
Exercise Session 6
2024 Autumn



Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not 
official part of the course) having a blue heading: they are 
there to complement and go into more depth where I found 
appropriate

• For the exam only the official exercise slides are relevant, if in 
doubt always check the ones on the official moodle page



Remark Todays Exercise Session

• Q: Everyone okay with 5-10min break and end at 15:50-15:55 
for today?

• Q: From now on, Kahoots or rather still more theory?



Remark Exercises

• Pen and Paper Exercise Sheet 4 will be published: highly 
recommend doing this, helps in understanding memory layout, 
assembly etc.

• Code Expert: highly recommend doing this too (if you 
understood assembly it can be done quite fast): and very 
relevant for exam (likely that there will be assembly 
programming tasks like this)



○ Assignment 4

○ Lecture Recap

○ Stack Calling Conventions

○ Consolidation Q&A

○ Exam Quiz
▪ Pointers / Arrays

▪ Assembly

▪ C Declarations: Clockwise/Spiral Rule

○ Kahoot

○ More Q&A
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Agenda



Submit pen and paper solutions

via email to your teaching assistant

Rest of the assignment on Code Expert

Details on Handout
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Assignment 4



Lecture Recap
Compiling C Control Flow: Loops, Switch

Systems Programming and Computer Architecture



Lecture Recap: CCF: if statement



Lecture Recap: CCF: for loop



Lecture Recap: CCF: while loop



Lecture Recap: CCF: Switch table



Lecture Recap: CCF: Switch table



Lecture Recap: CCF: Switch table



Lecture Recap: CCF: Switch table



Lecture Recap: CCF: Switch table

• Direct Jump: we 
directly jump at the 
specified address



Lecture Recap: CCF: Switch table

• Direct Jump: we 
directly jump at the 
specified address



Lecture Recap: CCF: Switch table

• InDirect Jump: we 
look at the value 
stored at the 
specified address, 
and jump to what 
was stored there (i.e. 
interpret that as an 
address)



Lecture Recap: CCF: Switch table

• InDirect Jump: we 
look at the value 
stored at the 
specified address, 
and jump to what 
was stored there (i.e. 
interpret that as an 
address)



Lecture Recap: CCF: Switch table

• Note: a label like 
“.L4” or “.main” are 
just addresses (so 
think of .L4 as 
something like 
0x4000243)



Lecture Recap: CCF: Switch table

• Then here the same 
thing happens: look 
into the jump table at 
the specified value of 
x (%rdi*8) as x is a 
long, the JUMP to 
what the jump table 
says



Lecture Recap: CCF: Switch table: we don’t care how big the code 
blocks in each switch statement are as we don’t execute the code 
in there but jump to the targets



Lecture Recap: CCF: Switch table: multiple 
can jump to the same location (x=0, x=4)



Lecture Recap
Procedure call and return, Calling Conventions

Systems Programming and Computer Architecture



Lecture Recap: Procedure Call

• Let us look at the procedure call and return in three steps

• 1. The call (setup)

• 2. Within the call (using the stack frame)

• 3. The return (cleanup)



What you saw in the lecture: 



Stack here:

• This is what the full stack frame 
looks like: keep this in mind 
while we step through it 

• In the end you should 
understand what the purpose of 
all the things on it are!



Lecture Recap: Procedure Call

1. The call (setup)



Lecture Recap: Procedure Call

• Callee now saves the callers base 
pointer (%rbp) by pushing it 
onto the stack

• “pushq %rbp”



Lecture Recap: Procedure Call 

• Callee now saves the callers base 
pointer (%rbp) by pushing it 
onto the stack

• “pushq %rbp”

• Then sets up its own “rbp” to 
point at the beginning to its own 
stack frame which is right here
where rsp currently points to

• “movq %rsp, %rbp”



Lecture Recap: Procedure Call

2. Within the call (using the stack frame)



Lecture Recap: Procedure Call 2. Within the 
call

• Now the callee is all 
set up and can start 
doing stuff it wants to 
do: for instance start 
pushing local 
variables on the stack

• Here it pushed two 
local variables on the 
stack



Lecture Recap: Procedure Call

Now whats the point of having %rbp and %rsp??



