exercise Session 14 63

SPCA in a nutshell

SPCA Exercise Session 14 64

SPCA in a nutshell

SPCA Exercise Session 14 65

SPCA in a nutshell

SPCA Exercise Session 14 66

SPCA in a nutshell

SPCA Exercise Session 14 67

SPCA in a nutshell

SPCA Exercise Session 14 68

SPCA in a nutshell

SPCA Exercise Session 14 69

• C Program: from source code to final executable

SPCA in a nutshell

• 1. Programming Language C: Ch. 1-7

• 2. Assembly x86-64, Compiling, Linking and Loading: Ch. 8-15

• 3. Computer Arch, Exceptions, Virtual Memory, Devices: Ch. 16-21

SPCA Exercise Session 14 70

SPCA in a nutshell

SPCA Exercise Session 14 71

SPCA in a nutshell

SPCA Exercise Session 14 72

SPCA in a nutshell

SPCA Exercise Session 14 73

SPCA in a nutshell

SPCA Exercise Session 14 74

SPCA in a nutshell

SPCA Exercise Session 14 75

SPCA in a nutshell

SPCA Exercise Session 14 76

SPCA Exercise Session 14 77

• Caches and Virtual Memory

SPCA in a nutshell

SPCA in a nutshell

SPCA Exercise Session 14 78

SPCA in a nutshell

SPCA Exercise Session 14 79

SPCA in a nutshell

SPCA Exercise Session 14 80

• Devices in combination with the processor

Questions?

Systems Programming and Computer Architecture

SPCA Exam Remarks

Systems Programming and Computer Architecture

SPCA Exam Remarks

SPCA Exercise Session 14 83

• Know the theory well

• Solve old pen&paper exams

• Solve the exercise sheets again

• You will need to know some stuff by heart (How to caluclate FP bias

etc.)

SPCA Exam Remarks

SPCA Exercise Session 14 84

• C Programming: most of the exam will be programming

• You will not need GDB: i.e. it will not be „bomb lab“ style

• Training: do all the C code experts

• Some of the Labs

• 1. FP Lab (If issues with bits, then also: Bit lab)

• 2. Paging Lab

• 3. Cache, Attack and Bomb Lab: help with understanding but most likely not directly

applicatble

SPCA in perspective

Systems Programming and Computer Architecture

SPCA in perspective

SPCA Exercise Session 14 86

Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems

• Compiler Design: How to build a compiler

SPCA in perspective

SPCA Exercise Session 14 87

Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems

• Compiler Design: How to build a compiler

SPCA Exercise Session 14 88

Computer Networks:

Network Stack

SPCA in perspective

SPCA in perspective

SPCA Exercise Session 14 89

Computer Networks:

From intra- and

interdomain rounting

protocols (OSPF, IS-IS,

BGP) to protocols on

LANs like ARP, DHCP

etc.

SPCA in perspective

SPCA Exercise Session 14 90

Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems

• Compiler Design: How to build a compiler

SPCA in perspective

SPCA Exercise Session 14 91

Data Modelling and

Databases: Database

systems are as complex

as operating systems

today

SPCA in perspective

SPCA Exercise Session 14 92

Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems

• Compiler Design: How to build a compiler

SPCA Exercise Session 14 93

Computer Systems (OS

Part): What is an

Operating System: how

to execute processes

(Kernel, Processes,

Scheduling, IO, VM, File

Systems, Network

Stack, VMs)

SPCA in perspective

SPCA Exercise Session 14 94

Computer Systems (DS

Part): Byzantine

Agreement, Quorum

Systems, Game Theory,

Advanced Blockchain

(Bitcoin, Ethereum)

SPCA in perspective

SPCA in perspective

SPCA Exercise Session 14 95

Grundlagenfächer

• Computer Networks: How does the internet work

• Data Modelling and Data Bases: How to store huge amount of data

Kernfächer

• Computer Systems: Operating- and Distributed Systems

• Compiler Design: How to build a compiler

SPCA in perspective

SPCA Exercise Session 14 96

Compiler Design: Build your own

Compiler for the OAT language

SPCA Exercise Session 14 97

Merry Christmas
and all the best in
the new year!

