Exercise Session 7/
2024 Autumn

Disclaimer E;

Systems @ ETH zarn

 Website: n.ethz.ch/~falkbe/
* (Extra) Demos on GitHub: github.com/falkbe

* My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where | found
appropriate

* For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Agenda m

Recap Assembly (Code Expert)

Assignment 4 — Questions

Lecture Recap: Linking and Loading
Own Introduction to GDB

GDB Debugger Introduction

GDB Demo

- with simple bomb.c
Assignment 5 — Introduction & Tips
Assignment 5: Walkthrough first defuse stage and setup

Systems @ ETH zarn

O O O O O O

O O

=g~

Systems @ ETH o

Assembly Recap
Theory & Code Expert Tasks

Systems Programming and Computer Architecture

Agenda m

Systems @ ETH zarn

* |s stack frame clear for everyone or should | go through it at
the board again quickly, its really important?

Recall Stackframe
full x86_64/Linux stack frame

F.!‘i- Ll

p
* Current stack frame (“top” to bottom)
* “Argument build:” Caller {
Parameters for function about to call Frame
* Local variables Arguments
If can’t kEEp in registers Frame pointer _ | Return Addr
» Saved register context %rbp ——— | 0ld %rbp
* Old frame pointer Saved
Regi
* Caller stack frame ceisters
* Return address Local
* Pushed by call instruction Variables
* Arguments for thi Il
g > 10 >ca Stack pointer ArgBur:nent -
o uild
»rsp ——
Systems Programming 2024 Ch. 9: Compiling C Control Flow 48

Systemse ETH x

Recall Basic Operands m

Systems @ ETH zarn

Some arithmetic operations

* Two-operand instructions (longword variants):

Mnemonic Format Computation

addl Src,Dest Dest €& Dest + Src

subl Src,Dest Dest & Dest - Src

imull Src,Dest Dest & Dest * Src

sall Src,Dest Dest €& Dest << Src Also called shll
sarl Src,Dest Dest & Dest >> Src Arithmetic

shrl Src,Dest Dest & Dest >> Src Logical

xorl Src,Dest Dest €& Dest * Src

andl Src,Dest Dest & Dest & Src

orl Src,Dest Dest ¢ Dest | Src

* No distinction between signed and unsigned int (why?)

Recall Basic Operands m

Systems @ ETH zarn

Some arithmetic operations

* One operand instructions

Mnemonic Format Computation
incl Dest Dest & Dest + 1
decl Dest Dest & Dest - 1
negl Dest Dest < -Dest
notl Dest Dest & ~Dest

* See book for more instructions

Recall Calling Conventions m

Systems @ ETH zarn

* We saw, that callee %rax Return value, # varargs %r8 Argument #5

(the called function)

always stores the %»rbx Callee saved; base ptr %r9 Argument #6

base pointer of its

parent function »rcx Argument #4 %rle Static chain ptr

(caller), why does he

care? %rdx Argument #3 (& 2" return) %rll Used for linking
e S.t. there are

registers where %rsi Argument #2 %rl2 Callee saved

caller can be assured

they are the same as %rdi Argument #1 %ri3 Callee saved

when he called the

callee %rsp Stack pointer %ria Callee saved

%rbp Callee saved; frame ptr %rl5 Callee saved

Calling Conventions E;

Systems @ ETH zarn

* | find “callee saved” and “caller saved” confusing: |
remember

e “callee owned” (caller saved): callee owns them, so he can
do whatever he wants with them

e “caller owned” (callee saved): caller owns them, so if the
callee wants to do something with it he has to save them

Assembly Recap: Calling Conventions E;

Systems @ ETH o

| Simple Arithmetic - Student attempt

* How to
approach this?

1 .section .text
.global simple_arithmetic
simple_arithmetic:

int simple_arithmetic(int a, int b)
i# 3
return a + (3 * b) + 2;
10 ret
11 # %
12
13

2
3
4
5
6
7
8
9

Assembly Recap: Calling Conventions m

Systems @ ETH zarn

° HOW to a pproach | Simple Arithmetic - Student attempt
this? 1 .section .text

2 .global simple_arithmetic
e ldea: remember 3 simple_arithmetic:
. . 4
1. arg in %rdi, c
second one in 6
0 . 7 4 int simple_arithmetic(int a, int b)
%rsi N,
e Careful: we are 9 returna + (3 xb) +2;
. 10 t
passing INTs (4 . PN
bytes, use %edi, 12

