
Exercise Session 2
Systems Programming and Computer Architecture

Fall Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• My exercise slides have additional slides (which are not official
part of the course) having a blue heading: they are there to
complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Remark: Labs, Homework

• Labs and Homework are both ungraded

• I would still highly recommend doing them

• Labs: show you C programming: many exam tasks in this style
(like bitlab, general coding skills from malloc lab)

• Pen&Paper: give you thorough understanding of the concepts
(i.e. praxis part)

Remark: SPCA Setup

• Any setup issues? Come to me in the break or after the
exercise session

Agenda

• More on C-programming…

• .c and .h files

• Make and makefiles

• gcc flags

Systems Programming and Computer Architecture 5

Bit Lab

Deadline for Assignment 1 is next week.

Questions?

C Programming Whirlwind Tour

Touching on this week’s lectures

Example Structure of a C file

• You have function definitions
and declarations and calls.

• You have variable
declarations

#include <stdio.h>

int i = 79;

static void print_name(void)
{
const char s[] = "Mothy";
printf("My name is %s and I work in CAB F %d\n", s, i);

}

int main(int argc, char *argv[])
{
print_name();
return 0;

}

Systems Programming and Computer Architecture 8

How about calling print_name() from
another source file?

Or

How does the other_program.c know about the
location / signature of print_name() ?

Solution: Header Files and Modules

• There is a difference between declaration and definition

– Declaration gives the signature of the function / variable

– Definitions gives the code / storage space for variables

• put declarations
in header files

void print_name(void);

void print_name(void)
{
const char s[] = "Mothy";
printf("My name is %s and I work

in CAB F %d\n", s, i);
}

http://en.wikipedia.org/wiki/Header_file

Systems Programming and Computer Architecture 10

http://en.wikipedia.org/wiki/Header_file

Outsourced print_name()

/* print_name.c */

#include <stdio.h>

int i = 79;

void print_name(void)
{
const char s[] = "Mothy";
printf("My name is %s and I work in CAB F %d\n", s, i);

}

/* print_name.h */
void print_name(void);

Systems Programming and Computer Architecture 11

New Structure of Main
#include “print_name.h”

int main(int argc, char *argv[])
{
print_name();
return 0;

}

Note: You do not need to include stdio.h
anymore, since you do not make use of
printf here. print_name makes use of printf
and stdio.h is included in print_name.h

#include <stdio.h>

#include “print_name.h” → Your header files (same directory)

→ Header file of the system (libc)

Systems Programming and Computer Architecture 12

#include “../print_name.h” (in the parent directory)

#include “folder/print_name.h” (in the subdirectory)

<stdlib.h>, <math.h> …Some C standard library headers:

Different file types

Header Files (*.h)

• Forward declarations (function
prototypes, …)

• Globally usable definitions, typedefs,
structs, …

• [Macro definitions]

Source Files (*.c)

• Function definitions (source code)

• Variable storage

• Local (static) function declarations &
definitions

Note: Everything that is declared in a header file which can be included is
considered to be globally accessible. Only put there what’s necessary i.e.

the public interface

Systems Programming and Computer Architecture 13

Header Files

• Header files are included by text injection (copy-paste) by
macro pre-processor:
#include "header1.h"
#include <system-file>

• Include Header Guards to make sure that a header file is only
included once in a compilation unit (roughly a C file):
#ifndef HEADER_FILE
#define HEADER_FILE

// the entire header file

#endif // HEADER_FILE

Systems Programming and Computer Architecture 14

c-demo

Compiling The Program

• Just executing gcc with your program.c does not
work anymore

• You have to specify every source file you used:
gcc –o program program.c print_name.c

• You do not have to list the header files
– gcc looks for header files in the current directory
– gcc also looks for header files in the system include

directories

-o is used to name the output, if -o is not specified the
output will be named a.out for historic reasons.

Systems Programming and Computer Architecture 16

Example: .c and .h files (makefile-demo)

Main.c

Functions.c

Functions.h

Makefile-demo (splitting .c, .h)

Absolute Basics: Compiling: source code,
assembly files, object files, executables

Absolute Basics: Compiling: source code,
assembly files, object files, executables

Makefiles

• Purpose: automate compiling process, s.t. only parts of the
program that have changed get recompiled

• ”make” reads its instruction from Makefile (called descriptor
file) by default: specifies set of rules to determine which part
of the program needs to be recompiled

Command Line Approch to Compile

• gcc –c main.c functions.c

• ls *.o
main.o functions.o

• gcc –o myprogram main.o functions.o

• ./myprogram

• If we want to modify (add functions): need to recompile only
certain files (or everything to be sure: that’s slow)

