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Disclaimer

• Website: n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are not official 
part of the course) having a blue heading: they are there to 
complement and go into more depth where I found 
appropriate

• For the exam only the official exercise slides are relevant, if in 
doubt always check the ones on the official moodle page



Remark: Labs, Homework

• Labs and Homework are both ungraded

• I would still highly recommend doing them

• Labs: show you C programming: many exam tasks in this style 
(like bitlab, general coding skills from malloc lab)

• Pen&Paper: give you thorough understanding of the concepts 
(i.e. praxis part)



Remark: SPCA Setup

• Any setup issues? Come to me in the break or after the 
exercise session



Agenda

• More on C-programming…

• .c and .h files

• Make and makefiles

• gcc flags
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Bit Lab

Deadline for Assignment 1 is next week.

Questions?



C Programming Whirlwind Tour

Touching on this week’s lectures



Example Structure of a C file

• You have function definitions 
and declarations and calls. 

• You have variable 
declarations

#include <stdio.h>

int i = 79;

static void print_name(void) 
{
const char s[] = "Mothy";
printf("My name is %s and I work in CAB F %d\n", s, i);

}

int main(int argc, char *argv[])
{
print_name();
return 0;

}
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How about calling print_name() from 
another source file?

Or

How does the other_program.c know about the 
location / signature of print_name() ?



Solution: Header Files and Modules

• There is a difference between declaration and definition

– Declaration gives the signature of the function / variable

– Definitions gives the code / storage space for variables

• put declarations
in header files

void print_name(void);

void print_name(void)
{
const char s[] = "Mothy";
printf("My name is %s and I work

in CAB F %d\n", s, i);
}

http://en.wikipedia.org/wiki/Header_file
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Outsourced print_name()

/* print_name.c */

#include <stdio.h>

int i = 79;

void print_name(void) 
{
const char s[] = "Mothy";
printf("My name is %s and I work in CAB F %d\n", s, i);

}

/* print_name.h */
void print_name(void);
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New Structure of Main
#include “print_name.h”

int main(int argc, char *argv[])
{
print_name();
return 0;

}

Note: You do not need to include stdio.h
anymore, since you do not make use of 
printf here. print_name makes use of printf
and stdio.h is included in print_name.h

#include <stdio.h>

#include “print_name.h” → Your header files (same directory)

→ Header file of the system (libc)
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#include “../print_name.h” (in the parent directory)

#include “folder/print_name.h” (in the subdirectory)

<stdlib.h>, <math.h> …Some C standard library headers:



Different file types

Header Files (*.h)

• Forward declarations (function 
prototypes, …)

• Globally usable definitions, typedefs, 
structs, …

• [Macro definitions]

Source Files (*.c)

• Function definitions (source code)

• Variable storage

• Local (static) function declarations & 
definitions

Note: Everything that is declared in a header file which can be included is 
considered to be globally accessible. Only put there what’s necessary i.e. 

the public interface
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Header Files

• Header files are included by text injection (copy-paste) by 
macro pre-processor:
#include "header1.h"
#include <system-file>

• Include Header Guards to make sure that a header file is only 
included once in a compilation unit (roughly a C file):
#ifndef HEADER_FILE
#define HEADER_FILE

// the entire header file

#endif // HEADER_FILE
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c-demo



Compiling The Program

• Just executing gcc with your program.c does not 
work anymore

• You have to specify every source file you used:
gcc –o program program.c print_name.c

• You do not have to list the header files
– gcc looks  for header files in the current directory
– gcc also looks for header files in the system include

directories

-o is used to name the output, if -o is not specified the 
output will be named a.out for historic reasons.
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Example: .c and .h files (makefile-demo)

Main.c

Functions.c

Functions.h



Makefile-demo (splitting .c, .h)



Absolute Basics: Compiling: source code, 
assembly files, object files, executables



Absolute Basics: Compiling: source code, 
assembly files, object files, executables



Makefiles

• Purpose: automate compiling process, s.t. only parts of the 
program that have changed get recompiled