Lecture Recap: Procedure Call 2. Within the 
call

• Notice how rsp keeps 
moving, but rbp
ALWAYS points to the 
“base”, i.e. the 
beginning of the stack 
frame

• So accessing the passed 
arguments from the 
caller are constant 
from %rbp, NOT from 
%rsp as it moves



Lecture Recap: Procedure Call

3. The return (cleanup)



Lecture Recap: Procedure Call 2. Within the 
call

• Stack pointer needs 
to point to begging of 
stack frame: luckily 
%rbp still points to it



Lecture Recap: Procedure Call 2. Within the 
call

• Stack pointer needs 
to point to begging of 
stack frame: luckily 
%rbp still points to it

• “Movq %rbp, %rsp”

• (Theoretically, 
increment we could 
increment rsp but not 
needed here)



Lecture Recap: Procedure Call 2. Within the 
call

• Need set the %rbp to 
the old value (luckily 
we pushed in on the 
stack before): s.t. the 
caller still has this 
value as it was before



Lecture Recap: Procedure Call 2. Within the 
call

• Need set the %rbp to 
the old value (luckily 
we pushed in on the 
stack before): s.t. the 
caller still has this 
value as it was before

• “popq %rbp” (i.e. pop 
where %rsp is 
currently pointing to 
into %rbp)



Lecture Recap: Procedure Call 2. Within the 
call

• Lastly, return the %rip 
(instruction pointer) to 
the old value

• The ret statement pops 
the value currently 
pointed by %rsp into 
%rip

• Next execution 
executed will be in the 
caller again



Remark

• This explains the 

• “pushq %rbp”

• “movq %rsp, %rbp”

• …

• “popq %rbp”

• “retq”



Remark

• Notice how he didn’t 
do “movq %rbp, %rsp” 
here: the compiler 
manually added and 
decremented the 
stack pointer s.t. it 
points in the end to 
%rbp again



This should be very clear now!



Remark: Stack Overflow

• Remark: now knowing this 
can someone tell me, what is 
a stack overflow? (which you 
might have already seen in 
eprog, pprog etc.)

• For instance, issue with a 
recursive function?



Remark: Stack Overflow

• Recursive function 
without appropriate 
base case (or too deep 
function calls) fill up the 
stack

• Say each function stores 
2 arguments and then 
calls itself recursively:



Remark: Stack Overflow

• Recursive function 
without appropriate 
base case (or too deep 
function calls) fill up the 
stack

• Say each function stores 
2 arguments and then 
calls itself recursively:



Remark: Stack Overflow

• Recursive function 
without appropriate 
base case (or too deep 
function calls) fill up the 
stack

• Say each function stores 
2 arguments and then 
calls itself recursively:



Remark: Stack Overflow

• But the stack has limited 
space: once its starts 
growing into the middle 
of the address space 
where the shared 
libraries are we get a 
stack overflow



Lecture Recap
Calling Conventions

Systems Programming and Computer Architecture



What does this mean?



Calling Conventions

• We saw, that callee (the called function) always stores the 
base pointer of its parent function (caller), why does he 
care?

• S.t. there are registers where caller can be assured they are 
the same as when he called the callee

• “Callee saved”: if the caller wants to change them he has to 
save them

• “Caller saved”: if the caller wants to keep them, he has to 
save them



Calling Conventions

• We saw, that callee 
(the called function) 
always stores the 
base pointer of its 
parent function 
(caller), why does he 
care?

• S.t. there are 
registers where 
caller can be assured 
they are the same as 
when he called the 
callee



Calling Conventions

• I find “callee saved” and ”caller saved” confusing: I 
remember

• “callee owned” (caller saved): callee owns them, so he can 
do whatever he wants with them

• “caller owned” (callee saved): caller owns them, so if the 
callee wants to do something with it he has to save them



Lecture Recap
Compiling C Data Structures: (Struct) Alignment

Systems Programming and Computer Architecture



Lecture Recap: Alignment



Lecture Recap: Alignment



Lecture Recap: Alignment



Lecture Recap: Union vs structs



Lecture Overview
Where are we in the course

Systems Programming and Computer Architecture



Lecture Overview

• Now you looked at 

• 1. C programming: what kind of constructs exists (source code), 
if statements, loops etc.

• 2. x86 Assembly: what happens with your highlevel sourcecode: 
gets translated to x86, now you looked at how the loops, if 
statements etc. get translated

• Upcomingin 2.: unorthodox control flow (almost threads), 
Linking, Floating Point, optimizing Compilers 

• 3. Computer Architecture: Architecture, Caches, Exception, 
Virtual Memory etc.



