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Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not 
official part of the course) having a blue heading: they are 
there to complement and go into more depth where I found 
appropriate

• For the exam only the official exercise slides are relevant, if in 
doubt always check the ones on the official moodle page



Agenda

• Review of assignment 2
– Pointers

– BSTs

• Quiz – Test your understanding of C code

• Preview of assignment 3: malloclab
– The task

– Recap: Dynamic memory allocation

– Some tips
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Last Week’s Assignment
C Programming



Assignment 2

Always check for ptr != NULL before dereferencing (attempting to 
use *ptr to access the address pointed to by the pointer)
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Task 3 – Little vs. big endian

Write a C program that prints out whether the computer it is running on 
is little endian or big endian. (hint: pointer and casts)

a = 0xABCDEF 00

AB

CD

EF

0xffe2d0

0xffe2d1

0xffe2d2

Big endian
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0xffe2d3

EF

CD

AB

00

0xffe2d0

0xffe2d1

0xffe2d2

Little endian

0xffe2d3



Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}
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Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

• Here we compare the value of the byte pointed to by
charptr (value 0x1) with the address of the string
literal "0x01“

• In C, memory addresses are stored as integer 
numbers of type unsigned long int or
uintptr_t – that is why this comparison is legal

• This logical expression would only evaluate as true if
the address of the string literal was 1
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Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

• Here we use the address of the function get_endian as 
the logical expression of a conditional expression.

• Because a function’s address is never 0, this logical 
expression always evaluates as true.
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Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

gcc test.c -Wall

test.c: In function ‘get_endian’:

test.c:7:22: warning: comparison between pointer and 

integer

7 | return (*charptr != "0x01");

| ^~

test.c:7:22: warning: comparison with string literal 

results in unspecified behavior [-Waddress]

test.c: In function ‘main’:

test.c:12:46: warning: the address of ‘get_endian’ will 

always evaluate as ‘true’ [-Waddress]

13 | get_endian ? "true" : "false");

| ^

Reminder: The compiler is your friend!
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Task 3 – Buggy Solution 2
#include <stdio.h>

void print_endian() {
int x = 1;
char *charptr = (char *) &x;

if (charptr != 0)
printf("little endian\n");

else
printf("big endian\n");

}

int main(void) {
print_endian(); 
return 0;

}
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Task 3 – Buggy Solution 2
#include <stdio.h>

void print_endian() {
int x = 1;
char *charptr = (char *) &x;

if (charptr != 0)
printf("little endian\n");

else
printf("big endian\n");

}

int main(void) {
print_endian(); 
return 0;

}

• Here we compare the value of the pointer with 0.
• This comparison will never be true, as the address of a 

local variable cannot be 0.
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Task 3 – Solution

#include <stdio.h>

int main(int argc, char **argv) {
int x = 1;
char *charptr = (char *) &x;

if (*charptr == 1)
printf("little endian\n");

else

printf("big endian\n");

return 0;
}
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Task 3: How does that look like?



Task 6: Quick walkthrough: Insert



Task 6: Quick walkthrough: Insert



Task 6: Quick walkthrough: Lookup



Task 6: Remark Master solution (delete)

• I know this is no algorithms course, yet it’s a greatly inefficient 
solution

• What is it doing? Shoveling all nodes from the right subtree 
into the left subtree



Task 6: Remark Master solution (delete)



Task 6: Remark Master solution (delete)



Task 6: Remark Master solution (delete)

• Depending on test cases in the exam THIS WILL TIME OUT



Task 6: Quick walkthrough: Delete (proper)



Task 6: Quick walkthrough: Delete (proper)
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Task 6: Quick walkthrough: Delete (proper)



Task 6: Binary Search Tree (BST)
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typedef struct tree_node {

int key; 

int value;

struct tree_node *left;

struct tree_node *right;

} tree_node;

The representation of a tree node in C:

root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12



Task 6: Insert – first idea
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);



Task 6: Insert – first idea
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curr
root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);



Task 6: Insert – first idea
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curr
root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);



Task 6: Insert – first idea
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NULL

curr

We lost the connection to the tree…root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);



Issue here?