%esi) 13

Assembly Recap: Calling Conventions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

.section .text

.global simple_arithmetic

simple_

xorl
mov1l
imul
addl
addl
ret

arithmetic:

Y%beax, %eax
%edi, %eax
$3, %esi
%esi, %eax
$2, %eax

zeros out return register

moves %rdi (a) into return register
%esi (b) 3%b

{# %eax (a) = a+3*b

%eax (a+3xb) = a+3xb+2

int simple_arithmetic(int a, int b)

1

1k return a + (3 * b) + 2;

ret
i %

Systems @ ETH o

Recall Condition Codes: Explicitly via cmpx m

Systems @ ETH zarn

Condition Codes (Explicit Setting: Compare)

* Explicit Setting by Compare Instruction

cmpl/cmpq Src2,Srcl
cmpl b,a like computinga - b without setting destination

CF set if carry out from most significant bit
(used for unsigned comparisons)

ZF setifa ==
SF setif (a-b) < @ (assigned)
OF set if two’s complement (signed) overflow:
(a>0 && b<0 &% (a-b)<@) || (a<@ && b>0 &% (a-b)>@

Systems Programming 2023 Ch. 8: Basic x86 architecture 72
Systems@ ETH s

Recall Condition Codes: Explicitly via testx m

Systems @ ETH zarn

Condition Codes (Explicit Setting: Test)

* Explicit Setting by Test instruction

testl/testq Src2,Srcl

testl b,a like computinga & b without setting destination

* Sets condition codes based on value of Src1 & Src2
* Useful to have one of the operands be a mask

ZF setwhena & b =
SF setwhena & b <

%)
9

Calling Conventions m

Systems @ ETH zarn

* Note: cmpx is like "subx” that means if we compare
immediate with a register, we must have the register in the
second place i.e. cmpl $1, %edi (subq %edi, S1 wouldn’t
make any sense either)

* Here we set condition codes explicitly i.e. we do the whole
instruction BECAUSE we want the codes

* Cmpx does SUB, testx does logical AND

Recall Condition Codes: Implicitly

Condition codes (implicit setting)

Single bit registers
* CF Carry Flag (for unsigned) SF Sign Flag (for signed)
* ZF Zero Flag OF Overflow Flag (for signed)

Implicitly set (think of it as side effect) by arithmetic operations
Example: addl/addq Src,Dest > t = a+b
* CF set if carry out from most significant bit (unsigned overflow)
* ZFsetift==
* SFsetift <0 (as signed)

* OF set if two’s complement (signed) overflow
(2>0 && b>0 && t<0) | | (a<0 && b<0 && t>=0)

* Not set by lea instruction

Full documentation link on course website

==

Systems @ ETH zarn

Calling Conventions E;

Systems @ ETH zarn

* Note: this means that for ANY instruction you do (add, sub,
etc.) you set condition codes implicitly based on the result

* If you do subq %rax, %rdi and this yields 0 as a result =>
zeroflag is set implicitly you don’t have to do anything and
you cannot prevent it

Recap: Reading Condition Codes

Reading Condition Codes

* SetX Instructions
* Set single byte based on combinations of condition codes

SetX Condition Description

sete ZF Equal / Zero

setne ~ZF Not Equal / Not Zero
sets SF Negative

setns ~SF Nonnegative

setg ~(SFAOF)&~ZF Greater (Signed)

setge ~(SFAOF) Greater or Equal (Signed)
setl (SFAOF) Less (Signed)

setle (SFAOF) | ZF Less or Equal (Signed)
seta ~CF&"~ZF Above (unsigned)

setb CF Below (unsigned) '——F

-

Calling Conventions m

Systems @ ETH zarn

* This means based on the condition codes, if we later want to
do something like: set bit based on result, or jump etc. we
need to read them

* Intutive understanding: if result is zero (ZF set), its “equality”

o:_ 7

so “sete” or “je

* If you have a condition like if(a>2) think of what you want to
do: you can do a>2 < a-2>0, so cmpq S2, %rdi < a-2, then
we want to jump if its bigger so “jg”

Assembly Recap: Calling Conventions E;

Systems @ ETH o

.section .text
.global branches
branches:

int branches(int a)
4

i if(a < 12)

it {

O 0~ 0y U1 B W N B

[
©
==

return -1;
t
elsed
return 1;
%
§

ret

PR R R R R R
N ook wWN PR
o R R oW

Assembly Recap: Calling Conventions

e Careful with

compare again:

compl needs
register arg in
2" pos

e A<12<A-12<0
for cmpl $12,
%edi = %edi-12

1

0 o0 bk wN

11
12
13
14
15
16
17
18
19
20
21
22
23

.section .text
.global branches
branches:

cmpl $12, %edi

jl IF

movg $1, %rax

retq

IF:
movg $-1, %rax

retq

int branches(int a)