○ C Basics

○ C Integers

○ Pointers

○ Dynamic Memory in C

○ C Pre-Processor

○ C Compilation Pipeline

○ Dynamic Memory Allocators

○ Assembly Basics (Registers, Instructions, Memory Addressing)

○ Compiling C Control Flow

○ Compiling C Data Structures

○ x86 Calling Conventions

With your neighbor(s), take a moment to think about the topics
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General Consolidation Q&A



Q&A
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Exam Quiz
Pointer Dereference & Array Access
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Pointers 1:

Replacing // XXXXX with 
A-G, which print "5 5"?

int val = 3;

int new_val = 5;

int* val_ptr = &val;

// XXXXX

printf("%d %d\n",

val, *val_ptr);

A. val = 5;

B. *val_ptr = new_val;

C. val_ptr = &new_val;

D. val = new_val;

E. *val_ptr = *val_ptr + 2;

F. val = val + 2;

G. val = *val_ptr + 2;

A. 5 5

B. 5 5

C. 3 5

D. 5 5

E. 5 5

F. 5 5

G. 5 5



Pointers 1: Solution

• Care: this is NOT allocating 
stuff on the heap, as there is 
no malloc: this is simply a 
pointer to a value on the 
stack



On a 64-bit machine, which of the following C expressions is 

equivalent to:     (2 points)

(x[2] + 4)[3]

A. *((*(x + 16)) + 28)

B. *((*(x + 2)) + 7)

C. **(x + 28)

D. *(((* x) + 2) + 7)

E. (**(x + 2) + 7)

65

Pointers 2: HS21-5b)

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf


Pointers 2: Solution Recall



Pointers 2: Solution

• (x[2] + 4)[3]

• =(*(x+2)+4)[3]

• =*(*(x+2)+4+3)

• =*(*(x+2)+7)



Exam Quiz
Assembly: What is ARG?

68



For the following task, recall addressing 
modes



For the following task, recall addressing 
modes

• Recall: only lea does not dereference, i.e.

• Leaq (%rdi), %rax %rax<-%rdi, literally “copy value of 
%rdi into %rax

• Recall: for any other instruction supporting the full 
addressing mode (movq, addq, subq etc.) it dereferences

• Movq (%rdi), %rax %rax<- *(%rdi), look into memory 
address at location given by %rdi and take this value



Remark

• These are actually 
exam tasks: pay 
attention and check 
that you really 
understand how 
this works, o/w ask!



You have the following C Program:

int64_t main(int64_t a) {

return a * ARG;

}

In the following disassemblies, what is ARG?

The code was compiled with various -O settings.

72

Assembly: HS17-2-(0)

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(1)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0:  55          push %rbp
1:  48 89 e5    mov %rsp, %rbp
4:  48 89 7d f8 mov  %rdi, -0x8(%rbp)
8:  48 8b 45 f8 mov  -0x8(%rbp), %rax
c:  48 c1 e0 02 shl  $0x2, %rax
10: 5d          pop %rbp
11: c3          retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(1)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0:  push %rbp
1:  mov %rsp, %rbp
4:  mov  %rdi, -0x8(%rbp) # store a
8:  mov  -0x8(%rbp), %rax # load a => rax = a
c:  shl  $0x2, %rax # rax = 4 * a
10: pop %rbp
11: retq

What is ARG?

ARG == 4

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(2)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 00 lea 0x0(, %rdi, 4), %rax
8: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(2)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: lea 0x0(, %rdi, 4), %rax # rax = 0 + 4*a + 0
8: retq

What is ARG?

ARG == 4

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(3)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 7f lea 0x0(%rdi, %rdi, 2), %rax
4: 48 8d 04 87 lea 0x0(%rdi, %rax, 4), %rax
8: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(3)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: lea 0x0(%rdi, %rdi, 2), %rax # rax = a + 2a
4: lea 0x0(%rdi, %rax, 4), %rax # rax = a + 4*(3a)
8: retq

What is ARG?

ARG == 13

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(4)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 31 c0 xor %eax %eax
2: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(4)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: xor %eax %eax # eax = 0
2: retq

What is ARG?

