
Exercise Session 3
Systems Programming and Computer Architecture

Fall Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not official
part of the course) having a blue heading: they are there to
complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Question

• Who actually knows basics of the terminal (i.e. can change into
directories, create files, edit files)?

• Who knows how to compile a C file (i.e. used gcc)?

Docker, WSL, Maximus, what are they?

Docker, WSL, Maximus, what are they?

Docker, WSL, Maximus, what are they?

Docker, WSL, Maximus, what are they?

• Where is maximus? You
learn that in Computer
Networks

Docker, WSL, Maximus, what are they?

• Where is maximus? You
learn that in Computer
Networks

Why would you care?

• Different executables on different machines: s.t. you can
recreate our correct code (or our errors) you need to compile
on the system

• Segfault demo

Where are we in the course?

• 1. Programming Language C

• Looked at basic syntax of C

• Yesterday and today: pointers, manual memory allocation :
dynamic memory allocation (heart of C)

• Future: how to implement dynamic memory allocation
(lists)

• 2. Assembly, Variadic Functions, Linking and Loading,
Compiler

• 3. Computer Architecture: DDCA and PPROG, Devices

Agenda

• Last week’s assignment

• More on C-Programing (Assignment 2)
• File I/O

• Lecture Recap: Pointers

• Quiz: Pointers

Systems Programming and Computer Architecture

Last Week’s Assignment
Bitwise Operations

Systems Programming and Computer Architecture

Slides: BitOps

Systems Programming and Computer Architecture

Bit Lab – bitCount(x)

• Naïve Approach:
• (x & 1) + ((x >> 1) & 1) + … + ((x >> 31) & 1)

• requires: 31 +, 32 &, 31 >> →94 operators!!

• Another Idea:
• Divide 32 bits into segements of «bit counters»

accumumulate bit 25 to 32

accumumulate bit 17 to 24

accumumulate bit 9 to 16

accumumulate bit 1 to 8

Systems Programming and Computer Architecture

Bit Lab - bitCount(x) with counters

• Mask: unsigned int m = 1 + (1 << 8) + (1 << 16) + (1 << 24)

• Accumulate:
unsigned int counts = (x & m) + ((x >> 1) & m) + … ((x >> 7) & m)

• Sum up:
unsigned int sum = (counts & 0xFF) + ((counts >> 8) & 0xFF) +
 ((counts >> 16) & 0xFF) + ((counts >> 24) & 0xFF)

10000000100000001000000010000000

22

6

10

38

Systems Programming and Computer Architecture

Bit Lab - bitCount(x) – better solution?
Accumulate in eight 4-bit Counters (rather than 4 8-bit Counters)

ci [0, 4]

c1 c2 c3 c4 c5 c6 c7 c8

s

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 2

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1mask

& x >> 3
+

C Code

ci [0, 4]

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6

c1 c2 c3 c4 c5 c6 c7 c8

s

c1 c2 c3 c4 c5 c6 c7

s >> 16

c1 c2 c3 c4 c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’

+

c’i [0, 8]

Step 1: Reduce from 8 to 4 Counters
Combine 4 upper counters with 4 lower counters

C Code

Step 2: Reduce from 4 to 2 Counters
Combine 1st with 2nd and 3rd with 4th

0 … 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

c’i [0, 8]

& mask = 0xF | (0xF << 8);

c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’

c1 + c5 c2 + c6 c3 + c7 c4 + c8

s’ >> 4

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1& mask = 0xF | (0xF << 8);
+

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’ c’’i [0, 16]

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6
C Code

0 … 0 0 0 0 0 0

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’

+
0 … 0 0 0 0 0 0

c2 + c6 + c1 + c5 c4 + c8 + c3 + c7

s’’>> 8

0 … 0 0 0 0 0

c2 + c6 + c1 + c5
c4 + c8 + c3 + c7 +
c2 + c6 + c1 + c5

s’’’ c’’’ [0, 32]

c’’i [0, 16]

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1& 0x3F

0 … 0s’’’