3
i if(a < 12)
i i
it return -1;
1
ik elsei
El4 return 1;
i }
i# 1

ret

s @ ETH zicios

Calling Conventions m

Systems @ ETH zarn

* Also note: when doing a function call the rsp has to be 16
byte aligned according to calling conventions: so if rsp is
currently only 8 byte aligned, before you call a function you
need to substract another 8 byte from rsp and add this after
the call to make sure you are aligned

I Calling Functions - Student attempt

1 .section .text

. 2 .global calling_functions
Assembly Recap: Calli : i snctions
5 movq %rsp, %rbp
6 movq %rsi, %rdi
7 xorl %esi, %esi
* Why does this e
work then? It . ki
was 16 byte .
14 4 int calling_functions(int a, int b)
aligned when 15 4 1
16 4 return call_me(b, NULL);
we were called ..
19
 We pushed one .
value, now its 22

not 16 byte
aligned?

By Test results

Test 1 - 1 out of 1; calling_functions()

>

| Calling Functions - Student attempt

1 .section .text

2 .global calling_functions
Assembly Recap: Calling Cc & =z
° pushqg f%rbp
5 movq %rsp, %rbp
6 movqg %rsi, %rdi
7 xorl %esi, %esi
. . 8 subg $8, %rsp
d Th|S fa IIS? 9 call call_me
10 addq $8, %rsp
11 movqg %rbp, %rsp
12 popq %rbp
13 ret
14
15
16 4# int calling_functions(int a, int b)
17 # §
18 4 return call_me(b, NULL);
19 4# ret
20 # %
21
22
23
24
25

Sy Test results All succeeded

A Test1 - 0 out of 1; calling_functions()

Calling Functions - Student attempt

1 .section .text
2 .global calling_functions
o ° 3 calling_functions:
Assembly Recap: Calling Convi : “um
5 movqg %rsp, %rbp
6 movq %rsi, f%rdi
7 xorl %esi, %esi
. 8 subq $16, %rsp
[Th k 9 call call_me
IS Wor S 10 addq $16, %rsp
. 11 movq %rbp, %rsp
aga I n 12 popq %rbp

13 ret
14
15
16 4 int calling_functions(int a, int b)
17 # §
18 return call_me(b, NULL);
19 4 ret
20 # %
21
22
23
24
25

&y Test results All succeeded

© Test1 - 1out of 1; calling_functions()

Calling Conventions m

Systems @ ETH zarn

* Why? When someone calls us, they have a 16 byte aligned
stack pointer

* Then the “call” function pushes the return address, so now
rsp is NOT 16 byte alighed anymore

* If the callee doesn’t call another function himself hes fine,
but if he calls another function he needs a 16 byte aligned
RSP: gets this here implicitly by setting up the stack frame by
pushing rbp

e Makes sense?

Assembly: local variables m

Systems @ ETH zarn

* Generally, if compiler doesn’t explicitly need a memory address
for a local variable it will try to do it in a register

* Add(long a, long b) = {return a+b;}

 The compiler would do
add:
movq %rdi, %rax
addq %rsi, %rax
ret

* So it uses registers to do the calculation instead of using a stack
relative address to store them

Assembly Recap: Calling Conventions

e Suggestions?

15
16
17
18
19
20
21
22

i
i
i
i
i
i

int local variables()

1

h

int local = 3;
return call me(local, &local);
ret

==

Systems @ ETH o

Assembly Recap:

 Will this work?

Py | IR o D - II!I&_d!!j

1

O 00 00 G B WM

N PR R R R R R R R R
© V0 00 U A WNPRP O

.section .text

.global local_variables
local_variables:

pushq %rbp

movq %rsp, %rbp # set up stack frame
subq $8, %rsp # make space for local variable
movq $3, (%xsp) # move the local variable inside it

movq (%rsp), %rdi # deref rsp, move value in %rdi, 1st
leaq (%rsp), %rsi # put address of rsp into %rsi, 2nd
call call_me f#call

movq %rbp, %rsp

popq %rbp f#fdeconstruct stack frame

ret

int local_variables()

3

ik int local = 3;

ik return call_me(local, &local);
ret

i# 3

Assembly Recap: Callir

 Will this work?