• ”make” reads its instruction from Makefile (called descriptor 
file) by default: specifies set of rules to determine which part 
of the program needs to be recompiled



Command Line Approch to Compile

• gcc –c main.c functions.c

• ls *.o
main.o functions.o

• gcc –o myprogram main.o functions.o

• ./myprogram

• If we want to modify (add functions): need to recompile only 
certain files (or everything to be sure: that’s slow)

• Gcc –c functions.c

• Gcc –o myprogram main.o functions.o



• Target: Outputfile we want to 
create (executable or object 
file)

• Dependencies: Fields that are 
required to create the target 
(source files)

• Command: Shell commands 
to run (e.g. gcc to compile)

General Makefile structure



Example of a Makefile

• Rule (executable): Determines 
how to create TARGET 
executable from object files 
(main.o, functions.o)

• Rule .c->.o: Rule tells make how 
to compile .c to .o files: $< 
special variable that represents 
the dependencies (specified 
after target: dependencies)

• In Makefiles: % wild card not * 
like in Bash (ls *.c)



Example of a Makefile

• Phony targets: phony 
target is one that is not 
really the name of a file: 
will only have a list of 
commands, no 
dependencies

• Cleaning up (phony 
target): tells make to 
delete object files and the 
executable



Makefiles

• When running “make” without specifying a target (unlike make 
clean) it will specify the first rule in the Makefile => that’s why 
we should have that the first rule builds the main target 
(executable)

• Dependency resolution: make figures out what files need to be 
updated: for the executable myprogram, we need main.o, 
functions.o => if they are not up to date because we updated 
functions.c for instance, it will recursively look for rules to 
build those dependencies (%.o: %.c here)



Makefile-demo (makefile)



make ?
• GNU make:

– “In software development, Make is a utility that automatically 
builds executable programs and libraries from source code by reading 
files called makefiles which specify how to derive the target 
program.” - https://en.wikipedia.org/wiki/Make_(software)

– Only builds the parts if they are modified and necessary w.r.t. the 
makefiles.

– https://makefiletutorial.com/
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Example Makefile
(from assignment 1)

CC = gcc
CFLAGS = -O -Wall

btest: btest.c bits.c decl.c tests.c btest.h bits.h
$(CC) $(CFLAGS) -o btest bits.c btest.c decl.c tests.c

clean:
rm -f *.o btest

Usage:
make or make btest: runs the compilation but only if the files

are modified

make clean: removes your generated binary file 
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Some hints

• Function Pointers
http://www.cprogramming.com/tutorial/function-pointers.html

• Pointer Tutorial
http://www.cplusplus.com/doc/tutorial/pointers/

• More on modules and header files
– http://www.tutorialspoint.com/cprogramming/c_header_files.htm

• Make files (important for later…)
– http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

• More on this in the lecture next week… ☺
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Demo

The compiler is your friend!
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GCC Flags for better coding style
• -Werror

– Make all warnings into errors.

• -Wpedantic
– Issue all the warnings demanded by strict ISO C and ISO C++; reject all 

programs that use forbidden extensions

• -Wall
– Enables a number of warnings about questionable code

• -Wextra
– This enables some extra warning flags that are not enabled by -Wall

(such as -Wuninitialized)

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
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https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html


GCC Flags for catching errors at runtime

• -fsanitize=address

– Instrument code to detect memory errors

• -fsanitize=undefined

– Instrument code to detect undefined behavior at runtime

• -fstack-protector-all

– Instruments code to detect buffer overflows on the stack

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
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Gcc-demo (flags)



Exercise

Let’s match some C expressions.



Why should you care? Old exam question



Recall



Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).



Justification



Justification
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a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).

a * 7



Justification



Justification



Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

One’s complement of a

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).



Justification



Justification



Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a / 4

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).



Justification



Justification



Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a & b

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).



Justification



Justification



Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2
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Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

(a < 0) ? 1 : -1

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum 

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e., 

W == 31).



Justification



Justification



Good luck and 
have fun!
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