Step 3: Reduce from 2 to 1 Counter
Combine the two remaining counters

Goal 1 Counter: c1 + c2 + c3 + c4 + c5 + c6
C Code

Bit Lab - bitCount(x) – better solution?
int bitCount(int x) {

/* Sum 8 groups of 4 bits each */

int m1 = 0x11 | (0x11 << 8);

int mask = m1 | (m1 << 16);

int s = x & mask;

s += x>>1 & mask;

s += x>>2 & mask;

s += x>>3 & mask;

/* Now combine high and low order sums */

s = s + (s >> 16);

/* Low order 16 bits now consists of 4 sums,

each ranging between 0 and 8.

Split into two groups and sum */

mask = 0xF | (0xF << 8);

s = (s & mask) + ((s >> 4) & mask);

return (s + (s>>8)) & 0x3F;

}

10001000100010001000100010001000

m1

mask

1111000011110000

Operators: 25

Bit Lab

Questions for Assignment 1?

Systems Programming and Computer Architecture

Remark Assignment 1

• Need to understand the basics of bit manipulation (shifting, or,
and, xor, signed, unsigned numbers etc.)

• Exam will most likely not ask the tricky questions as in
assignment 1 (implement with 2 ops, or divide and conquer
adding)

Preview: Assignment 2

Systems Programming and Computer Architecture

More on C-Programming

and short overview of

assignment 02

Systems Programming and Computer Architecture

Integer Data Types

• You may use the types defined in C99’s stdint.h

• Keep in mind not to overflow by using a too small representation for
the value

#include <stdint.h>

void main(int argc, char *argv[]) {
uint8_t x = 22;
int16_t y = 4434;
int64_t z = 1 << 44;

}

http://www.cplusplus.com/reference/cstdint/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html

Systems Programming and Computer Architecture

http://www.cplusplus.com/reference/cstdint/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html

Recap: C99 stdint.h

1. Reverse an array

Write a C program that has a function that:
• accepts an array of unsigned integers and a length

• reverses the elements of the array in place

• returns void (nothing)

Systems Programming and Computer Architecture

…
void reverse(unsigned int *arr, size_t len) {

…
}
…

Choose Your Types Wisely

…

void reverse_array(unsigned int* array, size_t length)

{

for (int i = 0; i < length; i++) {

/* … */

}

}

…

test.cc: In function ‘void reverse_array(int, unsigned)’:
test.cc:6:22: warning: comparison between signed and
unsigned integer expressions [-Wsign-compare]

for (int i = 0; i < length; i++) {

Use the –Wall (or –Wextra) flag every time !!!!

2. Box-and-arrow diagram
• Use a box-and-arrow diagram for the given program to explain what it

prints out.

• Pen & Paper Exercise: hand it in manually or scan it

See lecture slides (04 – Pointers)!

Systems Programming and Computer Architecture

3. Little vs. big endian

Write a C program that prints out whether the computer it is running
on is little endian or big endian. (hint: pointers and casts)

Systems Programming and Computer Architecture

…

// returns true if little endian, 0 if big endian
bool is_little_endian() {
 …
}

Recap DDCA: Little vs Big Endian

4. First whitespace-separated word

Implement a function that extracts the first word from a string

Systems Programming and Computer Architecture

…

word find_first_word(char *input_string) {
 word result = {.word_string = NULL, .length = 0};
 // Student TODO: implement here
 return result;
}
…
typedef struct word {

char *word_string;

size_t length;

} word;

Recap: Strings in C

• string-demo

Recap: Sizeof vs strlen

• sizeof: Determines the size (in bytes) of a data type or variable
at compile time. It gives the amount of memory allocated for
the object, data type, or array.

