
Exercise Session 5
Systems Programming and Computer Architecture

Fall Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Agenda

• DDCA ISA and Microarch. Recap

• Intro to Assembly

• Basic Assembly

• Assembly Recap & Quiz

• Assembly Hints

Systems Programming and Computer Architecture

Basic Assembly
Assembly Control Flow

Systems Programming and Computer Architecture

DDCA Recap

Systems Programming and Computer Architecture

DDCA Recap

• Material is mainly from DDCA’s Book Harris and Harris (see my
website for full name)

Notation

• Instruction Set Architecture (ISA):

• Def: Abstract model which defines how a computer understands and
executes instructions: it defines set of instructions a processor can
execute, data types the instructions operator on, registers the CPU
uses, Adressing modes i.e. how instructions are fetched from
memory

• Michroarchitecture:

• Def: Implementation of a ISA in a specific processor design, i.e. how
the hardware internally performs instructions by the ISA

Instruction Set Architecture

• Examples for ISAs: x86-64, ARM (Advanced RISC Machines),
RISC-V, MIPS, PowerPC, SPARC, Z/Architecture (IBM
Mainframes)

Instruction Set Architecture

• ISAs thus define how our assembly code looks (because this is
inherently what an ISA describes):

• MIPS (LHS), x86 (RHS)

Instruction Set Architecture (ISA)

• Computers language: Instructions

• Computers vocabulary: Instruction Set (the things we can do like add, sub,
shl etc.)

• Machine language: Computers only understand 0/1: Instructions are thus
encoded in a binary format in “machine language”

• Since humans cannot easily read 0/1s in machine language, we represent
instruction in this symbol format called assembly language

• ISA and Assembly: ISA defines the instructions and their binary encoding
(machine code) that the processor understands, while assembly language
is a human-friendly way to write those same instructions

DDCA Recap: ISA MIPS

Systems Programming and Computer Architecture

Instruction Set Architecture (ISA): MIPS

• Instructions Examples: Left code is high level language (C, C++,
Java), RHS in MIPS

• First Part: called mnemonic indicates what to perform,
operation is performed on b,c the source operands and stored
in the destination operand

Instruction Set Architecture (ISA): MIPS

• Highlevel code can yield multiple assembly instructions (i.e.
we have only very simple assembly instructions, there is no 1
to 1 mapping from high level concepts to assembly)

Instruction Set Architecture (ISA): MIPS

• The machine (michroarchitecture) provides “registers”, things
were we can store stuff: we can access them with $ in MIPS,
with % in x86 => we have 32 registers in mips

Instruction Set Architecture (ISA): MIPS

• Since we only have limited
number of registers: also
have memory which we can
access

Instruction Set Architecture (ISA): MIPS

• Next to memory and
registers we can work with
immediates (i.e. constants)

Instruction Set Architecture (ISA): MIPS

• Assembly is for humans to read: but machines only
understand machine code: need to bring assembly into
machine language

• Idea: encode all instruction as words that can be stored in
memory, all 32bit

• MIPS has 3 type of Instructions: R-type, I-type, J-type
(Register, Immediate, Jump)

Instruction Set Architecture (ISA): MIPS
• R-type (Register type): uses 3 registers as operands, 2 as source 1 as

destination

• Operation to be performed is encoded in “op” and “funct” field: all R-type
instr. Have opcode=0 and funct is 32 for add and 34 for substract

• Operands encoded in rs, rt and rd (rs and rt source, rd dest)

Instruction Set Architecture (ISA): MIPS

• Similar for I-type instructions: different interpretation of the
bits but conceptually the same

Instruction Set Architecture (ISA): MIPS

• Now we can store an entire program in memory

Instruction Set Architecture (ISA): MIPS

• This is what they meant with what Assembly programmer sees

Instruction Set Architecture (ISA): MIPS

• But what is happening below, aka “under the hood”?

• Note that the following recap should tie together SPCA and
DDCA again: you haven’t looked at this in the lecture and you
will only briefly look at Computer Architecture later

DDCA Recap: Michroarchitecture

Systems Programming and Computer Architecture

Michroarchitecture

• Microarchitecture: specific arrangement of ALUs, FSMs,
Memories etc.

• One arch. Like MIPS can have many different
microarchitectures with different performance, cost and
complexity: they all run the same programs since all
architectures share the same “language” (ISA) but they can
vary in cost, performance and complexity

Michroarchitecture

• We fetch instructions from memory, extract the information
from the 32bit instruction depending on which opcode it
specifies to get the correct register etc.

