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Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not official 
part of the course) having a blue heading: they are there to 
complement and go into more depth where I found 
appropriate

• For the exam only the official exercise slides are relevant, if in 
doubt always check the ones on the official moodle page



Question

• Who actually knows basics of the terminal (i.e. can change into 
directories, create files, edit files)?

• Who knows how to compile a C file (i.e. used gcc)?



Docker, WSL, Maximus, what are they?
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Networks
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• Where is maximus? You 
learn that in Computer 
Networks



Why would you care?

• Different executables on different machines: s.t. you can 
recreate our correct code (or our errors) you need to compile 
on the system

• Segfault demo



Where are we in the course?

• 1. Programming Language C

• Looked at basic syntax of C

• Yesterday and today: pointers, manual memory allocation : 
dynamic memory allocation (heart of C)

• Future: how to implement dynamic memory allocation 
(lists)

• 2. Assembly, Variadic Functions, Linking and Loading, 
Compiler

• 3. Computer Architecture: DDCA and PPROG, Devices



Agenda

• Last week’s assignment

• More on C-Programing (Assignment 2)
• File I/O

• Lecture Recap: Pointers

• Quiz: Pointers
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Last Week’s Assignment
Bitwise Operations
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Slides: BitOps
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Bit Lab – bitCount(x)

• Naïve Approach:
• (x & 1) + ((x >> 1) & 1) + … + ((x >> 31) & 1)

• requires: 31 +, 32 &, 31 >> →94 operators!!

• Another Idea:
• Divide 32 bits into segements of «bit counters»

accumumulate bit 25 to 32

accumumulate bit 17 to 24

accumumulate bit 9 to 16

accumumulate bit 1 to 8
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Bit Lab - bitCount(x) with counters

• Mask: unsigned int m = 1 + (1 << 8) + (1 << 16) + (1 << 24)

• Accumulate:
unsigned int counts = (x & m) + ((x >> 1) & m) + … ((x >> 7) & m)

• Sum up:
unsigned int sum = (counts & 0xFF) + ((counts >> 8) & 0xFF) +
  ((counts >> 16) & 0xFF) + ((counts >> 24) & 0xFF) 

10000000100000001000000010000000

22

6

10

38

Systems Programming and Computer Architecture



Bit Lab - bitCount(x) – better solution?
Accumulate in eight 4-bit Counters (rather than 4 8-bit Counters)

ci [0, 4]

c1 c2 c3 c4 c5 c6 c7 c8

s

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 2

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 3
+

C Code



ci [0, 4]

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6

c1 c2 c3 c4 c5 c6 c7 c8

s

c1 c2 c3 c4 c5 c6 c7

s >> 16 

c1 c2 c3 c4 c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’

+

c’i [0, 8]

Step 1: Reduce from 8 to 4 Counters
Combine 4 upper counters with 4 lower counters

C Code



Step 2: Reduce from 4 to 2 Counters
Combine 1st with 2nd and 3rd with 4th

0 … 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

c’i [0, 8]

& mask = 0xF | (0xF << 8);

c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’

c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’ >> 4

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1& mask = 0xF | (0xF << 8);
+

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’ c’’i [0, 16]

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6
C Code



0 … 0 0 0 0 0 0

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’

+
0 … 0 0 0 0 0 0

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’>> 8

0 … 0 0 0 0 0

c2 + c6 + c1 + c5
c4 + c8 + c3 + c7 +
c2 + c6 + c1 + c5

s’’’ c’’’  [0, 32]

c’’i [0, 16]

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1& 0x3F

0 … 0s’’’

Step 3: Reduce from 2 to 1 Counter
Combine the two remaining counters

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6
C Code



Bit Lab - bitCount(x) – better solution?
int bitCount(int x) {

/* Sum 8 groups of 4 bits each */

int m1 = 0x11 | (0x11 << 8);

int mask = m1 | (m1 << 16);

int s = x & mask;

s += x>>1 & mask;

s += x>>2 & mask;

s += x>>3 & mask;

/* Now combine high and low order sums */

s = s + (s >> 16);

/* Low order 16 bits now consists of 4 sums,

each ranging between 0 and 8.

Split into two groups and sum */

mask = 0xF | (0xF << 8);

s = (s & mask) + ((s >> 4) & mask);

return (s + (s>>8)) & 0x3F;

}

10001000100010001000100010001000

m1

mask

1111000011110000

Operators: 25



Bit Lab

Questions for Assignment 1?
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Remark Assignment 1

• Need to understand the basics of bit manipulation (shifting, or, 
and, xor, signed, unsigned numbers etc.)

