
Exercise Session 4
Systems Programming and Computer Architecture

Fall Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Agenda

• Review of assignment 2
– Pointers

– BSTs

• Quiz – Test your understanding of C code

• Preview of assignment 3: malloclab
– The task

– Recap: Dynamic memory allocation

– Some tips

Systems Programming and Computer Architecture

Last Week’s Assignment
C Programming

Assignment 2

Always check for ptr != NULL before dereferencing (attempting to
use *ptr to access the address pointed to by the pointer)

Systems Programming and Computer Architecture

Task 3 – Little vs. big endian

Write a C program that prints out whether the computer it is running on
is little endian or big endian. (hint: pointer and casts)

a = 0xABCDEF 00

AB

CD

EF

0xffe2d0

0xffe2d1

0xffe2d2

Big endian

Systems Programming and Computer Architecture

0xffe2d3

EF

CD

AB

00

0xffe2d0

0xffe2d1

0xffe2d2

Little endian

0xffe2d3

Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

Systems Programming and Computer Architecture

Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

• Here we compare the value of the byte pointed to by
charptr (value 0x1) with the address of the string
literal "0x01“

• In C, memory addresses are stored as integer
numbers of type unsigned long int or
uintptr_t – that is why this comparison is legal

• This logical expression would only evaluate as true if
the address of the string literal was 1

Systems Programming and Computer Architecture

Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

• Here we use the address of the function get_endian as
the logical expression of a conditional expression.

• Because a function’s address is never 0, this logical
expression always evaluates as true.

Systems Programming and Computer Architecture

Task 3 – Buggy Solution 1

#include <stdio.h>

int get_endian() {
int x = 1;
char *charptr = (char *) &x;

return (*charptr != "0x01");
}

int main(void) {
get_endian();
printf("little endian? %s\n", get_endian ? "true" : "false");
return 0;

}

gcc test.c -Wall

test.c: In function ‘get_endian’:

test.c:7:22: warning: comparison between pointer and

integer

7 | return (*charptr != "0x01");

| ^~

test.c:7:22: warning: comparison with string literal

results in unspecified behavior [-Waddress]

test.c: In function ‘main’:

test.c:12:46: warning: the address of ‘get_endian’ will

always evaluate as ‘true’ [-Waddress]

13 | get_endian ? "true" : "false");

| ^

Reminder: The compiler is your friend!

Systems Programming and Computer Architecture

Task 3 – Buggy Solution 2
#include <stdio.h>

void print_endian() {
int x = 1;
char *charptr = (char *) &x;

if (charptr != 0)
printf("little endian\n");

else
printf("big endian\n");

}

int main(void) {
print_endian();
return 0;

}

Systems Programming and Computer Architecture

Task 3 – Buggy Solution 2
#include <stdio.h>

void print_endian() {
int x = 1;
char *charptr = (char *) &x;

if (charptr != 0)
printf("little endian\n");

else
printf("big endian\n");

}

int main(void) {
print_endian();
return 0;

}

• Here we compare the value of the pointer with 0.
• This comparison will never be true, as the address of a

local variable cannot be 0.

Systems Programming and Computer Architecture

Task 3 – Solution

#include <stdio.h>

int main(int argc, char **argv) {
int x = 1;
char *charptr = (char *) &x;

if (*charptr == 1)
printf("little endian\n");

else

printf("big endian\n");

return 0;
}

Systems Programming and Computer Architecture

Task 3: How does that look like?

Task 6: Quick walkthrough: Insert

Task 6: Quick walkthrough: Insert

Task 6: Quick walkthrough: Lookup

Task 6: Remark Master solution (delete)

• I know this is no algorithms course, yet it’s a greatly inefficient
solution

• What is it doing? Shoveling all nodes from the right subtree
into the left subtree

Task 6: Remark Master solution (delete)

Task 6: Remark Master solution (delete)

Task 6: Remark Master solution (delete)

• Depending on test cases in the exam THIS WILL TIME OUT

Task 6: Quick walkthrough: Delete (proper)

Task 6: Quick walkthrough: Delete (proper)

Task 6: Quick walkthrough: Delete (proper)