Michroarchitecture

• Load instruction: get base reg (25:21) and sign ext. immediate

Michroarchitecture

Michroarchitecture

• Increment Program Counter to get next instruction etc.

Michroarchitecture

• Full Processor looks like this: going to briefly look at it later in
SPCA in Computer Architecture lecture

Instruction Set Architecture (ISA): MIPS

• Important takeaway: ISA defines which instructions exist and
how they should look like (e.g. add r1, r2, r3),
michroachitecture HOW its implemented, i.e. how many ALUs
etc. which you don’t need to know when writing assembly

Recall: DDCA Exam

• This is exactly
what you did in
DDCA

• => Do I care what
kind of branch
prediction we
have when writing
assembly? No: so
microarch etc.

Note: MIPS vs x86

• DDCA, this Recap: we looked at MIPS which is one
architecture

• SPCA: we look at x86 , conceptually its again just a different
architecture so very similar to MIPS

• Differences: as it’s a different architecture assemblycode
looks differently (e.g. add r1,r2,r3 in MIPs and registers are
$r1 in MIPS, but add %rax, %rax in x86 and %r1 in x86 etc.)

x86 Assembly

Systems Programming and Computer Architecture

Not this assembly…

Obtaining Assembly

• You can have GCC to output assembly code
gcc -S code.c

• This will produce code.S. You can compile single C-files
without main()

• Be careful with optimization flags –O
• Optimized code is often harder to debug

• Higher optimization levels does not always equal faster code

Systems Programming and Computer Architecture

Example: gcc -S

• Example: gcc –S hello.c

Compiling C

• Different compiler will produce different results, try it
online!
https://gcc.godbolt.org/

• Interested in compiler internals?
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

Systems Programming and Computer Architecture

https://gcc.godbolt.org/
http://www.linux-kongress.org/2009/slides/compiler_survey_felix_von_leitner.pdf

-Ox: The Effects on the Code

/* string.c */

char string_init(void) {
char s[] = "Hello";
return s[1];

}

/* -O0 */

string_init:
pushq %rbp
movq %rsp, %rbp
movl $1819043144, -16(%rbp)
movw $111, -12(%rbp)
movzbl -15(%rbp), %eax
popq %rbp
ret

Systems Programming and Computer Architecture

-Ox: The Effects on the Code

/* string.c */

char string_init(void) {
char s[] = "Hello";
return s[1];

}

/* -O0 */

string_init:
pushq %rbp
movq %rsp, %rbp
movl $1819043144, -16(%rbp)
movw $111, -12(%rbp)
movzbl -15(%rbp), %eax
popq %rbp
ret

/* -O */

string_init:
movl $101, %eax
ret

Systems Programming and Computer Architecture

Registers in x86

Registers in x86

x86-64 integer registers
%rax %eax

%rbx %ebx

%rcx %ecx

%rdx %edx

%rsi %esi

%rdi %edi

%rsp %esp

%rbp %ebp

%r8 %r8d

%r9 %r9d

%r10 %r10d

%r11 %r11d

%r12 %r12d

%r13 %r13d

%r14 %r14d

%r15 %r15d

%rip %eip %rsr %esr

ge
n

er
al

 p
u

rp
o

se

Moving Data

• movx Source, Dest
- x in {b, w, l, q}

- movq Source, Dest:
Move 8-byte “quad word”

- movl Source, Dest:
Move 4-byte “long word”

- movw Source, Dest:
Move 2-byte “word”

- movb Source, Dest:
Move 1-byte “byte”

• Lots of these in typical code

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

Systems Programming and Computer Architecture

Moving Data
%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

• movx Source, Dest:

• Operand Types
– Immediate: Constant integer data

• Example: $0x400, $-533

• Like C constant, but prefixed with ‘$’

• Encoded with 1, 2, 4, 8 bytes

– Register: One of 16 integer registers
• Example: %eax, %r14d

• Note some (e.g. %rsp, %rbp) reserved for special use

• Others have special uses for particular instructions

– Memory: 1,2,4, or 8 consecutive bytes of memory at address given by register
• Simplest example: (%rax)

• Various other “address modes”

Systems Programming and Computer Architecture

Movl combinations: no direct mem-mem

• Most General Form:

– D: Constant “displacement” 1, 2, or 4 bytes (not 8!)
– Rb: Base register: Any of 16 integer registers
– Ri: Index register: Any, except for %rsp

(Unlikely you’d use %rbp, either)
– S: Scale: 1, 2, 4, or 8 (why these numbers?)