Overview

• Assignment 11

• Devices Recap

• Hints for Assignment 12

• Exam Strategies

SPCA Exercise Session 14 98

Question 1a: MSI

SPCA Exercise Session 14 99

n State CA Value CA State CB Value CB Value M

1

2

3

4

5

Question 1a: MSI

SPCA Exercise Session 14 100

n State CA Value CA State CB Value CB Value M

1 S 10 I – 10

2 S 10 S 10 10

3 M 0 I – 10

4 S 0 S 0 0

5 I – M 20 0

Question 1b: MESI

SPCA Exercise Session 14 101

n State CA Value CA State CB Value CB Value M

1

2

3

4

5

Question 1b: MESI

SPCA Exercise Session 14 102

n State CA Value CA State CB Value CB Value M

1 E 10 I – 10

2 S 10 S 10 10

3 M 0 I – 10

4 S 0 S 0 0

5 I – M 20 0

Only
difference
between
MESI and

MSI

Question 2a

• 3 cores

• 128B direct-mapped write-back
cache, 8B cache line size

• X = 0xA0C0

Q2a: Which cache line will be
used by the three processors?

• 8B line size 🡪 CO = 3 bits

• 128B direct mapped 🡪 16
sets/lines total 🡪 CI = 4 bits

• CI = bits [6:3]

• 0xA0C0 = 0b1010 0000 1100 0000

• CI = 8

SPCA Exercise Session 14 103

S = 2s sets

10 32 54 76tagv

10 32 54 76tagv

10 32 54 76tagv

10 32 54 76tagv

Question 2b
• 3 cores
• 128B direct-mapped write-back cache, 8B cache line

size

• X = 0xA0C0

• Two-byte loads and stores in order:

SPCA Exercise Session 14 104

n State C1 State C2 State C3 Remarks

1

2

3

4

5

6

7

8

9

Question 2b
• 3 cores
• 128B direct-mapped write-back cache, 8B cache line

size

• X = 0xA0C0

• Two-byte loads and stores in order:

SPCA Exercise Session 14 105

n State C1 State C2 State C3 Remarks

1 S I I

2 S I I

3 M I I

4 S S I P1 writes back, P2 waits for writeback

5 S S I

6 I M I

7 I S S P2 writes back, P3 waits for writeback

8 I S S

9 I I M

Devices Recap

SPCA Exercise Session 14 106

Device

Devices

SPCA Exercise Session 14 107

How to access devices?

• Memory mapped

– Write & Read to devices as
you have done with normal
memory (mov…)

– Use of the MMU & Page
Tables

SPCA Exercise Session 14 108

0x00…0

0xFF…F

RAM

0x80…0

Device 0

Device 1

(n
o

t
to

 s
c
a
le

)

Page Table

P
h

ys
ic

al
 A

d
d

re
ss

 R
an

ge

PTE

How to access devices?

• IO Ports

– Special address space (16 bit)

– Write to an IO port

– special instructions

inb, outb

SPCA Exercise Session 14 109

0x00…0

0xFF…F

RAM

0x80…0

Device 1

0xFFFF

0x0000

Ph
ys

ic
al

 A
d

d
re

ss
 R

an
ge

IO
 A

d
d

re
ss

 R
an

ge

Device 0

Memory Mapped Devices

• Device represented as [Base Address, Length]
– Base address refers to the physical address where the device starts

• cf: your beginning of the stack frame
• agreed upon by OS and device driver upon device startup

– Length refers to the total size of the memory region occupied by the device
• cf: the size of your stack frame
• includes devices registers and if required descriptor ring

– Set of registers within Base, Base+Length
• cf: your variables on the stack
• used to set control bits etc.