Task 6: Quick walkthrough: Delete (proper)

Task 6: Binary Search Tree (BST)

Systems Programming and Computer Architecture

typedef struct tree_node {

int key;

int value;

struct tree_node *left;

struct tree_node *right;

} tree_node;

The representation of a tree node in C:

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

Task 6: Insert – first idea

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);

Task 6: Insert – first idea

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);

Task 6: Insert – first idea

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);

Task 6: Insert – first idea

Systems Programming and Computer Architecture

NULL

curr

We lost the connection to the tree…root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value)
{

if(curr == NULL)
// place to insert the new node
...

if(curr->key > key)
insert(curr->left, key, value);

else if(curr->key < key)
insert(curr->right, key, value);

return NULL;
}

insert(root, 12, 42);

Issue here?

• Now current points to NULL and now what?

• Our predecessor didn’t remember us (via cur->left = insert)
and we did not remember him (by the function definition and
the inherent recursive nature of the program itself)

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

NULL

new_node

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

curr

ret

Task 6: Insert – use the return value

Systems Programming and Computer Architecture

root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

tree_node* insert(tree_node *curr, int key, int value) {
if(curr == NULL) {

tree_node* new_node = malloc(sizeof(tree_node));
new_node->key = key;
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
return new_node;

}

tree_node* ret;
if(curr->key > key)

curr->left = ret = insert(curr->left, key,
value);
else if (curr->key < key)

curr->right = ret = insert(curr->right, key,
value);

return curr;
}

root = insert(root, 12, 42);

Task 6 Before

Task 6: Insert – another solution

Systems Programming and Computer Architecture

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);

Adapt the signature of the function!root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

Task 6: Insert – another solution

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);

Task 6: Insert – another solution

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);

Task 6: Insert – another solution

Systems Programming and Computer Architecture

curr
root

value

left right

key = 10

value

left right

key = 5

value

left right

key = 15

value

left right

key = 12

void insert(tree_node **curr, int key, int value) {
if(*curr == NULL) {

*curr =

malloc(sizeof(tree_node));
(*curr)->key = key;
(*curr)->value = value;
return;

}

if ((*curr)->key > key)
insert(&(*curr)->left, key, value);

else if ((*curr)->key < key)
insert(&(*curr)->right, key, value);

}

insert(&root, 12, 42);

Task 6 Double Pointer

Quiz

https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=1096740

Try to solve as many tasks as you can in 15
minutes

Afterwards, we will discuss solutions

https://moodle-app2.let.ethz.ch/mod/resource/view.php?id=1096740

Quiz Solution a)

Quiz Solution a)

• First, whether the pointer p is non-null

• Second, whether the value at *p is non-zero (truthy).

Quiz Solution b)

Quiz Solution b)

Quiz Solution b)

Quiz Solution b)

Quiz Solution b)

Quiz Solution b)

Quiz Solution c)

Quiz Solution c)

Quiz Solution d)

Quiz Solution d)

Quiz Solution d)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution e)

Quiz Solution f)

Quiz Solution f)

Quiz Solution g)

Quiz Solution g)

What are macros again?

• Syntax: #define NAME(parameters) expansion

• Name: Name of macro

• Parameters: List of arguments (if any)

• Expansion: Code that will replace the macro when used

• Example: #define SQUARE(x) (x * x)

• SQUARE(5) will be replaced by 5*5

• Macros get expanded (copy paste) by the preprocessor, its
substitution NOT evaluation

What are macros again?

• Stringification with # When using # infront of an argument
it converts a macro into a string literal

• #define PRINT_VAR(x) printf(#x = “ = %d\n”, x)

• => PRINT_VAR(a) printf(“a = %d\n”, a)

Direct structure initialization and naming

Quiz Solution g)

Quiz Solution g)

• This task is thus basically more a task about strings than
anything else

• PRINT2(c, s1.c[0], *s1.s), translates to

• PRINT(c, s1.c[0]); // s1.c[0] is 'a'

• PRINT(c, *s1.s); // *s1.s dereferences the first character of
"def", which is 'd'

Quiz Solution g)