• Special Cases:

Complete memory addressing modes

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Systems Programming and Computer Architecture

Example: Memory addressing

Example: Memory addressing

• Note: discplacement in x86 is signed!

• For instance lea 0xffffffff(%eax),%esi <=> %esi = %eax-1

Example: Memory addressing

• Similar to memory addressing but only calculates address and
stores it into destination

– D: Constant “displacement” 1, 2, or 4 bytes (not 8!)
– Rb: Base register: Any of 16 integer registers
– Ri: Index register: Any, except for %rsp

(Unlikely you’d use %rbp, either)
– S: Scale: 1, 2, 4, or 8

• Same special cases as in memory addressing apply

• Does not set condition codes! (Why?)

leax D(Rb,Ri,S), Dest

Dest ← Reg[Rb]+S*Reg[Ri]+ D

Load Effective Address

Systems Programming and Computer Architecture

Mov and Lea

• Most frequent instruction: ”mov”, which simply copies value
from source to dest (for combinations see slides before)

• Lea works like mov but does not dereference the result, but
simply calculates the value: i.e. its nothing more than an
arithmetic expression

Mov and Lea

Mov and Lea

Sign and Zeroextending: Movsbl, Movzbl

• Mov copies the same number of bytes from src to dst

• When we want to copy smaller bandwidth -> larger bandwidth

• Movs{}{}: move sign extend

• Movz{}{}: move zero extend

• {}{} is the usually, source and destination with {} in {b,w,l,q}

• longword variants, others analogously:
Mnemonic Format Computation
addl Src,Dest Dest ← Dest + Src
subl Src,Dest Dest ← Dest - Src
imull Src,Dest Dest ← Dest * Src
sall Src,Dest Dest ← Dest << Src
sarl Src,Dest Dest ← Dest >> Src
shrl Src,Dest Dest ← Dest >> Src
xorl Src,Dest Dest ← Dest ^ Src
andl Src,Dest Dest ← Dest & Src
orl Src,Dest Dest ← Dest | Src
Incl Dest Dest ← Dest + 1
Decl Dest Dest ← Dest - 1
Negl Dest Dest ← -Dest
Notl Dest Dest ← ~Dest

Systems Programming 2020 Ch. 8: Basic x86
architecture

Arithmetic operations

• Problem: Certain registers cannot be
addressed by a variable in C directly

• Observation: You can access the registers via
assembly instruction

• Conclusion: Embed assembly code into your
C source file.

Embedding Assembly into C

Systems Programming and Computer Architecture

• Basic format to include inline assembly

• Note: If the statement is unused, it may get
deleted!

• Now: how to get the contents of the register
or provide data for the register?

__asm__("movb %bh (%eax)\n\t");

__asm__ volatile ("movb %bh (%eax)\n\t");

Inline Assembly

Systems Programming and Computer Architecture

• The semantics of the volatile keyword differ from language
to language

http://en.wikipedia.org/wiki/Volatile_variable

Volatile?

C Java

“Do not optimize this away” “Do read the value from the memory
not from the cache.”

Important when reading device
registers

Gives you some memory guarantees
(Cf: Parallel Programming)

Systems Programming and Computer Architecture

http://en.wikipedia.org/wiki/Volatile_variable

Inline Assembly General Structure

• General structure

• Output operands

• Constraints:
• “=r” operand will be written to any

general purpose register
• “r” operand is read only

• “+r” both input and output

Inline Assembly General Structure

• General structure

• Input operands

• Constraints:

• “r”: operand can use any
general purpose register

• “m” will be read from memroy

Inline Assembly General Structure

• General structure

• Clobbered registers

• Indicates registers which
may be changed from the
assembly code

Inline Assembly Example

Positional vs Named Operands

• Named operands:

• Positional operands: enumerate first all output operands, then all input
operands (i.e. output0=%0, output1=%1,… outputn=%n, input0=%n+1 etc.)

__asm__ (assembler template
: output operands /* optional */
: input operands /* optional */
: list of clobbered registers /* optional */
);

int a=10, b;
__asm__ ("movl %1, %%eax; movl %%eax, %0;"

:"=r"(b)
:"r"(a)
:"%eax"
);

These registers are
modified, don’t store

other values

What’s happening here?

Extended Inline Assembly

Systems Programming and Computer Architecture

Inline Assembly Example: Explained

The value of a
(which is 10) is
moved into the
EAX register.

