
Exercise Session 6
2024 Autumn

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Remark Todays Exercise Session

• Q: Everyone okay with 5-10min break and end at 15:50-15:55
for today?

• Q: From now on, Kahoots or rather still more theory?

Remark Exercises

• Pen and Paper Exercise Sheet 4 will be published: highly
recommend doing this, helps in understanding memory layout,
assembly etc.

• Code Expert: highly recommend doing this too (if you
understood assembly it can be done quite fast): and very
relevant for exam (likely that there will be assembly
programming tasks like this)

○ Assignment 4

○ Lecture Recap

○ Stack Calling Conventions

○ Consolidation Q&A

○ Exam Quiz
▪ Pointers / Arrays

▪ Assembly

▪ C Declarations: Clockwise/Spiral Rule

○ Kahoot

○ More Q&A

5

Agenda

Submit pen and paper solutions

via email to your teaching assistant

Rest of the assignment on Code Expert

Details on Handout

6

Assignment 4

Lecture Recap
Compiling C Control Flow: Loops, Switch

Systems Programming and Computer Architecture

Lecture Recap: CCF: if statement

Lecture Recap: CCF: for loop

Lecture Recap: CCF: while loop

Lecture Recap: CCF: Switch table

Lecture Recap: CCF: Switch table

Lecture Recap: CCF: Switch table

Lecture Recap: CCF: Switch table

Lecture Recap: CCF: Switch table

• Direct Jump: we
directly jump at the
specified address

Lecture Recap: CCF: Switch table

• Direct Jump: we
directly jump at the
specified address

Lecture Recap: CCF: Switch table

• InDirect Jump: we
look at the value
stored at the
specified address,
and jump to what
was stored there (i.e.
interpret that as an
address)

Lecture Recap: CCF: Switch table

• InDirect Jump: we
look at the value
stored at the
specified address,
and jump to what
was stored there (i.e.
interpret that as an
address)

Lecture Recap: CCF: Switch table

• Note: a label like
“.L4” or “.main” are
just addresses (so
think of .L4 as
something like
0x4000243)

Lecture Recap: CCF: Switch table

• Then here the same
thing happens: look
into the jump table at
the specified value of
x (%rdi*8) as x is a
long, the JUMP to
what the jump table
says

Lecture Recap: CCF: Switch table: we don’t care how big the code
blocks in each switch statement are as we don’t execute the code
in there but jump to the targets

Lecture Recap: CCF: Switch table: multiple
can jump to the same location (x=0, x=4)

Lecture Recap
Procedure call and return, Calling Conventions

Systems Programming and Computer Architecture

Lecture Recap: Procedure Call

• Let us look at the procedure call and return in three steps

• 1. The call (setup)

• 2. Within the call (using the stack frame)

• 3. The return (cleanup)

What you saw in the lecture:

Stack here:

• This is what the full stack frame
looks like: keep this in mind
while we step through it

• In the end you should
understand what the purpose of
all the things on it are!

Lecture Recap: Procedure Call

1. The call (setup)

Lecture Recap: Procedure Call

• Callee now saves the callers base
pointer (%rbp) by pushing it
onto the stack

• “pushq %rbp”

Lecture Recap: Procedure Call

• Callee now saves the callers base
pointer (%rbp) by pushing it
onto the stack

• “pushq %rbp”

• Then sets up its own “rbp” to
point at the beginning to its own
stack frame which is right here
where rsp currently points to

• “movq %rsp, %rbp”

Lecture Recap: Procedure Call

2. Within the call (using the stack frame)

Lecture Recap: Procedure Call 2. Within the
call

• Now the callee is all
set up and can start
doing stuff it wants to
do: for instance start
pushing local
variables on the stack

• Here it pushed two
local variables on the
stack

Lecture Recap: Procedure Call

Now whats the point of having %rbp and %rsp??