• Sizeof(array) = arraylength * sizeof(element)

• Sizeof(pointer) = 8

• strlen: Calculates the length of a string (i.e., the number of
characters before the null terminator \0) at runtime.

string-demo

Systems Programming and Computer Architecture

Initializing Memory
(First whitespace-separated word)

malloc() can fail => returns NULL

Systems Programming and Computer Architecture

#include <string.h>

char *data = (int*)malloc(10 * (sizeof(char)));
if (data == NULL) {
printf(“No memory”);
exit(1);

}
// ensure memory is zeroed out
memset(data, 0, 10 * sizeof(char)));

Usage of Malloc

No guarantee for zeroed memory

Remember, use compiler flags

gcc <FILES> -Wall -Wpedantic -Wextra -Werror -std=c99 -Wmissing-
prototypes

5. Complex numbers

For this you must implement a complex number module with following
functions:

• add

• subtract

• multiply

• Divide

Systems Programming and Computer Architecture

Recap: Structs in C

Recap: Difference ”.” and “->”?

Recap: Stack and Heap

Int on the heap vs stack

Systems Programming and Computer Architecture

Recap: Structs in C, Stack and Heap

Recap: Structs in C, Stack and Heap

Recap: Structs in C, Stack and Heap

Recap: Structs in C, Stack and Heap

Struct on the heap

Systems Programming and Computer Architecture

Recap: Structs in C, Stack and Heap

Recap: Structs in C, Stack and Heap

Recap: Structs in C, Stack and Heap

Recap: Difference “.”, “->” clear?

Note: doesnt have to be on the heap to
have a pointer to it

Systems Programming and Computer Architecture

6. Binary Search Tree

• malloc() can fail, returns NULL.
• Correct code must not leak memory.

Implement the three functions insert(), lookup() and delete()
but be careful during allocations:

Systems Programming and Computer Architecture

tree_node* alloc_tree_node() {
 tree_node* ret = (tree_node*)malloc(sizeof(tree_node));
 ret->key = -1;
 ret->value = -1
 ret->left = NULL;
 ret->right = NULL;
 return ret;
}

Cleanup code
tree_node* alloc_tree_node() {
 tree_node* ret = (tree_node*)malloc(sizeof(tree_node));

 if (!ret)
 return NULL;

 ret->key = -1;
 ret->value = -1
 ret->left = NULL;
 ret->right = NULL;

 return ret;
}

Systems Programming and Computer Architecture

7. Word Count - wc

What is wc?

wc is a Unix utility that displays the count of characters, words and
lines present in a file.

Implement this unix utility step by step while solving one problem at a
time.

Start from the given code-shell in wc.c and then just add the missing
components.

Systems Programming and Computer Architecture

8. File I/O (File descriptors, read, write)

Systems Programming and Computer Architecture

Accessing Files

• In general, you cannot access the file directly

• You need support from the operating system to
open/read/write/close a file.
• This is called a system call (syscall) -> Lecture Computer Systems

• All file related declarations are in the stdio.h

• This functions are wrappers around system calls, e.g., fread() usually calls the
system call read().

#include <stdio.h>

Systems Programming and Computer Architecture

The File Descriptor

File FOO

File Descriptor

File BAR

Pointer to the file

Current offset in the file (cursor)

FILE *fp;
• To get a file descriptor you must

open a file

• The opening may fail. Check
return value!

• Close the file in the end

FILE *fopen(const char *filename,
const char *mode);

int fclose(FILE *fp);
Systems Programming and Computer Architecture

(Text) File Opening Modes
Mode Read Write File Not Exists File Exists

r Yes, from
beginning

No Error FILE* descriptor
returned

w No Yes, from the
beginning

New file created, FILE*
Descriptor returned

FILE* descriptor
returned

a No Yes, from the end
(append)

New file crated, FILE*
descriptor returned

FILE* descriptor
returned

r+ Yes, from
beginning

Yes, from
beginning

Error FILE* descriptor
returned.

w+ Yes, from
beginning

Yes, From
beginning

New file created, FILE*
descriptor returned

Delete file contents
(overwrite), File*
descriptor returned

a+ Yes, from
beginning

Yes, from the end
(append only)