The value in
EAX (now 10) is
moved to b.

int a=10, b;
__asm__ ("movl %1, %%eax; movl %%eax, %0;"

:"=r"(b)
:"r"(a)
:"%eax"
);

66

int bit_count_naive(int x) {
int result = 0;
for (int i = 0; i < 32; i++) {

result += (x >> i) & 1;
}
return result;

}

int bit_count_asm(int x) {
int result;
__asm__ ("popcnt %[in], %[out]"

: [out] "=r" (result)
: [in] "r" (x)
);

return result;
}

Inline Assembly: Example

Systems Programming and Computer Architecture

Inline Assembly Example: Explained

int bit_count_naive(int x) {
int result = 0;
for (int i = 0; i < 32; i++) {

result += (x >> i) & 1;
}
return result;

}

int bit_count_asm(int x) {
int result;
__asm__ ("popcnt %[in], %[out]"

: [out] "=r" (result)
: [in] "r" (x)
);

return result;
}

• Popcnt: x86
instruction which
counts number of set
bits (i.e. bits=1)

• %[in]: refers to input
var x

• %[out]: refers to
output var result

Quiz: Assembly
Questions on Handout

Assembly cheat sheet

Quiz a)

Quiz a) solution

• A) Dereferencing 0 yields seg fault
• B) Only lodas 0 into rcx w/o dereferencing
• C) Again, moves 0 into rcx without dereferencing
• D) Stack increases when decreasing the stack pointer (Remember:

stack grows downwards)

a) True
- Tries to load address 0

b) False
- Computation on address

c) False
- Move the value 0 to %rcx

d) False
- Decreases the stack size

Quiz a)

Systems Programming and Computer Architecture

Quiz b)

Quiz b) solution

• Recall: Immediate in front of full addressing mode is signed

Quiz c)

Quiz c) solution

Quiz d)

Quiz d) solution

Quiz d) solution, Recall

Quiz d) solution, Recall

Quiz d) solution, Recall

• Test %eax, %eax: performs bitwise AND and sets flags. Zeroflag (ZF)
is set  eax is zero

• Jne checks the zero flag, and jumps if the zeroflag is not set

• For 1: 1&1=1 so it does not set the zero flag so here we jump (true)

• For 0: 0&0=0 so it sets the zero flag so here we would jump (false)

• Any value: false since 0 doesn’t work

• No value: false since 1 works (in fact, any non 0 value)

Quiz e)

Quiz e) solution

• I will explain this once we get to stack frames next week, don’t
worry about it yet

Quiz f)

Quiz f) solution

Quiz f) solution

• I would personally highly recommend doing these exercises by
hand, by yourself at home: you learn a lot about assembly and
if you actually understood it

Quiz g)

Quiz g) solution

Quiz h)

Quiz h) solution

b)
- c) is the correct answer

c)
- a) Valid: %ebx = 4*(%eax)

- b) Invalid: 15 is a memory address not intermediate!

- c) Valid: store the content of %eax to address 655

d)
- a) is the correct answer

e) mov %ebp, %esp
pop %ebp

Quiz b)-e)

Systems Programming and Computer Architecture

1. pushq %rbp,
2. movq %rsp, %rbp
3. movl %edi, -20(%rbp)
4. movl $0, -4(%rbp)
5. cmpl $0, -20(%rbp)
6. jle .L2
7. movl $10, -4(%rbp)
.L2:
8. addl $5, -4(%rbp)
9. movl -4(%rbp), %eax
10.popq %rbp
11.ret

C Code

1. // input: int x (in %rdi)

2. // output int y (in %rax)

1. int func(int x) {

2. int y = 0;

3. if (x > 0) {

4. y = 10;

5. }

6. y += 5;
return y;

7. }

Assembly (gcc 4.9.4 with –O0)

Quiz f)

Systems Programming and Computer Architecture

C Code

1. // input: int x (in %rdi)

2. // output int y (in %rsi)

3. int func(int x) {

4. int y = 0;

5. if (x > 0) {

6. y = 10;

7. }

8. y += 5;
return y;

9. }

Assembly (gcc 4.9.4 with –O1)

1. testl %edi, %edi

2. movl $10, %edx

3. movl $0, %eax

4. cmovg %edx, %eax

5. addl $5, %eax

6. ret

Quiz f)

Systems Programming and Computer Architecture

1. pushq %rbp
2. movq %rsp, %rbp
3. movl %edi, -20(%rbp)

4. movl %esi, -24(%rbp)
5. movl $0, -4(%rbp)
6. jmp .L2
.L3:
7. movl -20(%rbp), %eax
8. leal 1(%rax), %edx
9. movl %edx, %eax
10. addl %eax, %eax
11. addl %edx, %eax
12. addl %eax, -4(%rbp)
.L2:
13. movl -4(%rbp), %eax
14. cmpl -24(%rbp), %eax
15. jle .L3