ARG == 0

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(5)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 fd 00 00 00 00 lea 0x0(, %rdi, 8), %rax
8: 48 29 f8 sub %rdi, %rax
b: 48 8d 04 c7 lea (%rdi, %rax, 8), %rax
f: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(5)

0000000000000000 <main>:
0: lea 0x0(, %rdi, 8), %rax # rax = 8 * a
8: sub %rdi, %rax # rax = 7a
b: lea (%rdi, %rax, 8), %rax # rax = a + 8 * (7a)
f: retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

ARG == 57

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(6)

0000000000000000 <main>:
0: 48 89 f8 mov %rdi, %rax
3: 48 f7 d8 neg %rax
6: 48 c1 e0 02 shl $0x2, %rax
a: 48 29 f8 sub %rdi, %rax
d: 48 c1 e0 02 shl $0x2, %rax
11: c3 retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf
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Assembly: HS17-2-(6)

0000000000000000 <main>:
0: mov %rdi, %rax # rax = a
3: neg %rax # rax = -a
6: shl $0x2, %rax # rax = -4a
a: sub %rdi, %rax # rax = -4a – a = -5a
d: shl $0x2, %rax # rax = 4 * (-5a) = -20a
11: retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

ARG == -20

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf


showed:

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 00 lea 0x0(, %rdi, 4), %rax
8: c3 retq

actually, wraps after 7B:

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 lea 0x0(, %rdi, 4), %rax
7: 00
8: c3 retq

85

Side Note: objdump -d



use

no wrap: objdump -d --wide

custom wrap: objdump -d --insn-width=8
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Side Note: objdump -d



What even is objdump

• If you did malloclab you know; if you do the attack or bomb 
lab you will get to use objdump too

• It simply translates machine code back into assembly



What even is objdump



What even is objdump

• Objdump: flags

• -d: show disassembly in human readable format

• --wide: comprehensive analysis without line breaks 
(different view)

• --insn-width=8: show instructions in a manageable 8-byte 
width

• Google for more flags



C Declarations: 
Clockwise/Spiral Rule

90



c-faq.com/decl/spiral.anderson.html

○ Start at the variable name

○ Always end with the basic type (int, char, long, etc.)

○ Then fill in the “middle part”

○ “go right when you can, go left when you must”

91

Clockwise/Spiral Rule

https://c-faq.com/decl/spiral.anderson.html


^           |
|           |
+-----------+

char *str[10];

92

Clockwise/Spiral Rule

str is

+-------+
|       |
|       |

^   |
+---+

+-+
^ |

an array 10 of pointers to char



^                        |
|                        |
|                        |
+------------------------+

+--------------------+
|                    |
|                    |
|                    |

^      |
|      |
+------+

+----+
|    |
|    |

char *(*fp) (int, float *);
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Clockwise/Spiral Rule

fp is

+-+
^ |

^  |
+--+

a pointer to
a pointer to

a function passing an int and
a pointer to float returning a char



+-----------------------------+
|                             |
|                             |
|                             |

^                                  |
|                                  |
|                                  |
+----------------------------------+
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Clockwise/Spiral Rule

signal is

void (*signal(int, void (*fp)(int)))(int);

^      |
+------+

^        |
|        |
+--------+

^  |
+--+

+---+
|   |
|   |

+---+
^   |

+-+
^ |

passing an int returning

a function passing an int and a

a function passing

returningpointer to a function void

a pointer to an int returning void



cdecl.org

good for training
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Tool

https://cdecl.org/


Remark

• These are actually exam tasks: 
pay attention and check that 
you really understand how this 
works, o/w ask!

• Do the following and you will be 
very good at it (its not hard, 
after a doing a few by yourself
you got it)

• HS18 Ex. 7

• HS19 Ex. 3

• HS20 Ex. 6



Remark

• Two kind of those questions: either i) casting or ii) type 
decleration

Int *x;  “declare x as pointer to int”

(int*) x;  “cast x into pointer to int”



Remark

• Remark: multidimensional array binds higher

• int *x[10][10];  “declare x as array 10 of array 10 of pointer 
to int” NOT “declare x as a array 10 of pointer to array 10 of 
int)



Exam Quiz
C Declarations

99



Remark

• Lets go through some of the HS18 together and then you can 
try the following



1. int *x
2. int x[10]
3. (int *)x
4. int *x[10]
5. int **x[10]
6. int(*x[10])[10]
7. int *x[10][10]

A. cast x into pointer to int

B. declare x as array 10 of 

pointer to int

C. declare x as array 10 of 

pointer to array 10 of int

101

C Declarations: HS18-7-(1)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf
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D. Declare x as array 10 of 

array 5 of int

E. Declare x as pointer to array 

of function (pointer to int) 

returning int

F. Declare x as array of pointer 

to function (pointer to int) 

returning int

7. int *x[10][10]
8. int x[10][5]
9. int x[5][10]
10.int (*x)[](int *)
11.int *x(int[])
12.int (*x[])(int *)
13.int *x(int *)