• Gcc –c functions.c

• Gcc –o myprogram main.o functions.o

• Target: Outputfile we want to
create (executable or object
file)

• Dependencies: Fields that are
required to create the target
(source files)

• Command: Shell commands
to run (e.g. gcc to compile)

General Makefile structure

Example of a Makefile

• Rule (executable): Determines
how to create TARGET
executable from object files
(main.o, functions.o)

• Rule .c->.o: Rule tells make how
to compile .c to .o files: $<
special variable that represents
the dependencies (specified
after target: dependencies)

• In Makefiles: % wild card not *
like in Bash (ls *.c)

Example of a Makefile

• Phony targets: phony
target is one that is not
really the name of a file:
will only have a list of
commands, no
dependencies

• Cleaning up (phony
target): tells make to
delete object files and the
executable

Makefiles

• When running “make” without specifying a target (unlike make
clean) it will specify the first rule in the Makefile => that’s why
we should have that the first rule builds the main target
(executable)

• Dependency resolution: make figures out what files need to be
updated: for the executable myprogram, we need main.o,
functions.o => if they are not up to date because we updated
functions.c for instance, it will recursively look for rules to
build those dependencies (%.o: %.c here)

Makefile-demo (makefile)

make ?
• GNU make:

– “In software development, Make is a utility that automatically
builds executable programs and libraries from source code by reading
files called makefiles which specify how to derive the target
program.” - https://en.wikipedia.org/wiki/Make_(software)

– Only builds the parts if they are modified and necessary w.r.t. the
makefiles.

– https://makefiletutorial.com/

Systems Programming and Computer Architecture 28

https://en.wikipedia.org/wiki/Make_(software)
https://makefiletutorial.com/

Example Makefile
(from assignment 1)

CC = gcc
CFLAGS = -O -Wall

btest: btest.c bits.c decl.c tests.c btest.h bits.h
$(CC) $(CFLAGS) -o btest bits.c btest.c decl.c tests.c

clean:
rm -f *.o btest

Usage:
make or make btest: runs the compilation but only if the files

are modified

make clean: removes your generated binary file

Systems Programming and Computer Architecture 29

Some hints

• Function Pointers
http://www.cprogramming.com/tutorial/function-pointers.html

• Pointer Tutorial
http://www.cplusplus.com/doc/tutorial/pointers/

• More on modules and header files
– http://www.tutorialspoint.com/cprogramming/c_header_files.htm

• Make files (important for later…)
– http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

• More on this in the lecture next week… ☺

Systems Programming and Computer Architecture 30

http://www.cprogramming.com/tutorial/function-pointers.html
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.tutorialspoint.com/cprogramming/c_header_files.htm
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

Demo

The compiler is your friend!

Systems Programming and Computer Architecture 31

GCC Flags for better coding style
• -Werror

– Make all warnings into errors.

• -Wpedantic
– Issue all the warnings demanded by strict ISO C and ISO C++; reject all

programs that use forbidden extensions

• -Wall
– Enables a number of warnings about questionable code

• -Wextra
– This enables some extra warning flags that are not enabled by -Wall

(such as -Wuninitialized)

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
Systems Programming and Computer Architecture 32

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

GCC Flags for catching errors at runtime

• -fsanitize=address

– Instrument code to detect memory errors

• -fsanitize=undefined

– Instrument code to detect undefined behavior at runtime

• -fstack-protector-all

– Instruments code to detect buffer overflows on the stack

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Systems Programming and Computer Architecture 33

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Gcc-demo (flags)

Exercise

Let’s match some C expressions.

Why should you care? Old exam question

Recall

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 38

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

Justification

Justification

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 41

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

a * 7

Justification

Justification

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 44

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

One’s complement of a

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

Justification

Justification

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 47

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a / 4

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

Justification

Justification

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 50

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

a & b

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

Justification

Justification

Exercise: Matching expressions

Answers

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a « 3) + ~a

d. (a « 4) + (a « 2) + (a « 1)

e. ((a < 0) ? (a + 3) : a) » 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) » W) & 1

h. ~((a » W) « 1)

i. a » 2

Systems Programming and Computer Architecture 53

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 15

(a < 0) ? 1 : -1

Assumptions

• a and b are declared as int in C.

• The machine uses 32-bit two’s complement format for signed ints.
• MAX_INT and MIN_INT are the maximum and minimum

representable signed integer values, respectively.
• W is one less than the number of bits needed to represent an int (i.e.,

W == 31).

Justification

Justification

Good luck and
have fun!

Systems Programming and Computer Architecture 56

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