Quiz Solution g)

• PRINT2(s, s2.cp, s2.ss1.s); translates to
• PRINT(s, s2.cp); // s2.cp is "ghi"
• PRINT(s, s2.ss1.s); // s2.ss1.s is "mno”

• PRINT2(s, ++s2.cp, ++s2.ss1.s); translates to
• PRINT(s, ++s2.cp); // Increment s2.cp to point to the

second character of "ghi" -> "hi"
• PRINT(s, ++s2.ss1.s); // Increment s2.ss1.s to point to

the second character of "mno" -> "no"

Assignment 3
malloclab

Remark Malloclab:

• I am not going to talk too much about malloclab => very
extensively documented

• Very good to learn C: extensive C programming skills

• Write your own malloc, realloc and free!

• Creatively explore the design space and implement an allocator that
is correct, efficient and fast

• Evaluate your own implementation
• The provided mdriver program will check the throughput and utilization

• mdriver uses real and artificial application traces to evaluate your
implementation

• it replays allocation patterns (malloc, realloc and free calls) recorded
from different applications

malloclab

Systems Programming and Computer Architecture

• You will only modify the mm.c file in the handout

• Implement the following functions: mm_init, mm_malloc, mm_free,
mm_realloc

• Feel free to define helper functions, variables etc.

• Advice:

• Do your implementation in stages – First implement malloc and free,
then start working on realloc

• Your textbook contains a simple malloc reference implementation – Read
and fully understand it first!

• Start early – This is by far the most difficult and most sophisticated C code
you wrote so far!

malloclab

Systems Programming and Computer Architecture

Remark Malloclab:

• I am not going to talk too much about malloclab => very
extensively documented

• Very good to learn C: extensive C programming skills

Lecture Recap

Systems Programming and Computer Architecture

Lecture Recap

Lecture Recap

Lecture Recap

• What is a memory allocator?

• System software allocates pages of memory

• An application typically uses memory in smaller
pieces

• The allocator’s job is to manage the application’s
objects within the memory pages

• Allocation

• Allowing an application to allocate memory means
allowing it to ask for the memory it needs and then
handing it memory blocks accordingly

• A memory block is a contiguous range of bytes

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap Memory

Systems Programming and Computer Architecture

char big_array[1<<24]={1}; /* 16 MB */
char huge_array[1<<28]={1}; /* 256 MB */

int beyond;
char *p1, *p2, *p3, *p4;

int useless() { return 0; }

int main()
{
p1 = malloc(1 <<28); /* 256 MB */
p2 = malloc(1 << 8); /* 256 B */
p3 = malloc(1 <<28); /* 256 MB */
p4 = malloc(1 << 8); /* 256 B */
}

Where does everything go?

An example of memory allocation

Systems Programming and Computer Architecture

Stack

Text

Data

Heap

0x00000000

0xffffffff

Initialized data

(.data)

Data

Uninitialized data

(.bss)

Data
Program code

(.text)

Text

Dynamically allocated

memory

Heap

• In C, explicit memory allocation is used

• The application allocates and frees space itself – malloc() and free()

• C++ uses a similar approach – memory is handled explicitly

• In some other programming languages, the application must allocate
memory but doesn’t free it – implicit allocation

• Java, ML, Lisp, C# etc.

• Freeing memory is the job of a garbage collector

Explicit vs. implicit memory allocation

Systems Programming and Computer Architecture

• An application…

• Can issue an arbitrary sequence of malloc() and free() requests

• Must issue free() only for blocks previously allocated using malloc()

• An allocator…

• Can’t control the number or size of blocks the application wishes to allocate

• Must respond immediately to malloc() requests – can’t reorder or buffer requests

• Can only place new allocated blocks in free memory – no overlapping

• Can manipulate and modify only free memory

• Can’t move around allocated blocks

• Must follow alignment rules – 8-byte alignment

Allocator constraints

Systems Programming and Computer Architecture

• For consistency with the libc malloc package, your allocator must always return
pointers that are aligned to 8-byte boundaries