• Exam will most likely not ask the tricky questions as in 
assignment 1 (implement with 2 ops, or divide and conquer 
adding)



Preview: Assignment 2
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More on C-Programming

and short overview of

assignment 02
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Integer Data Types

• You may use the types defined in C99’s stdint.h

• Keep in mind not to overflow by using a too small representation for 
the value

#include <stdint.h>

void main(int argc, char *argv[]) {
uint8_t x = 22;
int16_t y = 4434;
int64_t z = 1 << 44;

}

http://www.cplusplus.com/reference/cstdint/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html

Systems Programming and Computer Architecture

http://www.cplusplus.com/reference/cstdint/
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Recap: C99 stdint.h



1. Reverse an array

Write a C program that has a function that:
• accepts an array of unsigned integers and a length

• reverses the elements of the array in place

• returns void (nothing)

Systems Programming and Computer Architecture

…
void reverse(unsigned int *arr, size_t len) {

…
}
…



Choose Your Types Wisely

…

void reverse_array(unsigned int* array, size_t length)

{

for (int i = 0; i < length; i++) {

/* … */

}

}

…

test.cc: In function ‘void reverse_array(int, unsigned)’:
test.cc:6:22: warning: comparison between signed and 
unsigned integer expressions [-Wsign-compare]

for (int i = 0; i < length; i++) {

Use the –Wall (or –Wextra) flag every time !!!!



2. Box-and-arrow diagram
• Use a box-and-arrow diagram for the given program to explain what it 

prints out.

• Pen & Paper Exercise: hand it in manually or scan it

See lecture slides (04 – Pointers)!
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3. Little vs. big endian

Write a C program that prints out whether the computer it is running 
on is little endian or big endian. (hint: pointers and casts)

Systems Programming and Computer Architecture

…

// returns true if little endian, 0 if big endian
bool is_little_endian() {
 …
}



Recap DDCA: Little vs Big Endian



4. First whitespace-separated word

Implement a function that extracts the first word from a string

Systems Programming and Computer Architecture

…

word find_first_word(char *input_string) {
  word result = {.word_string = NULL, .length = 0};
  // Student TODO: implement here
  return result;
}
…
typedef struct word {

char *word_string;

size_t length;

} word;



Recap: Strings in C

• string-demo



Recap: Sizeof vs strlen

• sizeof: Determines the size (in bytes) of a data type or variable 
at compile time. It gives the amount of memory allocated for 
the object, data type, or array.

• Sizeof(array) = arraylength * sizeof(element)

• Sizeof(pointer) = 8

• strlen: Calculates the length of a string (i.e., the number of 
characters before the null terminator \0) at runtime.



string-demo
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Initializing Memory
(First whitespace-separated word)

malloc() can fail => returns NULL

Systems Programming and Computer Architecture

#include <string.h>

char *data = (int*)malloc(10 * (sizeof(char)));
if (data == NULL) {
printf(“No memory”);
exit(1);

}
// ensure memory is zeroed out
memset(data, 0, 10 * sizeof(char)));

Usage of Malloc

No guarantee for zeroed memory



Remember, use compiler flags

gcc <FILES> -Wall -Wpedantic -Wextra -Werror -std=c99 -Wmissing-
prototypes



5. Complex numbers

For this you must implement a complex number module with following 
functions:

• add

• subtract

• multiply

• Divide

Systems Programming and Computer Architecture



Recap: Structs in C



Recap: Difference ”.” and “->”?



Recap: Stack and Heap



Int on the heap vs stack
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Struct on the heap
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Recap: Structs in C, Stack and Heap



Recap: Difference “.”, “->” clear?



Note: doesnt have to be on the heap to 
have a pointer to it 
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6. Binary Search Tree

• malloc() can fail, returns NULL.
• Correct code must not leak memory.

Implement the three functions insert(), lookup() and delete()
but be careful during allocations:

Systems Programming and Computer Architecture

tree_node* alloc_tree_node() {
  tree_node* ret = (tree_node*)malloc(sizeof(tree_node));
  ret->key = -1;
  ret->value = -1  
  ret->left = NULL;
  ret->right = NULL;
  return ret;
}



Cleanup code
tree_node* alloc_tree_node() {
  tree_node* ret = (tree_node*)malloc(sizeof(tree_node));
  
  if (!ret) 
       return NULL;
  
  ret->key = -1;
  ret->value = -1  
  ret->left = NULL;
  ret->right = NULL;
  

  return ret;
}

Systems Programming and Computer Architecture



7. Word Count - wc

What is wc?

wc is a Unix utility that displays the count of characters, words and 
lines present in a file. 