Lecture Recap: Procedure Call 2. Within the
call

• Notice how rsp keeps
moving, but rbp
ALWAYS points to the
“base”, i.e. the
beginning of the stack
frame

• So accessing the passed
arguments from the
caller are constant
from %rbp, NOT from
%rsp as it moves

Lecture Recap: Procedure Call

3. The return (cleanup)

Lecture Recap: Procedure Call 2. Within the
call

• Stack pointer needs
to point to begging of
stack frame: luckily
%rbp still points to it

Lecture Recap: Procedure Call 2. Within the
call

• Stack pointer needs
to point to begging of
stack frame: luckily
%rbp still points to it

• “Movq %rbp, %rsp”

• (Theoretically,
increment we could
increment rsp but not
needed here)

Lecture Recap: Procedure Call 2. Within the
call

• Need set the %rbp to
the old value (luckily
we pushed in on the
stack before): s.t. the
caller still has this
value as it was before

Lecture Recap: Procedure Call 2. Within the
call

• Need set the %rbp to
the old value (luckily
we pushed in on the
stack before): s.t. the
caller still has this
value as it was before

• “popq %rbp” (i.e. pop
where %rsp is
currently pointing to
into %rbp)

Lecture Recap: Procedure Call 2. Within the
call

• Lastly, return the %rip
(instruction pointer) to
the old value

• The ret statement pops
the value currently
pointed by %rsp into
%rip

• Next execution
executed will be in the
caller again

Remark

• This explains the

• “pushq %rbp”

• “movq %rsp, %rbp”

• …

• “popq %rbp”

• “retq”

Remark

• Notice how he didn’t
do “movq %rbp, %rsp”
here: the compiler
manually added and
decremented the
stack pointer s.t. it
points in the end to
%rbp again

This should be very clear now!

Remark: Stack Overflow

• Remark: now knowing this
can someone tell me, what is
a stack overflow? (which you
might have already seen in
eprog, pprog etc.)

• For instance, issue with a
recursive function?

Remark: Stack Overflow

• Recursive function
without appropriate
base case (or too deep
function calls) fill up the
stack

• Say each function stores
2 arguments and then
calls itself recursively:

Remark: Stack Overflow

• Recursive function
without appropriate
base case (or too deep
function calls) fill up the
stack

• Say each function stores
2 arguments and then
calls itself recursively:

Remark: Stack Overflow

• Recursive function
without appropriate
base case (or too deep
function calls) fill up the
stack

• Say each function stores
2 arguments and then
calls itself recursively:

Remark: Stack Overflow

• But the stack has limited
space: once its starts
growing into the middle
of the address space
where the shared
libraries are we get a
stack overflow

Lecture Recap
Calling Conventions

Systems Programming and Computer Architecture

What does this mean?

Calling Conventions

• We saw, that callee (the called function) always stores the
base pointer of its parent function (caller), why does he
care?

• S.t. there are registers where caller can be assured they are
the same as when he called the callee

• “Callee saved”: if the caller wants to change them he has to
save them

• “Caller saved”: if the caller wants to keep them, he has to
save them

Calling Conventions

• We saw, that callee
(the called function)
always stores the
base pointer of its
parent function
(caller), why does he
care?

• S.t. there are
registers where
caller can be assured
they are the same as
when he called the
callee

Calling Conventions

• I find “callee saved” and ”caller saved” confusing: I
remember

• “callee owned” (caller saved): callee owns them, so he can
do whatever he wants with them

• “caller owned” (callee saved): caller owns them, so if the
callee wants to do something with it he has to save them

Lecture Recap
Compiling C Data Structures: (Struct) Alignment

Systems Programming and Computer Architecture

Lecture Recap: Alignment

Lecture Recap: Alignment

Lecture Recap: Alignment

Lecture Recap: Union vs structs

Lecture Overview
Where are we in the course

Systems Programming and Computer Architecture

Lecture Overview

• Now you looked at

• 1. C programming: what kind of constructs exists (source code),
if statements, loops etc.

• 2. x86 Assembly: what happens with your highlevel sourcecode:
gets translated to x86, now you looked at how the loops, if
statements etc. get translated

• Upcomingin 2.: unorthodox control flow (almost threads),
Linking, Floating Point, optimizing Compilers

• 3. Computer Architecture: Architecture, Caches, Exception,
Virtual Memory etc.