16. movl -4(%rbp), %eax
17. popq %rbp
18. ret

C Code

// input: int x, int y
// (in %rdi, %rsi)

// output: int z (in %rax)

1. int func(int x, int y) {

2. int z = 0;

3. while (z <= y) {

4. z += 3*(x+1);

5. }

6. return z;

7. }

Assembly (gcc 4.9.4 with –O0)Quiz g)

Systems Programming and Computer Architecture

1. testl %esi, %esi

2. js .L4

3. leal 3(%rdi,%rdi,2),
%edx

4. movl $0, %eax

.L3:

5. addl %edx, %eax

6. cmpl %eax, %esi

7. jge .L3

8. rep ret

.L4:

9. movl $0, %eax

10. ret

C Code

// input: int x, int y
// (in %rdi, %rsi)

// output: int z (in %rax)

1. int func(int x, int y) {

2. int z = 0;

3. while (z <= y) {

4. z += 3*(x+1);

5. }

6. return z;

7. }

Assembly (gcc 4.9.4 with –O1)
Quiz g)

Systems Programming and Computer Architecture

C Code

// input: int x, int y
// (in %rdi, %rsi)

// output: int z (in %rax)

1. int func(int x, int y) {

2. int z = 0;

3. while (z <= y) {

4. z += 3*(x+1);

5. }

6. return z;

7. }

Assembly (gcc 4.9.4 with –Os)

1. incl %edi

2. xorl %eax, %eax

3. leal (%rdi,%rdi,2),
%edi

.L2:

4. cmpl %esi, %eax

5. jg .L5

6. addl %edi, %eax

7. jmp .L2

.L5:

8. ret

Quiz g)

Systems Programming and Computer Architecture

Assembly

func(int, int):

1. pushq %rbp

2. movq %rsp, %rbp

3. movl %edi, -4(%rbp)

4. movl %esi, -8(%rbp)

5. movl -4(%rbp), %eax

6. cmpl -8(%rbp), %eax

7. jle .L2

8. movl -4(%rbp), %eax

9. jmp .L3

.L2:

9. movl -8(%rbp), %eax

.L3:

10. popq %rbp ret

C Code

1. int func(int x, int y) {

2. if (x > y) {

3. return x;

4. } else {

5. return y;

6. }

7. }

Quiz h)

<return addr>

Old %rbp

<x>

<y>

Systems Programming and Computer Architecture

lea is special...

Only lea operates on memory addresses, everything else on memory
values

addq will load the value at that address

1. leaq 8(%rax, %rdx, 4), %rdi
2. addq 8(%rax, %rdx, 4), %rdi

Systems Programming and Computer Architecture

Check your registers

Make sure instruction and register size match!

1. movl $1337, %rcx

1. asm.s: Assembler messages:
2. asm.s:28: Error: incorrect register `%rcx' used
with `l' suffix

Systems Programming and Computer Architecture

Check your registers

Make sure instruction and register size match!

1. movl $1337, %rcx

1. asm.s: Assembler messages:
2. asm.s:28: Error: incorrect register `%rcx' used
with `l' suffix

32-bit instruction 64-bit register

Systems Programming and Computer Architecture

Enjoy the rest
of your week!

Systems Programming and Computer Architecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Not this assembly…
	Slide 35: Obtaining Assembly
	Slide 36
	Slide 37: Compiling C
	Slide 38: -Ox: The Effects on the Code
	Slide 39: -Ox: The Effects on the Code
	Slide 40
	Slide 41
	Slide 42: x86-64 integer registers
	Slide 43: Moving Data
	Slide 44: Moving Data
	Slide 45
	Slide 46: Complete memory addressing modes
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Load Effective Address
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Arithmetic operations
	Slide 56: Embedding Assembly into C
	Slide 57: Inline Assembly
	Slide 58: Volatile?
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Extended Inline Assembly
	Slide 65
	Slide 66: Inline Assembly: Example
	Slide 67
	Slide 68
	Slide 69: Assembly cheat sheet
	Slide 70
	Slide 71
	Slide 72: Quiz a)
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Quiz b)-e)
	Slide 92: Quiz f)
	Slide 93: Quiz f)
	Slide 94: Quiz g)
	Slide 95: Quiz g)
	Slide 96: Quiz g)
	Slide 97: Quiz h)
	Slide 98: lea is special...
	Slide 99: Check your registers
	Slide 100: Check your registers
	Slide 101