Alignment

Systems Programming and Computer Architecture

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

New allocations can
begin at these

addresses

But not at these addresses

• Consider 2 consecutive malloc() calls – one for 12 bytes and one for 4 bytes

Alignment – example

Systems Programming and Computer Architecture

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

Legal allocation

• Consider 2 consecutive malloc() calls – one for 12 bytes and one for 4 bytes

Alignment – example

Systems Programming and Computer Architecture

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

Illegal allocation

• Each new allocation must start at an address divisible by 8

Alignment

Systems Programming and Computer Architecture

0xffe2d0

0xffe2d8

0xffe2e0

0xffe2e8

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

• Your solution should have high throughput and peak memory
utilization

• These goals are often conflicting

• Throughput

• Number of completed requests per unit of time

• For an allocator that can handle 5000 malloc() and 5000 free() calls in 10
seconds, the throughput is 1000 operations per second

Performance goals

Systems Programming and Computer Architecture

• Peak memory utilization

• Your allocator can call a support routine void *mem_sbrk(int incr)

• Expands the heap by incr bytes and returns a generic pointer to the first byte of the
newly allocated heap area

• The current heap size Hk is a monotonically non-decreasing value

• It grows when mem_sbrk is called

Performance goals

Systems Programming and Computer Architecture

Performance goals

Systems Programming and Computer Architecture

• Peak memory utilization
• Let’s observe a sequence of n malloc() and free() requests

R0, R1, ..., Rk, ...,Rn-1

• If Rk is a malloc(p bytes) request, it results in a block with a payload of p bytes
• If Rk is a free() request for a block with a payload of p bytes, the p bytes of memory will be

freed

• Aggregate Payload Pk is calculated after request Rk has completed
• Pk represents the sum of payloads of all malloc() requests amongst R0, ..., Rk minus the sum

of sizes of all freed memory in requests R0, ..., Rk

• Peak memory utilization after k requests is then

• For a given block, internal fragmentation occurs if payload < block size

• Caused by:

• The overhead of maintaining the heap data structures

• Padding for alignment purposes

Internal fragmentation

Systems Programming and Computer Architecture

payload

block

Internal
fragmentation

Internal
fragmentation

• Occurs when there is enough aggregate heap memory, but no single
free block is large enough to satisfy the current request

External fragmentation

Systems Programming and Computer Architecture

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) What
now?

1. Implicit list – using the length of blocks to implicitly link all blocks

2. Explicit list – using pointers to link the free blocks

3. Segregated free list – keeping separate lists for free blocks of different
sizes

Keeping track of free blocks

Systems Programming and Computer Architecture

5 4 26

5 4 26

• Boundary tags [Knuth73]

• Replicate size/allocated word at the end
of blocks

• Allows us to traverse the “list”
backwards, but requires extra space

• An important and general technique!

Implicit list – bidirectional coalescing

Systems Programming and Computer Architecture

a
siz
e

The format of allocated
and free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)siz

e
aBoundary tag

(footer)

4 4 4 4 6 46 4

Header

Implicit list

Implicit list: policies

Implicit list: policies

Coalescing

Coalescing

Coalescing in implicit free lists

Explicit free lists

Systems Programming and Computer Architecture

• Maintain list(s) of free blocks, not all
blocks

• The “next” free block could be anywhere

• We need to store forward/back
pointers, not just sizes

• Luckily, we link only free blocks, so
we can use payload area

• Still need boundary tags for coalescing

a
siz
e

payload and
padding

siz
e

a

size a

siz
e

a

next

prev

Allocated (as before) Free

Explicit Free lists

Explicit Free lists

Coalescing Generally

Coalesing in explicit free lists

Explicit free lists

Systems Programming and Computer Architecture

• Insertion policy – Where in the free list do you put a newly freed block?

• LIFO (Last In First Out) policy

• Insert the new block at the beginning of the free list

• Pro: simple solution, constant time

• Con: studies suggest high fragmentation

• Address-ordered policy

• Insert new blocks such that the free list always holds blocks in address order

addrprev < addrcurr < addrnext

• Pro: studies suggest lower fragmentation than LIFO

• Con: inserting a block requires searching

Segregated free lists

Systems Programming and Computer Architecture

• Each size class of blocks has its own free list

• A separate class is often kept for each small size

• Whereas for larger sizes, one class is kept for each two-power size

1-2

3

4

5-8

9-inf

Segregated Free lists

Key allocator policies

Systems Programming and Computer Architecture

• Placement policy

• First-fit, next-fit, best-fit, etc.