○ C Basics

○ C Integers

○ Pointers

○ Dynamic Memory in C

○ C Pre-Processor

○ C Compilation Pipeline

○ Dynamic Memory Allocators

○ Assembly Basics (Registers, Instructions, Memory Addressing)

○ Compiling C Control Flow

○ Compiling C Data Structures

○ x86 Calling Conventions

With your neighbor(s), take a moment to think about the topics

60

General Consolidation Q&A

Q&A

61

Exam Quiz
Pointer Dereference & Array Access

62

63

Pointers 1:

Replacing // XXXXX with
A-G, which print "5 5"?

int val = 3;

int new_val = 5;

int* val_ptr = &val;

// XXXXX

printf("%d %d\n",

val, *val_ptr);

A. val = 5;

B. *val_ptr = new_val;

C. val_ptr = &new_val;

D. val = new_val;

E. *val_ptr = *val_ptr + 2;

F. val = val + 2;

G. val = *val_ptr + 2;

A. 5 5

B. 5 5

C. 3 5

D. 5 5

E. 5 5

F. 5 5

G. 5 5

Pointers 1: Solution

• Care: this is NOT allocating
stuff on the heap, as there is
no malloc: this is simply a
pointer to a value on the
stack

On a 64-bit machine, which of the following C expressions is

equivalent to: (2 points)

(x[2] + 4)[3]

A. *((*(x + 16)) + 28)

B. *((*(x + 2)) + 7)

C. **(x + 28)

D. *(((* x) + 2) + 7)

E. (**(x + 2) + 7)

65

Pointers 2: HS21-5b)

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

Pointers 2: Solution Recall

Pointers 2: Solution

• (x[2] + 4)[3]

• =(*(x+2)+4)[3]

• =*(*(x+2)+4+3)

• =*(*(x+2)+7)

Exam Quiz
Assembly: What is ARG?

68

For the following task, recall addressing
modes

For the following task, recall addressing
modes

• Recall: only lea does not dereference, i.e.

• Leaq (%rdi), %rax %rax<-%rdi, literally “copy value of
%rdi into %rax

• Recall: for any other instruction supporting the full
addressing mode (movq, addq, subq etc.) it dereferences

• Movq (%rdi), %rax %rax<- *(%rdi), look into memory
address at location given by %rdi and take this value

Remark

• These are actually
exam tasks: pay
attention and check
that you really
understand how
this works, o/w ask!

You have the following C Program:

int64_t main(int64_t a) {

return a * ARG;

}

In the following disassemblies, what is ARG?

The code was compiled with various -O settings.

72

Assembly: HS17-2-(0)

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

73

Assembly: HS17-2-(1)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp, %rbp
4: 48 89 7d f8 mov %rdi, -0x8(%rbp)
8: 48 8b 45 f8 mov -0x8(%rbp), %rax
c: 48 c1 e0 02 shl $0x2, %rax
10: 5d pop %rbp
11: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

74

Assembly: HS17-2-(1)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: push %rbp
1: mov %rsp, %rbp
4: mov %rdi, -0x8(%rbp) # store a
8: mov -0x8(%rbp), %rax # load a => rax = a
c: shl $0x2, %rax # rax = 4 * a
10: pop %rbp
11: retq

What is ARG?

ARG == 4

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

75

Assembly: HS17-2-(2)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 00 lea 0x0(, %rdi, 4), %rax
8: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

76

Assembly: HS17-2-(2)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: lea 0x0(, %rdi, 4), %rax # rax = 0 + 4*a + 0
8: retq

What is ARG?

ARG == 4

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

77

Assembly: HS17-2-(3)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 7f lea 0x0(%rdi, %rdi, 2), %rax
4: 48 8d 04 87 lea 0x0(%rdi, %rax, 4), %rax
8: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

78

Assembly: HS17-2-(3)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: lea 0x0(%rdi, %rdi, 2), %rax # rax = a + 2a
4: lea 0x0(%rdi, %rax, 4), %rax # rax = a + 4*(3a)
8: retq

What is ARG?

ARG == 13

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

79

Assembly: HS17-2-(4)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 31 c0 xor %eax %eax
2: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

80

Assembly: HS17-2-(4)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: xor %eax %eax # eax = 0
2: retq

What is ARG?