Implement this unix utility step by step while solving one problem at a 
time.

Start from the given code-shell in wc.c and then just add the missing 
components.

Systems Programming and Computer Architecture



8. File I/O (File descriptors, read, write)

Systems Programming and Computer Architecture



Accessing Files

• In general, you cannot access the file directly

• You need support from the operating system to 
open/read/write/close a file. 
• This is called a system call (syscall) -> Lecture Computer Systems

• All file related declarations are in the stdio.h

• This functions are wrappers around system calls, e.g., fread() usually calls the 
system call read().

#include <stdio.h>

Systems Programming and Computer Architecture



The File Descriptor

File FOO

File Descriptor

File BAR

Pointer to the file

Current offset in the file (cursor)

FILE *fp;
• To get a file descriptor you must 

open a file

• The opening may fail. Check 
return value!

• Close the file in the end

FILE *fopen(const char *filename, 
const char *mode); 

int fclose(FILE *fp); 
Systems Programming and Computer Architecture



(Text) File Opening Modes
Mode Read Write File Not Exists File Exists

r Yes, from 
beginning

No Error FILE* descriptor 
returned

w No Yes, from the 
beginning

New file created, FILE* 
Descriptor returned

FILE* descriptor 
returned

a No Yes, from the end 
(append)

New file crated, FILE* 
descriptor returned

FILE* descriptor 
returned

r+ Yes, from 
beginning

Yes, from 
beginning

Error FILE* descriptor 
returned. 

w+ Yes, from 
beginning

Yes, From 
beginning

New file created, FILE* 
descriptor returned

Delete file contents 
(overwrite), File* 
descriptor returned

a+ Yes, from 
beginning

Yes, from the end 
(append only)

New file crated, FILE* 
descriptor returned

FILE* descriptor 
returned

.. b Binary flag that can be added for binary IO

Systems Programming and Computer Architecture



(Text) File Opening Modes
Mode Read Write File Not Exists File Exists

r Yes, from 
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No Error FILE* descriptor 
returned
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(overwrite), File* 
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(append only)
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returned

.. b Binary flag that can be added for binary IO
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Reading a Text File (Example)

int fgetc(FILE *fp);

char *fgets(char *str, int count, FILE *fp);

size_t fread(void *buf, size_t size,
size_t count, FILE *fp);

Alternatives…

FILE *fp;

int c;

int n = 0;

fp=fopen("myfile.txt","r");
if (fp ==NULL) {

printf("Error opening file");

} else {

do {

c = fgetc (fp);
if (c == ‘A') {

n++;

}

} while (c != EOF);

fclose (fp);

}
printf(“%i“, n);

Systems Programming and Computer Architecture



Writing a Text File (Example)
FILE *fp;

char name];

printf(“Enter your name: ");
fgets (name, 256, stdin);

fp=fopen("myfile.txt",“a");

if (fp ==NULL) {
printf("Error opening file");

} else {

if ( fputs (name, fp) < 0) {

printf("Error writing file");

}

fclose (fp);
}

int fputc(int character, FILE *fp);

int *fputs(char *str, FILE *fp);

size_t fwrite(void *ptr, size_t size,
size_t count, FILE *fp);

Alternatives…

Systems Programming and Computer Architecture



Own Example: 
readfile.c, .h



Own Example: 
writefile.c



file-demo
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Always keep in mind

• All those functions will change the state of the file descriptor by 
advancing the cursor position

• Sometimes not all data requested is read/written
• Keep track of how many bytes are processed

• Loop until finished

Systems Programming and Computer Architecture



Reading Formatted strings

• int fscanf(FILE *stream, const char *format, ...);
• Version of scanf() that reads from given FILE*.