• Trade off between throughput and fragmentation

• Interesting observation – segregated free lists approximate a best fit placement policy without having
to search entire free list

• Splitting policy

• When do we split free blocks?

• How much internal fragmentation are we willing to tolerate?

• Coalescing policy

• Immediate coalescing – coalesce each time free() is called

• Deferred coalescing – try to improve the performance of free() by deferring coalescing until needed

• Coalesce as you scan the free list for malloc()

• Coalesce when the amount of external fragmentation reaches some threshold

Old exam questions regarding lists

• HS10 Question 9

• HS11 Question 13

• HS12 Question 13

• Has not really appeared in recent exams: note that your exam
is however different (you may need to implement the code for
an explicit free list w/ coalescing or the like)

Remark: Memory pitfalls

Remark: Garbage Collection (Java)

Remark: Garbage Collection (Java)

Remark: Garbage Collection (Java)

Outlook SPCA

• Basically done with: I (new lecture on how to write test case)

• I: Programming Language C (C Integers, Pointers,
Preprocessor, Dynamic Memory Allocation)

• II: Assembly x86-64 (x86 Assembly, Compiling C Data
Structures, Linking and Loading, Compilers)

• III: Computer Architecture (Architecture and Optimisation,
Caches, Exceptions, Virtual Memory)

Good luck!

Systems Programming and Computer Architecture

• Build a heap consistency checker to help you with debugging and coding
your allocator (more details in the assignment sheet)

• Use the memlib package to interact with the (simulated) memory
system (more details in the assignment sheet)

• Test and benchmark your code with mdriver

• Refer to these slides and to Lecture 6 for a better understanding of
dynamic memory allocation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Assignment 2
	Slide 6: Task 3 – Little vs. big endian
	Slide 7: Task 3 – Buggy Solution 1
	Slide 8: Task 3 – Buggy Solution 1
	Slide 9: Task 3 – Buggy Solution 1
	Slide 10: Task 3 – Buggy Solution 1
	Slide 11: Task 3 – Buggy Solution 2
	Slide 12: Task 3 – Buggy Solution 2
	Slide 13: Task 3 – Solution
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Task 6: Binary Search Tree (BST)
	Slide 27: Task 6: Insert – first idea
	Slide 28: Task 6: Insert – first idea
	Slide 29: Task 6: Insert – first idea
	Slide 30: Task 6: Insert – first idea
	Slide 31
	Slide 32: Task 6: Insert – use the return value
	Slide 33: Task 6: Insert – use the return value
	Slide 34: Task 6: Insert – use the return value
	Slide 35: Task 6: Insert – use the return value
	Slide 36: Task 6: Insert – use the return value
	Slide 37: Task 6: Insert – use the return value
	Slide 38: Task 6: Insert – use the return value
	Slide 39
	Slide 40: Task 6: Insert – another solution
	Slide 41: Task 6: Insert – another solution
	Slide 42: Task 6: Insert – another solution
	Slide 43: Task 6: Insert – another solution
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: malloclab
	Slide 86: malloclab
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Dynamic Memory Allocation
	Slide 93: An example of memory allocation
	Slide 94: Explicit vs. implicit memory allocation
	Slide 95: Allocator constraints
	Slide 96: Alignment
	Slide 97: Alignment – example
	Slide 98: Alignment – example
	Slide 99: Alignment
	Slide 100: Performance goals
	Slide 101: Performance goals
	Slide 102: Performance goals
	Slide 103: Internal fragmentation
	Slide 104: External fragmentation
	Slide 105: Keeping track of free blocks
	Slide 106: Implicit list – bidirectional coalescing
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Explicit free lists
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Explicit free lists
	Slide 119: Segregated free lists
	Slide 120
	Slide 121: Key allocator policies
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: Good luck!