ARG == 0

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

81

Assembly: HS17-2-(5)

int64_t main(int64_t a) {

return a * ARG;

}

0000000000000000 <main>:
0: 48 8d 04 fd 00 00 00 00 lea 0x0(, %rdi, 8), %rax
8: 48 29 f8 sub %rdi, %rax
b: 48 8d 04 c7 lea (%rdi, %rax, 8), %rax
f: c3 retq

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

82

Assembly: HS17-2-(5)

0000000000000000 <main>:
0: lea 0x0(, %rdi, 8), %rax # rax = 8 * a
8: sub %rdi, %rax # rax = 7a
b: lea (%rdi, %rax, 8), %rax # rax = a + 8 * (7a)
f: retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

ARG == 57

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

83

Assembly: HS17-2-(6)

0000000000000000 <main>:
0: 48 89 f8 mov %rdi, %rax
3: 48 f7 d8 neg %rax
6: 48 c1 e0 02 shl $0x2, %rax
a: 48 29 f8 sub %rdi, %rax
d: 48 c1 e0 02 shl $0x2, %rax
11: c3 retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

84

Assembly: HS17-2-(6)

0000000000000000 <main>:
0: mov %rdi, %rax # rax = a
3: neg %rax # rax = -a
6: shl $0x2, %rax # rax = -4a
a: sub %rdi, %rax # rax = -4a – a = -5a
d: shl $0x2, %rax # rax = 4 * (-5a) = -20a
11: retq

int64_t main(int64_t a) {

return a * ARG;

}

What is ARG?

ARG == -20

https://exams.vis.ethz.ch/exams/4guqiyoc.pdf

showed:

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 00 lea 0x0(, %rdi, 4), %rax
8: c3 retq

actually, wraps after 7B:

0000000000000000 <main>:
0: 48 8d 04 bd 00 00 00 lea 0x0(, %rdi, 4), %rax
7: 00
8: c3 retq

85

Side Note: objdump -d

use

no wrap: objdump -d --wide

custom wrap: objdump -d --insn-width=8

86

Side Note: objdump -d

What even is objdump

• If you did malloclab you know; if you do the attack or bomb
lab you will get to use objdump too

• It simply translates machine code back into assembly

What even is objdump

What even is objdump

• Objdump: flags

• -d: show disassembly in human readable format

• --wide: comprehensive analysis without line breaks
(different view)

• --insn-width=8: show instructions in a manageable 8-byte
width

• Google for more flags

C Declarations:
Clockwise/Spiral Rule

90

c-faq.com/decl/spiral.anderson.html

○ Start at the variable name

○ Always end with the basic type (int, char, long, etc.)

○ Then fill in the “middle part”

○ “go right when you can, go left when you must”

91

Clockwise/Spiral Rule

https://c-faq.com/decl/spiral.anderson.html

^ |
| |
+-----------+

char *str[10];

92

Clockwise/Spiral Rule

str is

+-------+
| |
| |

^ |
+---+

+-+
^ |

an array 10 of pointers to char

^ |
| |
| |
+------------------------+

+--------------------+
| |
| |
| |

^ |
| |
+------+

+----+
| |
| |

char *(*fp) (int, float *);

93

Clockwise/Spiral Rule

fp is

+-+
^ |

^ |
+--+

a pointer to
a pointer to

a function passing an int and
a pointer to float returning a char

+-----------------------------+
| |
| |
| |

^ |
| |
| |
+----------------------------------+

94

Clockwise/Spiral Rule

signal is

void (*signal(int, void (*fp)(int)))(int);

^ |
+------+

^ |
| |
+--------+

^ |
+--+

+---+
| |
| |

+---+
^ |

+-+
^ |

passing an int returning

a function passing an int and a

a function passing

returningpointer to a function void

a pointer to an int returning void

cdecl.org

good for training

95

Tool

https://cdecl.org/

Remark

• These are actually exam tasks:
pay attention and check that
you really understand how this
works, o/w ask!