• Now current points to NULL and now what? 

• Our predecessor didn’t remember us (via cur->left = insert) 
and we did not remember him (by the function definition and 
the inherent recursive nature of the program itself)



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

NULL

new_node



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret



Task 6: Insert – use the return value
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root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key, 
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key, 
value);

return curr;
}

root = insert(root, 12, 42);



Task 6 Before



Task 6: Insert – another solution
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void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);

Adapt the signature of the function!root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12



Task 6: Insert – another solution
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curr
root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);



Task 6: Insert – another solution
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curr
root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);



Task 6: Insert – another solution

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5 

value

left right

key = 15 

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);



Task 6 Double Pointer



Quiz

https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=1096740

Try to solve as many tasks as you can in 15 
minutes

Afterwards, we will discuss solutions

https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=1096740


Quiz Solution a)



Quiz Solution a)

• First, whether the pointer p is non-null

• Second, whether the value at *p is non-zero (truthy).



Quiz Solution b)



Quiz Solution b)



Quiz Solution b)



Quiz Solution b)



Quiz Solution b)



Quiz Solution b)



Quiz Solution c)



Quiz Solution c)



Quiz Solution d)



Quiz Solution d)



Quiz Solution d)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution e)



Quiz Solution f)



Quiz Solution f)



Quiz Solution g)



Quiz Solution g)



What are macros again?

• Syntax: #define NAME(parameters) expansion

• Name: Name of macro

• Parameters: List of arguments (if any)

• Expansion: Code that will replace the macro when used

• Example: #define SQUARE(x) (x * x)

• SQUARE(5) will be replaced by 5*5

• Macros get expanded (copy paste) by the preprocessor, its 
substitution NOT evaluation



What are macros again?

• Stringification with # When using # infront of an argument 
it converts a macro into a string literal

• #define PRINT_VAR(x) printf(#x = “ = %d\n”, x)

• => PRINT_VAR(a)  printf(“a = %d\n”, a)



Direct structure initialization and naming



Quiz Solution g)



Quiz Solution g)

• This task is thus basically more a task about strings than 
anything else

• PRINT2(c, s1.c[0], *s1.s), translates to

• PRINT(c, s1.c[0]); // s1.c[0] is 'a'

• PRINT(c, *s1.s);   // *s1.s dereferences the first character of 
"def", which is 'd'



Quiz Solution g)



Quiz Solution g)

• PRINT2(s, s2.cp, s2.ss1.s);  translates to
• PRINT(s, s2.cp); // s2.cp is "ghi" 
• PRINT(s, s2.ss1.s); // s2.ss1.s is "mno”

• PRINT2(s, ++s2.cp, ++s2.ss1.s); translates to
• PRINT(s, ++s2.cp);    // Increment s2.cp to point to the 

second character of "ghi" -> "hi" 
• PRINT(s, ++s2.ss1.s); // Increment s2.ss1.s to point to 

the second character of "mno" -> "no"



Assignment 3
malloclab



Remark Malloclab:

• I am not going to talk too much about malloclab => very 
extensively documented

• Very good to learn C: extensive C programming skills



• Write your own malloc, realloc and free!

• Creatively explore the design space and implement an allocator that 
is correct, efficient and fast

• Evaluate your own implementation
• The provided mdriver program will check the throughput and utilization

• mdriver uses real and artificial application traces to evaluate your 
implementation

• it replays allocation patterns (malloc, realloc and free calls) recorded 
from different applications

malloclab
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• You will only modify the mm.c file in the handout

• Implement the following functions: mm_init, mm_malloc, mm_free, 
mm_realloc

• Feel free to define helper functions, variables etc.

• Advice:

• Do your implementation in stages – First implement malloc and free, 
then start working on realloc

• Your textbook contains a simple malloc reference implementation – Read 
and fully understand it first!

• Start early – This is by far the most difficult and most sophisticated C code 
you wrote so far!

malloclab
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Remark Malloclab:

• I am not going to talk too much about malloclab => very 
extensively documented

• Very good to learn C: extensive C programming skills



Lecture Recap
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Lecture Recap



Lecture Recap



Lecture Recap



• What is a memory allocator?