• int a; char b[10]; fscanf(stdin, “%d %s”, &a, &b);

• Also, sscanf(const char *str, const char *fmt, ...) may be useful

• Format string:
• %s  Read string

• %d  Read integer

Systems Programming and Computer Architecture



File IO: Resources

• Reference and Examples
http://www.cplusplus.com/reference/cstdio/

• Read the man pages!
• man 3 getc

• man 3 isspace

• man 3 scanf

• http://stackoverflow.com

Systems Programming and Computer Architecture

http://www.cplusplus.com/reference/cstdio/
http://stackoverflow.com/


9. Function pointers basics

Implement the function array_apply() that:
• accepts a function pointer, an array of integers and the arrays length

• invokes the pointed-to function with each of the elements in the array as an 
argument

• overrides the current array element with the return value of the called 
function

Systems Programming and Computer Architecture

void array_apply(Function func, int *values, size_t length) {
…
}

int pow2(int a) {
 return a*a;
}



10. Function pointer

This last part will help you get even more familiar with function pointers.

• write a function to lexicographically compare first names

• write another function for comparison of last names

• use apply and a callback to call a function on every element of an array

• BONUS: implement your own mysort()

Systems Programming and Computer Architecture



Function Pointers conretely



Function Pointers Usecase?



Function pointer demo
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Assignment 2

All programming exercises are on CodeExpert, except exercise 2 (Box-
and-arrow diagram) and exercise 3 (Little vs. big endian).

Systems Programming and Computer Architecture

Start page with the exercises Exercise in the IDE

More information about CodeExpert: https://docs.expert.ethz.ch/

https://docs.expert.ethz.ch/


Short Quiz about pointers
to get you started thinking of pointers
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Recap: Pointers
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Recap: Pointer Arithmetic

• For pointer p, p=p+1 depends on of what type of pointer it is

• Sizeof(int)=4

• int* p  0x0

• p++  0x4

• For char, sizeof(char)=1

• char* ptr 0x5

• ptr++  0x6



Recap: Pointer Arithmetic



Recap: Pointer Arithmetic
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Recap: Pointer Arithmetic



Recap: Pointers and Arrays



Quiz: Simple Pointer

int a[] = { 0,1,2,3,4 };

int i, *p;

for (p = &a[0], i=0; p+i <= a+4; p++,i++)

printf(“*(p+i) = %d”, *(p+i));
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Solution: Simple Pointer

*p+i = 0  *p+i = 2  *p+i = 4

Systems Programming and Computer Architecture



Quiz: Arrays and Pointers

int a[] = { 0, 1, 2, 3, 4 };

int *p[] = {a, a+1, a+2, a+3, a+4 };

int **pp = p;

main() {

printf(“…”, a, *a, **a);

printf(“…”, p, *p, **p);

printf(“…”, pp, *pp, **pp);

}

Systems Programming and Computer Architecture



Solution: Arrays and Pointers

• a = address of a
*a = 0

**a = Segmentation Fault (Null pointer dereference)

• p = address of p
*p = address of a

**p = 0

• pp = address of p
*pp = address of a

**pp = 0

Systems Programming and Computer Architecture



Box and Arrow



Code



Recap: Sizeof vs strlen

• sizeof: Determines the size (in bytes) of a data type or variable 
at compile time. It gives the amount of memory allocated for 
the object, data type, or array.

• Sizeof(array) = arraylength * sizeof(element)

• Sizeof(pointer) = 8

• strlen: Calculates the length of a string (i.e., the number of 
characters before the null terminator \0) at runtime.



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("strlen(s1) = %lu\n", strlen(s1));
return 0;
}

Systems Programming and Computer Architecture 92

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

Compiled and executed on a 64-bit 
Linux machine

strlen(s1) = 19Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("sizeof(s2) = %lu\n", sizeof(s2));
return 0;
}

Systems Programming and Computer Architecture 93

Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

sizeof(s2) = 100Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("sizeof(s3) = %lu\n", sizeof(s3));
return 0;
}
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Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

sizeof(s3) = 8Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("strlen(s3) = %lu\n", strlen(s3));
return 0;
}
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Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

strlen(s3) = 14Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("s1[strlen(s1)] = %d\n", s1[strlen(s1)]);
return 0;
}
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Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s1[strlen(s1)] = 0Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
s3 += 4;
printf("s3 = ’%s’\n", s3);
return 0;
}

Systems Programming and Computer Architecture 97

Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s3 = ’zio Cassis’Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
*(s1 + 4) = ’\0’;
printf("s1 = ’%s’\n", s1);
return 0;
}

Systems Programming and Computer Architecture 98

Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s1 = ’Simo’Answer



What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
*(s2 + 6) = 0;
printf("strlen(s2) = %lu\n", strlen(s2));
return 0;
}
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Compiled and executed on a 64-bit 
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

strlen(s2) = 6Answer



See you
next week!
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