New file crated, FILE*
descriptor returned

FILE* descriptor
returned

.. b Binary flag that can be added for binary IO

Systems Programming and Computer Architecture

(Text) File Opening Modes
Mode Read Write File Not Exists File Exists

r Yes, from
beginning

No Error FILE* descriptor
returned

w No Yes, from the
beginning

New file created, FILE*
Descriptor returned

FILE* descriptor
returned

a No Yes, from the end
(append)

New file crated, FILE*
descriptor returned

FILE* descriptor
returned

r+ Yes, from
beginning

Yes, from
beginning

Error FILE* descriptor
returned.

w+ Yes, from
beginning

Yes, From
beginning

New file created, FILE*
descriptor returned

Delete file contents
(overwrite), File*
descriptor returned

a+ Yes, from
beginning

Yes, from the end
(append only)

New file crated, FILE*
descriptor returned

FILE* descriptor
returned

.. b Binary flag that can be added for binary IO

Systems Programming and Computer Architecture

Reading a Text File (Example)

int fgetc(FILE *fp);

char *fgets(char *str, int count, FILE *fp);

size_t fread(void *buf, size_t size,
size_t count, FILE *fp);

Alternatives…

FILE *fp;

int c;

int n = 0;

fp=fopen("myfile.txt","r");
if (fp ==NULL) {

printf("Error opening file");

} else {

do {

c = fgetc (fp);
if (c == ‘A') {

n++;

}

} while (c != EOF);

fclose (fp);

}
printf(“%i“, n);

Systems Programming and Computer Architecture

Writing a Text File (Example)
FILE *fp;

char name];

printf(“Enter your name: ");
fgets (name, 256, stdin);

fp=fopen("myfile.txt",“a");

if (fp ==NULL) {
printf("Error opening file");

} else {

if (fputs (name, fp) < 0) {

printf("Error writing file");

}

fclose (fp);
}

int fputc(int character, FILE *fp);

int *fputs(char *str, FILE *fp);

size_t fwrite(void *ptr, size_t size,
size_t count, FILE *fp);

Alternatives…

Systems Programming and Computer Architecture

Own Example:
readfile.c, .h

Own Example:
writefile.c

file-demo

Systems Programming and Computer Architecture

Always keep in mind

• All those functions will change the state of the file descriptor by
advancing the cursor position

• Sometimes not all data requested is read/written
• Keep track of how many bytes are processed

• Loop until finished

Systems Programming and Computer Architecture

Reading Formatted strings

• int fscanf(FILE *stream, const char *format, ...);
• Version of scanf() that reads from given FILE*.

• int a; char b[10]; fscanf(stdin, “%d %s”, &a, &b);

• Also, sscanf(const char *str, const char *fmt, ...) may be useful

• Format string:
• %s Read string

• %d Read integer

Systems Programming and Computer Architecture

File IO: Resources

• Reference and Examples
http://www.cplusplus.com/reference/cstdio/

• Read the man pages!
• man 3 getc

• man 3 isspace

• man 3 scanf

• http://stackoverflow.com

Systems Programming and Computer Architecture

http://www.cplusplus.com/reference/cstdio/
http://stackoverflow.com/

9. Function pointers basics

Implement the function array_apply() that:
• accepts a function pointer, an array of integers and the arrays length

• invokes the pointed-to function with each of the elements in the array as an
argument

• overrides the current array element with the return value of the called
function

Systems Programming and Computer Architecture

void array_apply(Function func, int *values, size_t length) {
…
}

int pow2(int a) {
 return a*a;
}

10. Function pointer

This last part will help you get even more familiar with function pointers.

• write a function to lexicographically compare first names

• write another function for comparison of last names

• use apply and a callback to call a function on every element of an array

• BONUS: implement your own mysort()

Systems Programming and Computer Architecture

Function Pointers conretely

Function Pointers Usecase?

Function pointer demo

Systems Programming and Computer Architecture

Assignment 2

All programming exercises are on CodeExpert, except exercise 2 (Box-
and-arrow diagram) and exercise 3 (Little vs. big endian).