SPCA Exercise Session 14 110

Devices are NOT memory

• Contents of device registers may change unexpectedly from
view of CPU

– Data received

• Writing to a register may trigger actions

– Shutdown device/machine

– Perform reset

SPCA Exercise Session 14 111

ns16550 registers (each 8 bits)

Addr. Name Description Notes

0 RBR Receive Buffer Register (read only) DLAB=0

0 THR Transmit Holding Register (write only) DLAB=0

1 IER Interrupt Enable Register DLAB=0

2 IIR Interrupt Identification Register (read only)

2 FCR FIFO Control Register (write only)

3 LCR Line Control Register

4 MCR MODEM Control Register

5 LSR Line Status Register

6 MSR MODEM Status Register

7 SCR Scratch Register

0 DLL Divisor Latch (LSB) DLAB=1

1 DLM Divisor Latch (MSB) DLAB=1

SPCA Exercise Session 14 112
DLAB = bit 7 of the LCR register

Too simple UART driver

SPCA Exercise Session 14 113

1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. char *lsr = (char *) UART_LSR;
4. char *thr = (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

What’s the problem here?

Too simple UART driver

SPCA Exercise Session 14 114

What’s the problem here?

• Compiler does not know this is
a device register!

• Loop gets optimized away!

• Add: volatile keyword

1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. volatile char *lsr = (char *) UART_LSR;
4. volatile char *thr = (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

Again: this volatile is not the same
as in java

Device Register Contents

• Each bit may have a different meaning

• Lots of configurations possible!

SPCA Exercise Session 14 115

Device Drivers

• Writing device drivers is tedious

– Setting a single bit wrong and the device does not work

– Debugging is hard: Likely to set a bit wrong due to a wrong shift &
mask

– Device manuals not always available

SPCA Exercise Session 14 116

Devices and Caches

• Device registers cannot be cached due to inconsistency problem, i.e.
register content changes without CPU write!

• What about cache lines? Would overwrite other register values
when writing back

• Set the “no-cache” flag in the page table entry

SPCA Exercise Session 14 117

Interrupts

SPCA Exercise Session 14 118

Efficiency problem: Polling…

• CPU can’t do any useful work while
busy waiting

Solution: Use Interrupts, i.e. tell device to
“call this function when data ready”

1. #define UART_BASE 0x12345000
2. #define UART_THR (UART_BASE + 0)
3. #define UART_RBR (UART_BASE + 4)
4. #define UART_LSR (UART_BASE + 8)

1. void serial_putc(char c)
2. {
3. volatile char *lsr = (char *) UART_LSR;
4. volatile char *thr = (char *) UART_THR;

1. // Wait until FIFO can hold more chars
2. while((*lsr & 0x20)== 0);
3.

4. *thr = c
5. }

What’s the problem with this code?

Register polling
=

wasted CPU cycles

Data transfer

• Don’t want to waste CPU cycles just copying data

• Use Direct Memory Access instead

• Now CPU and DMA can work in parallel

• need to make sure we maintain consistency with CPU caches!

SPCA Exercise Session 14 119

Direct Memory Access (DMA)

SPCA Exercise Session 14 120120

DeviceDevice

RAM RAMFILE FILE

CPU

Caches

CPU

Caches

DMA

CPU writes data
to memory i.e.
also cache

Data path goes
Through CPU

Any Problems with DMA?

DMA controller
autonomously
transfers data
to/from devices,
skipping CPU
entirely

DMA and Caches

• DMA is like device registers!
Changes the contents w/o CPU
write.

• Cannot “no-cache”:
Bad performance since large data

• Need to explicitly invalidate cache!

SPCA Exercise Session 14 121

Device

RAMFILE

CPU

Caches

DMA

F

DMA Addressing

• Deal with physical addresses only!

– Any problems with that?

• Programs deal with virtual addresses: need translation!

• Physical Range may not be contiguous
• Scatter-gather DMA controllers: DMA to/from a list of regions

• How about security?

SPCA Exercise Session 14 122

DMA Vulnerability

SPCA Exercise Session 14 123

https://en.wikipedia.org/wiki/DMA_attack

Process 0

Process 1

Secret

DMA

Leaked Secret
1) Attacker initiates DMA transfer

2) DMA Engine copies secret region

3) Attacker gets
interrupt when
secret is leaked

Attack done by
external devices i.e.
firewire / thunderbolt

DMA and Cache Problems

• On DMA read:

– Before: Flush (= write back all) the cache to update main memory

– After: Invalidate (= clear all) the cache to avoid old values seen

• On DMA write:

– Before: flush or invalidate the cache to update main memory

– After: invalidate CPU cache

SPCA Exercise Session 14 124

Buffer/Descriptor Rings

SPCA Exercise Session 14 125

Actual View in Memory:

⃪ Head

⃪ Tail wraps around

Logical View:

⃪ Tail

Buffer/Descriptor Rings

Buffer Ring

• ring holds metadata and actual data

• data must be fixed size

• data is contigous

Descriptor Ring

• ring holds metadata and pointer
(descriptor) to actual data

• data can be variable sized

• data doesn’t have to be contigous

=> can make descriptor chain

SPCA Exercise Session 14 126

X-Max Assignment 12

SPCA Exercise Session 14 127

SPCA Exercise Session 14 128

An unknown MPFC (?) device appeared

[] Ignore [x] Write Driver

Task

• You will write a device driver for a MPFC device

• Device Specs

– Uses single descriptor ring

– Uses DMA transfers

– Uses interrupts for “new item” or “no buffer” signals

– Memory Mapped Device

SPCA Exercise Session 14 129

Assignment TO-DO

• Initialize the device (reset) and setting up the in memory data
structures

• Start the device

• Start issuing DMA requests to the device

• Activate interrupt and go to sleep

• Do not terminate! Hand back the buffers to the device once used

SPCA Exercise Session 14 130

Hints: Interrupts

• You will need to register a handler which is called for
received interrupts

• Interrupt received:

– Wake the sleeping thread

– Acknowledge the interrupt

SPCA Exercise Session 14 131

Hints: Buffer Ring

• Allocate enough memory

• Keep track of who owns the buffer

• Tell the device where to find the buffer rings!

– (Normally you would have to give the physical address, but we
stay virtual this time)

SPCA Exercise Session 14 132

Hints: Buffer Ring

SPCA Exercise Session 14 133

For receive:
Driver = read-pointer
Device = write-pointer

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

Hints: Buffer Ring

SPCA Exercise Session 14 134

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device

Hints: Buffer Ring

SPCA Exercise Session 14 135

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device

Hints: Buffer Ring

SPCA Exercise Session 14 136

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device

Hints: Buffer Ring

SPCA Exercise Session 14 137

typedef struct {

size_t size;

void *buffer;

char owned;

} mpfc_desc;

• Owned by driver
• Owned by device

Hints: Buffer Ring

• Overruns and underruns (receive)
• Device has no buffers for received packets

• Then it starts discarding packets and signals that to CPU

• CPU reads all received packets
• Spin poll or tell device to do an interrupt when more data ready

• Overruns and underruns (transmit)
• Device has no more packets to send

• It must wait and either poll memory or tell CPU to wake it up

• CPU has no more slots to send packets
• Must wait until more slots are free, again either polling or tell the device to send

interrupt

SPCA Exercise Session 14 138

Semester Recap

C Pointers
Dynamic
Memory

x86

CoroutinesLinkingVulnerabilitiesFloats

Optimisations
Virtual

Memory
Caches Devices

SPCA Exercise Session 14 139

Exam Strategy

• 1 point ≈ 1 minute

• read through all the exam first => start with what you know!

• practice C coding

• C intuition is built through practice

• labs, code expert, old exercises in C, AoC in C, etc …

• Stay calm :)

SPCA Exercise Session 14 140

SPCA Exercise Session 14 141

Merry Christmas
and all the best in
the new year!