• System software allocates pages of memory

• An application typically uses memory in smaller 
pieces

• The allocator’s job is to manage the application’s 
objects within the memory pages

• Allocation

• Allowing an application to allocate memory means 
allowing it to ask for the memory it needs and then 
handing it memory blocks accordingly

• A memory block is a contiguous range of bytes

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap Memory
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char big_array[1<<24]={1}; /* 16 MB  */
char huge_array[1<<28]={1}; /* 256 MB */

int beyond;
char *p1, *p2, *p3, *p4;

int useless() {  return 0; }

int main()
{
p1 = malloc(1 <<28);  /* 256 MB */
p2 = malloc(1 << 8);  /* 256 B  */
p3 = malloc(1 <<28);  /* 256 MB */
p4 = malloc(1 << 8);  /* 256 B  */
}

Where does everything go?

An example of memory allocation

Systems Programming and Computer Architecture

Stack

Text

Data

Heap

0x00000000

0xffffffff

Initialized data 

(.data)

Data

Uninitialized data 

(.bss)

Data
Program code 

(.text)

Text

Dynamically allocated 

memory

Heap



• In C, explicit memory allocation is used

• The application allocates and frees space itself – malloc() and free()

• C++ uses a similar approach – memory is handled explicitly

• In some other programming languages, the application must allocate 
memory but doesn’t free it – implicit allocation

• Java, ML, Lisp, C# etc.

• Freeing memory is the job of a garbage collector

Explicit vs. implicit memory allocation
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• An application…

• Can issue an arbitrary sequence of malloc() and free() requests

• Must issue free() only for blocks previously allocated using malloc() 

• An allocator…

• Can’t control the number or size of blocks the application wishes to allocate

• Must respond immediately to malloc() requests – can’t reorder or buffer requests

• Can only place new allocated blocks in free memory – no overlapping

• Can manipulate and modify only free memory

• Can’t move around allocated blocks

• Must follow alignment rules – 8-byte alignment

Allocator constraints
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• For consistency with the libc malloc package, your allocator must always return 
pointers that are aligned to 8-byte boundaries

Alignment
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byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

New allocations can 
begin at these 

addresses

But not at these addresses



• Consider 2 consecutive malloc() calls – one for 12 bytes and one for 4 bytes

Alignment – example
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byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

Legal allocation



• Consider 2 consecutive malloc() calls – one for 12 bytes and one for 4 bytes

Alignment – example
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byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

Illegal allocation



• Each new allocation must start at an address divisible by 8

Alignment
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0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7



• Your solution should have high throughput and peak memory 
utilization

• These goals are often conflicting

• Throughput

• Number of completed requests per unit of time

• For an allocator that can handle 5000 malloc() and 5000 free() calls in 10 
seconds, the throughput is 1000 operations per second

Performance goals
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• Peak memory utilization

• Your allocator can call a support routine void *mem_sbrk(int incr)

• Expands the heap by incr bytes and returns a generic pointer to the first byte of the 
newly allocated heap area

• The current heap size Hk is a monotonically non-decreasing value

• It grows when mem_sbrk is called

Performance goals
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Performance goals
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• Peak memory utilization
• Let’s observe a sequence of n malloc() and free() requests

R0, R1, ..., Rk, ...,Rn-1

• If Rk is a malloc(p bytes) request, it results in a block with a payload of p bytes
• If Rk is a free() request for a block with a payload of p bytes, the p bytes of memory will be 

freed

• Aggregate Payload Pk is calculated after request Rk has completed
• Pk represents the sum of payloads of all malloc() requests amongst R0, ..., Rk minus the sum 

of sizes of all freed memory in requests R0, ..., Rk

• Peak memory utilization after k requests is then



• For a given block, internal fragmentation occurs if payload < block size

• Caused by:

• The overhead of maintaining the heap data structures

• Padding for alignment purposes

Internal fragmentation
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payload

block

Internal 
fragmentation

Internal 
fragmentation



• Occurs when there is enough aggregate heap memory, but no single 
free block is large enough to satisfy the current request

External fragmentation
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p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) What 
now?