Systems Programming and Computer Architecture

Start page with the exercises Exercise in the IDE

More information about CodeExpert: https://docs.expert.ethz.ch/

https://docs.expert.ethz.ch/

Short Quiz about pointers
to get you started thinking of pointers

Systems Programming and Computer Architecture

Recap: Pointers

Recap: Pointers

Recap: Pointer Arithmetic

• For pointer p, p=p+1 depends on of what type of pointer it is

• Sizeof(int)=4

• int* p  0x0

• p++  0x4

• For char, sizeof(char)=1

• char* ptr 0x5

• ptr++  0x6

Recap: Pointer Arithmetic

Recap: Pointer Arithmetic

Recap: Pointer Arithmetic

Recap: Pointer Arithmetic

Recap: Pointer Arithmetic

Recap: Pointers and Arrays

Quiz: Simple Pointer

int a[] = { 0,1,2,3,4 };

int i, *p;

for (p = &a[0], i=0; p+i <= a+4; p++,i++)

printf(“*(p+i) = %d”, *(p+i));

Systems Programming and Computer Architecture

Solution: Simple Pointer

*p+i = 0 *p+i = 2 *p+i = 4

Systems Programming and Computer Architecture

Quiz: Arrays and Pointers

int a[] = { 0, 1, 2, 3, 4 };

int *p[] = {a, a+1, a+2, a+3, a+4 };

int **pp = p;

main() {

printf(“…”, a, *a, **a);

printf(“…”, p, *p, **p);

printf(“…”, pp, *pp, **pp);

}

Systems Programming and Computer Architecture

Solution: Arrays and Pointers

• a = address of a
*a = 0

**a = Segmentation Fault (Null pointer dereference)

• p = address of p
*p = address of a

**p = 0

• pp = address of p
*pp = address of a

**pp = 0

Systems Programming and Computer Architecture

Box and Arrow

Code

Recap: Sizeof vs strlen

• sizeof: Determines the size (in bytes) of a data type or variable
at compile time. It gives the amount of memory allocated for
the object, data type, or array.

• Sizeof(array) = arraylength * sizeof(element)

• Sizeof(pointer) = 8

• strlen: Calculates the length of a string (i.e., the number of
characters before the null terminator \0) at runtime.

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("strlen(s1) = %lu\n", strlen(s1));
return 0;
}

Systems Programming and Computer Architecture 92

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

Compiled and executed on a 64-bit
Linux machine

strlen(s1) = 19Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("sizeof(s2) = %lu\n", sizeof(s2));
return 0;
}

Systems Programming and Computer Architecture 93

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

sizeof(s2) = 100Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("sizeof(s3) = %lu\n", sizeof(s3));
return 0;
}

Systems Programming and Computer Architecture 94

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

sizeof(s3) = 8Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("strlen(s3) = %lu\n", strlen(s3));
return 0;
}

Systems Programming and Computer Architecture 95

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

strlen(s3) = 14Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
printf("s1[strlen(s1)] = %d\n", s1[strlen(s1)]);
return 0;
}

Systems Programming and Computer Architecture 96

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s1[strlen(s1)] = 0Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
s3 += 4;
printf("s3 = ’%s’\n", s3);
return 0;
}

Systems Programming and Computer Architecture 97

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s3 = ’zio Cassis’Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
*(s1 + 4) = ’\0’;
printf("s1 = ’%s’\n", s1);
return 0;
}

Systems Programming and Computer Architecture 98

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

s1 = ’Simo’Answer

What does it print?
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
char s1[100] = "Simonetta Sommaruga";
char s2[100] = "Guy Parmelin";
char *s3 = "Ignazio Cassis";
*(s2 + 6) = 0;
printf("strlen(s2) = %lu\n", strlen(s2));
return 0;
}

Systems Programming and Computer Architecture 99

Compiled and executed on a 64-bit
Linux machine

Systems Programming and Computer Architecture Exam, Autumn Term 2022, Question 9

strlen(s2) = 6Answer

See you
next week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