C Declarations: HS18-7-(2)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf
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G. Declare x as array of function 

(pointer to int) returning pointer 

to int

H. Cast x into pointer to function 

(array of int, int) returning int

I. Cast x into pointer to function 

(pointer to int, int) returning 

pointer to int

J. Declare x as pointer to function 

(pointer to int, int) returning int

13.int *x(int *)
14.int *x[](int *)
15.(int (*)(int *, int))x
16.int *x(int *, int)
17.(int (*)(int[], int))x
18.int *x(int *, int)[]
19.(int *(*)(int *, int))x
20.int (*x)(int *, int)
21.int *x[](int *, int)

C Declarations: HS18-7-(2)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf


Kahoot
https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-

ae6ac0afa13b

(16’)

104

https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-ae6ac0afa13b
https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-ae6ac0afa13b


Q&A
(again)

105



Exam Quiz
Read Assembly and Arrays

106



WARNING

this is hard

107
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.build_version macos, 12, 0 sdk_version 12, 0
_copy:
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi
shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)
popq %rbp
retq

.subsections_via_symbols

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

movslq: 32->64 bit sign extension

foo@GOTPCREL(%rip) is the GOT entry for symbol foo, 
accessed with RIP-relative addressing mode.

i.e. this loads foo.

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf


# starts with: %edi = i, %esi = j, %edx = k
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

popq %rbp
retq 109

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

%rax Return value

%rbx Callee saved

%rcx 4th argument

%rdx 3rd argument

%rsi 2nd argument

%rdi 1st argument

%rbp Callee saved

%rsp Stack pointer

%r8  5th argument

%r9  6th argument

%r10 Scratch register

%r11 Scratch register

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

● new stack frame: 
%rsp and %rbp

● handle arguments
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# rax = k
# rcx = i
# rdx = j
# rsi = i

# rsi = 64 * i
# rsi = 4i + 64i = 68i
# rdi = 340 * k
# rdi = &array2[0][0][0] + 340k
# rdi = 68i + (array2 + 340k)
# esi = *(array2 + 340k + 68i + 4j)
# rdi = j
# rdi = 128 * j
# rdx = 4j + 128j = 132j
# rcx = 2244i
# rcx = array1 + 2244i
# rcx = array1 + 2244i + 132j
# *(array1 + 2244i + 132j + 4k) = esi

# starts with: %edi = i, %esi = j, %edx = k
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

popq %rbp
retq 110

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11
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int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

# combining the analysis of the assembly code shows:
*(array1 + 2244i + 132j + 4k) = *(array2 + 340k + 68i + 4j)

# integer size is 4 B => in C:
*(array1 + 561i + 33j + k) = *(array2 + 85k + 17i + j)

# rewrite:
*(array1 + (17 * 33) * i + 33 * j + k) = *(array2 + (5 * 17) * k + 17 * i + j)

*(array1 + 33 * (17i + j) + k) = *(array2 + 17 * (5k + i) + j)

# => array1: outermost dimension must be 33, middle 17
# => array2: outermost dimension must be 17, middle 5

# looking at the declarations of array1 and array2:

X = 5
Y = 17
Z = 33

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf
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int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

smaller example:
array1:

X = 4, Y = 3, Z = 2;
int array1[4][3][2]; // 4 x 3 x 2

int array1[4][3][2] = {{{  0,   1}, { 10,  11}, { 20,  21}},
{{100, 101}, {110, 111}, {120, 121}},
{{200, 201}, {210, 211}, {220, 221}},
{{300, 302}, {310, 311}, {320, 321}}};

int i = 1, j = 2, k = 0;
array1[1][2][0];

address:

array1 + 4 * ( 1 * (3 * 2) + 2 * 2 + 0 );
array1 + 4 * ( i * (Y * Z) + j * Z + k );

i=1

0 1

100 101

200 201

10 11

110 111

210 211

20 21

120 121

220 221

300 302 310 311 320 321

j=2

k=0

int is 4 bytes

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf


# 2 suspiciously important constants

# 340/4 = 75  =>  75 = 5*17

# knowing 5 & 17:
# 2244/4 = 561  =>  561/17 = 33
#                   (divide by 5 does not work)

# => 5, 17, 33. Order??

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

113

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

Alternative, faster approach:

guess dimensions from constants

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf


114Assembly: HS21-11

in the exam:

5 points / 173

in 180 min

-> not worth it
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