1. Implicit list – using the length of blocks to implicitly link all blocks

2.   Explicit list – using pointers to link the free blocks

3.   Segregated free list – keeping separate lists for free blocks of different 
sizes

Keeping track of free blocks
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5 4 26

5 4 26



• Boundary tags [Knuth73]

• Replicate size/allocated word at the end 
of blocks

• Allows us to traverse the “list” 
backwards, but requires extra space

• An important and general technique!

Implicit list – bidirectional coalescing

Systems Programming and Computer Architecture

a
siz
e

The format of allocated 
and free blocks

payload and
padding

a = 1: allocated block  
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)siz

e
aBoundary tag

(footer)

4 4 4 4 6 46 4

Header



Implicit list



Implicit list: policies



Implicit list: policies



Coalescing



Coalescing



Coalescing in implicit free lists



Explicit free lists

Systems Programming and Computer Architecture

• Maintain list(s) of free blocks, not all 
blocks

• The “next” free block could be anywhere

• We need to store forward/back 
pointers, not just sizes

• Luckily, we link only free blocks, so 
we can use payload area

• Still need boundary tags for coalescing

a
siz
e

payload and
padding

siz
e

a

size a

siz
e

a

next

prev

Allocated (as before) Free



Explicit Free lists



Explicit Free lists



Coalescing Generally



Coalesing in explicit free lists



Explicit free lists

Systems Programming and Computer Architecture

• Insertion policy – Where in the free list do you put a newly freed block?

• LIFO (Last In First Out) policy

• Insert the new block at the beginning of the free list

• Pro: simple solution, constant time

• Con: studies suggest high fragmentation

• Address-ordered policy

• Insert new blocks such that the free list always holds blocks in address order

addrprev < addrcurr < addrnext

• Pro: studies suggest lower fragmentation than LIFO

• Con: inserting a block requires searching



Segregated free lists

Systems Programming and Computer Architecture

• Each size class of blocks has its own free list

• A separate class is often kept for each small size

• Whereas for larger sizes, one class is kept for each two-power size

1-2

3

4

5-8

9-inf



Segregated Free lists



Key allocator policies

Systems Programming and Computer Architecture

• Placement policy

• First-fit, next-fit, best-fit, etc.

• Trade off between throughput and fragmentation

• Interesting observation – segregated free lists approximate a best fit placement policy without having 
to search entire free list

• Splitting policy

• When do we split free blocks?

• How much internal fragmentation are we willing to tolerate?

• Coalescing policy

• Immediate coalescing – coalesce each time free() is called 

• Deferred coalescing – try to improve the performance of free() by deferring coalescing until needed

• Coalesce as you scan the free list for malloc()

• Coalesce when the amount of external fragmentation reaches some threshold



Old exam questions regarding lists

• HS10 Question 9

• HS11 Question 13

• HS12 Question 13

• Has not really appeared in recent exams: note that your exam 
is however different (you may need to implement the code for 
an explicit free list w/ coalescing or the like)



Remark: Memory pitfalls



Remark: Garbage Collection (Java)



Remark: Garbage Collection (Java)



Remark: Garbage Collection (Java)



Outlook SPCA

• Basically done with: I (new lecture on how to write test case)

• I: Programming Language C (C Integers, Pointers, 
Preprocessor, Dynamic Memory Allocation)

• II: Assembly x86-64 (x86 Assembly, Compiling C Data 
Structures, Linking and Loading, Compilers)

• III: Computer Architecture (Architecture and Optimisation, 
Caches, Exceptions, Virtual Memory)



Good luck!

Systems Programming and Computer Architecture

• Build a heap consistency checker to help you with debugging and coding 
your allocator (more details in the assignment sheet)

• Use the memlib package to interact with the (simulated) memory 
system (more details in the assignment sheet)

• Test and benchmark your code with mdriver

• Refer to these slides and to Lecture 6 for a better understanding of 
dynamic memory allocation
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