• Do the following and you will be
very good at it (its not hard,
after a doing a few by yourself
you got it)

• HS18 Ex. 7

• HS19 Ex. 3

• HS20 Ex. 6

Remark

• Two kind of those questions: either i) casting or ii) type
decleration

Int *x;  “declare x as pointer to int”

(int*) x;  “cast x into pointer to int”

Remark

• Remark: multidimensional array binds higher

• int *x[10][10];  “declare x as array 10 of array 10 of pointer
to int” NOT “declare x as a array 10 of pointer to array 10 of
int)

Exam Quiz
C Declarations

99

Remark

• Lets go through some of the HS18 together and then you can
try the following

1. int *x
2. int x[10]
3. (int *)x
4. int *x[10]
5. int **x[10]
6. int(*x[10])[10]
7. int *x[10][10]

A. cast x into pointer to int

B. declare x as array 10 of

pointer to int

C. declare x as array 10 of

pointer to array 10 of int

101

C Declarations: HS18-7-(1)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf

102

D. Declare x as array 10 of

array 5 of int

E. Declare x as pointer to array

of function (pointer to int)

returning int

F. Declare x as array of pointer

to function (pointer to int)

returning int

7. int *x[10][10]
8. int x[10][5]
9. int x[5][10]
10.int (*x)[](int *)
11.int *x(int[])
12.int (*x[])(int *)
13.int *x(int *)

C Declarations: HS18-7-(2)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf

103

G. Declare x as array of function

(pointer to int) returning pointer

to int

H. Cast x into pointer to function

(array of int, int) returning int

I. Cast x into pointer to function

(pointer to int, int) returning

pointer to int

J. Declare x as pointer to function

(pointer to int, int) returning int

13.int *x(int *)
14.int *x[](int *)
15.(int (*)(int *, int))x
16.int *x(int *, int)
17.(int (*)(int[], int))x
18.int *x(int *, int)[]
19.(int *(*)(int *, int))x
20.int (*x)(int *, int)
21.int *x[](int *, int)

C Declarations: HS18-7-(2)

Match statements (right) to code (left).

https://exams.vis.ethz.ch/exams/sgiclol2.pdf

Kahoot
https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-

ae6ac0afa13b

(16’)

104

https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-ae6ac0afa13b
https://create.kahoot.it/share/sysprog-q5/baee3cb6-319f-469b-abd4-ae6ac0afa13b

Q&A
(again)

105

Exam Quiz
Read Assembly and Arrays

106

WARNING

this is hard

107

108

.build_version macos, 12, 0 sdk_version 12, 0
_copy:
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi
shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)
popq %rbp
retq

.subsections_via_symbols

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

movslq: 32->64 bit sign extension

foo@GOTPCREL(%rip) is the GOT entry for symbol foo,
accessed with RIP-relative addressing mode.

i.e. this loads foo.

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

starts with: %edi = i, %esi = j, %edx = k
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

popq %rbp
retq 109

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

%rax Return value

%rbx Callee saved

%rcx 4th argument

%rdx 3rd argument

%rsi 2nd argument

%rdi 1st argument

%rbp Callee saved

%rsp Stack pointer

%r8 5th argument

%r9 6th argument

%r10 Scratch register

%r11 Scratch register

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

● new stack frame:
%rsp and %rbp

● handle arguments

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

rax = k
rcx = i
rdx = j
rsi = i

rsi = 64 * i
rsi = 4i + 64i = 68i
rdi = 340 * k
rdi = &array2[0][0][0] + 340k
rdi = 68i + (array2 + 340k)
esi = *(array2 + 340k + 68i + 4j)
rdi = j
rdi = 128 * j
rdx = 4j + 128j = 132j
rcx = 2244i
rcx = array1 + 2244i
rcx = array1 + 2244i + 132j
*(array1 + 2244i + 132j + 4k) = esi

starts with: %edi = i, %esi = j, %edx = k
pushq %rbp
movq %rsp, %rbp
movslq %edx, %rax
movslq %edi, %rcx
movslq %esi, %rdx
movq %rcx, %rsi

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

popq %rbp
retq 110

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

111

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

combining the analysis of the assembly code shows:
*(array1 + 2244i + 132j + 4k) = *(array2 + 340k + 68i + 4j)

integer size is 4 B => in C:
*(array1 + 561i + 33j + k) = *(array2 + 85k + 17i + j)

rewrite:
*(array1 + (17 * 33) * i + 33 * j + k) = *(array2 + (5 * 17) * k + 17 * i + j)

*(array1 + 33 * (17i + j) + k) = *(array2 + 17 * (5k + i) + j)

=> array1: outermost dimension must be 33, middle 17
=> array2: outermost dimension must be 17, middle 5

looking at the declarations of array1 and array2:

X = 5
Y = 17
Z = 33

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

112

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

smaller example:
array1:

X = 4, Y = 3, Z = 2;
int array1[4][3][2]; // 4 x 3 x 2

int array1[4][3][2] = {{{ 0, 1}, { 10, 11}, { 20, 21}},
{{100, 101}, {110, 111}, {120, 121}},
{{200, 201}, {210, 211}, {220, 221}},
{{300, 302}, {310, 311}, {320, 321}}};

int i = 1, j = 2, k = 0;
array1[1][2][0];

address:

array1 + 4 * (1 * (3 * 2) + 2 * 2 + 0);
array1 + 4 * (i * (Y * Z) + j * Z + k);

i=1

0 1

100 101

200 201

10 11

110 111

210 211

20 21

120 121

220 221

300 302 310 311 320 321

j=2

k=0

int is 4 bytes

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

2 suspiciously important constants

340/4 = 75 => 75 = 5*17

knowing 5 & 17:
2244/4 = 561 => 561/17 = 33
(divide by 5 does not work)

=> 5, 17, 33. Order??

shlq $6, %rsi
leaq (%rsi, %rcx, 4), %rsi
imulq $340, %rax, %rdi
addq _array2@GOTPCREL(%rip), %rdi
addq %rsi, %rdi
movl (%rdi, %rdx, 4), %esi
movq %rdx, %rdi
shlq $7, %rdi
leaq (%rdi, %rdx, 4), %rdx
imulq $2244, %rcx, %rcx
addq _array1@GOTPCREL(%rip), %rcx
addq %rdx, %rcx
movl %esi, (%rcx, %rax, 4)

113

int array1[X][Y][Z];
int array2[Z][X][Y];
void copy(int i, int j, int k) {
array1[i][j][k] = array2[k][i][j];
}

Assembly: HS21-11

Alternative, faster approach:

guess dimensions from constants

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

114Assembly: HS21-11

in the exam:

5 points / 173

in 180 min

-> not worth it

https://exams.vis.ethz.ch/exams/zbg4eu8j.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Agenda
	Slide 6: Assignment 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: General Consolidation Q&A
	Slide 61: Q&A
	Slide 62: Exam Quiz
	Slide 63: Pointers 1:
	Slide 64
	Slide 65: Pointers 2: HS21-5b)
	Slide 66
	Slide 67
	Slide 68: Exam Quiz
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Assembly: HS17-2-(0)
	Slide 73: Assembly: HS17-2-(1)
	Slide 74: Assembly: HS17-2-(1)
	Slide 75: Assembly: HS17-2-(2)
	Slide 76: Assembly: HS17-2-(2)
	Slide 77: Assembly: HS17-2-(3)
	Slide 78: Assembly: HS17-2-(3)
	Slide 79: Assembly: HS17-2-(4)
	Slide 80: Assembly: HS17-2-(4)
	Slide 81: Assembly: HS17-2-(5)
	Slide 82: Assembly: HS17-2-(5)
	Slide 83: Assembly: HS17-2-(6)
	Slide 84: Assembly: HS17-2-(6)
	Slide 85: Side Note: objdump -d
	Slide 86: Side Note: objdump -d
	Slide 87
	Slide 88
	Slide 89
	Slide 90: C Declarations: Clockwise/Spiral Rule
	Slide 91: Clockwise/Spiral Rule
	Slide 92: Clockwise/Spiral Rule
	Slide 93: Clockwise/Spiral Rule
	Slide 94: Clockwise/Spiral Rule
	Slide 95: Tool
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Exam Quiz
	Slide 100
	Slide 101: C Declarations: HS18-7-(1)
	Slide 102: C Declarations: HS18-7-(2)
	Slide 103: C Declarations: HS18-7-(2)
	Slide 104: Kahoot
	Slide 105: Q&A
	Slide 106: Exam Quiz
	Slide 107
	Slide 108: Assembly: HS21-11
	Slide 109: Assembly: HS21-11
	Slide 110: Assembly: HS21-11
	Slide 111: Assembly: HS21-11
	Slide 112: Assembly: HS21-11
	Slide 113: Assembly: HS21-11
	Slide 114: Assembly: HS21-11