	Slide 1: Exercise Session 14
	Slide 2: Disclaimer
	Slide 3: Overview
	Slide 4
	Slide 5: Devices
	Slide 6: Devices
	Slide 7: SPCA Devices
	Slide 8: SPCA Devices
	Slide 9: Devices
	Slide 10: Devices
	Slide 11: Devices
	Slide 12: Devices
	Slide 13: Devices
	Slide 14: Devices
	Slide 15: Devices
	Slide 16: Devices
	Slide 17: Devices
	Slide 18: Devices
	Slide 19: Devices
	Slide 20: Devices
	Slide 21
	Slide 22: Devices
	Slide 23: Devices
	Slide 24: Devices
	Slide 25: Devices
	Slide 26: Devices
	Slide 27: Devices
	Slide 28: Devices
	Slide 29: Devices
	Slide 30: Devices
	Slide 31: Devices
	Slide 32: Devices
	Slide 33: Devices
	Slide 34: Devices
	Slide 35: Devices
	Slide 36: Devices
	Slide 37: Devices
	Slide 38: Devices
	Slide 39: Devices
	Slide 40: Devices
	Slide 41: Devices
	Slide 42: Devices
	Slide 43: Devices
	Slide 44: Devices
	Slide 45
	Slide 46: SPCA in a nutshell
	Slide 47: SPCA in a nutshell
	Slide 48: SPCA in a nutshell
	Slide 49: SPCA in a nutshell
	Slide 50: SPCA in a nutshell
	Slide 51: SPCA in a nutshell
	Slide 52: SPCA in a nutshell
	Slide 53: SPCA in a nutshell
	Slide 54: SPCA in a nutshell
	Slide 55: SPCA in a nutshell
	Slide 56: SPCA in a nutshell
	Slide 57: SPCA in a nutshell
	Slide 58: SPCA in a nutshell
	Slide 59: SPCA in a nutshell
	Slide 60: SPCA in a nutshell
	Slide 61: SPCA in a nutshell
	Slide 62: SPCA in a nutshell
	Slide 63: SPCA in a nutshell
	Slide 64: SPCA in a nutshell
	Slide 65: SPCA in a nutshell
	Slide 66: SPCA in a nutshell
	Slide 67: SPCA in a nutshell
	Slide 68: SPCA in a nutshell
	Slide 69: SPCA in a nutshell
	Slide 70: SPCA in a nutshell
	Slide 71: SPCA in a nutshell
	Slide 72: SPCA in a nutshell
	Slide 73: SPCA in a nutshell
	Slide 74: SPCA in a nutshell
	Slide 75: SPCA in a nutshell
	Slide 76: SPCA in a nutshell
	Slide 77
	Slide 78: SPCA in a nutshell
	Slide 79: SPCA in a nutshell
	Slide 80: SPCA in a nutshell
	Slide 81
	Slide 82
	Slide 83: SPCA Exam Remarks
	Slide 84: SPCA Exam Remarks
	Slide 85
	Slide 86: SPCA in perspective
	Slide 87: SPCA in perspective
	Slide 88
	Slide 89: SPCA in perspective
	Slide 90: SPCA in perspective
	Slide 91: SPCA in perspective
	Slide 92: SPCA in perspective
	Slide 93
	Slide 94
	Slide 95: SPCA in perspective
	Slide 96: SPCA in perspective
	Slide 97
	Slide 98: Overview
	Slide 99: Question 1a: MSI
	Slide 100: Question 1a: MSI
	Slide 101: Question 1b: MESI
	Slide 102: Question 1b: MESI
	Slide 103: Question 2a
	Slide 104: Question 2b
	Slide 105: Question 2b
	Slide 106: Devices Recap
	Slide 107: Devices
	Slide 108: How to access devices?
	Slide 109: How to access devices?
	Slide 110: Memory Mapped Devices
	Slide 111: Devices are NOT memory
	Slide 112: ns16550 registers (each 8 bits)
	Slide 113: Too simple UART driver
	Slide 114: Too simple UART driver
	Slide 115: Device Register Contents
	Slide 116: Device Drivers
	Slide 117: Devices and Caches
	Slide 118: Interrupts
	Slide 119: Data transfer
	Slide 120: Direct Memory Access (DMA)
	Slide 121: DMA and Caches
	Slide 122: DMA Addressing
	Slide 123: DMA Vulnerability
	Slide 124: DMA and Cache Problems
	Slide 125: Buffer/Descriptor Rings
	Slide 126: Buffer/Descriptor Rings
	Slide 127: X-Max Assignment 12
	Slide 128
	Slide 129: Task
	Slide 130: Assignment TO-DO
	Slide 131: Hints: Interrupts
	Slide 132: Hints: Buffer Ring
	Slide 133: Hints: Buffer Ring
	Slide 134: Hints: Buffer Ring
	Slide 135: Hints: Buffer Ring
	Slide 136: Hints: Buffer Ring
	Slide 137: Hints: Buffer Ring
	Slide 138: Hints: Buffer Ring
	Slide 139: Semester Recap
	Slide 140: Exam Strategy
	Slide 141