 ALMOST, but
remember
alignment, we
push %rbp: now its
16 byte aligned

 BUT THEN we
subqg S8 to make
space for our local
value: now its not
16 byte aligned
anymore

|Local Variables - Student attempt

1
2
3
4
[
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

ey

1

i
i
i
i
i
i

section .text
global local_variables

ocal_variables:

pushq %xrbp

movq %rsp, %rbp i set up stack frame

subq $8, %rsp # make space for local variable
movg $3, (%rsp) # move the local variable inside it

movq (%rsp), %rdi # deref rsp, move value in %rdi, 1st
leaq (%xsp), %rsi 4 put address of rsp into %rsi, 2nd
call call_me f#call

movq %rbp, %rsp

popg %zrbp {#tdeconstruct stack frame

ret

int local_variables()
i

int local = 3;

return call_me(local, &local);
ret

¥

Test results

A

Test 1 - 0 out of 1; local_variables()

Assembly Recap: Calling

e Either substract
16 directly

I Local Variables - Student attempt

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Uy

.section .text

.global local_variables
local_variables:

pushq %xbp

movqg %rsp, %rbp # set up stack frame
subg $16, %rsp # make space for local variable
movq $3, (%rsp) i# move the local variable inside it

movq (%rsp), %rdi # deref rsp, move value in %rdi, 1st
leaq (%rsp), %rsi # put address of rsp into %¥rsi, 2nd
call call_me {#call

movq %rbp, %rsp

popq %rbp {#fdeconstruct stack frame

ret

int local_variables()

1

int local = 3;

i return call_me(local, &local);
ret

i+t

Test results

Test 1 - 1out of 1; local_variables()

|Local Variables - Student attempt

1 .section .text

Assem bI Reca . Ca 2 .global local_variables
\/ F) ° 3 1local_variables:
4 pushg %rbp
5 movq %rsp, %rbp # set up stack frame
H 6 subg $8, %rsp # make space for local variable
°
Or 8 to Store It 7 movqg $3, (%rsp) # move the local variable inside it
8 movq (%rsp), %rdi # deref rsp, move value in %rdi, 1st
°
Then anOther 8 9 leaq (%rsp), %rsi # put address of rsp into %rsi, 2nd
. 10 subq $8, %rsp
fC)r It t() t)EE 11 call call_me f#call
: 12 addq $8, %rsp
allgned bEfore 13 movq %rbp, %rsp
and after the 1151 po:q %rbp ftdeconstruct stack frame
re
call 16
17 4 int local_variables()

18 # {

By Test results

Test 1 - 1out of 1; local_variables()

=g~

Systems @ ETH o

Lecture Recap

Linking: Symbol Resolution and Relocation

Systems Programming and Computer Architecture

Linking and Loading m

Systems @ ETH zarn

* Whats the “issue” with this C program?

Example C program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufpe = &buf[e];
{ static int *bufpl;
swap();
return @; void swap()
}
int temp;
bufpl = &buf[1];
temp = *bufpo;
*bufpe = *bufpil;

*bufpl = temp;

Static linking m|

I'r.: Ll

* Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -0 p main.c swap.c

unix> ./p
mai_n € Swip' C Source files
Translators Translators
(cpp,ccl,as) (cpp,ccl,as) {
l l Separately compiled
na in i@ Swip 0 relocatable object files
Linker (1d) |

l Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c
Systems Programming 2023 Ch. 12: Linking

Static Linking in 2 Steps m

Systems @ ETH zarn

 Step 1: Symbol resolution
* Programs define and reference symbols (variables and functions):
 void swap() {..} /* define symbol swap */
* swap(); /* reference symbol swap */
 int *xp = &x; /* define xp, reference x */

» Symbol definitions are stored (by compiler) in symbol table.
* Symbol table is an array of structs
* Each entry includes name, type, size, and location of symbol.

* Linker associates each symbol reference with exactly one symbol definition.

Static Linking in 2 Steps m

Systems @ ETH zarn

What do linkers do?

* Step 2: Relocation
* Merges separate code and data sections into single sections

* Relocates symbols from their relative locations in the . o files to their final
absolute memory locations in the executable.

* Updates all references to these symbols to reflect their new positions.

Object files m

3 kinds of object files (modules)

* Relocatable object file (.o file)

* Contains code and data in a form that can be combined with other relocatable object
files to form executable object file.

* Each .ofile is produced from exactly one source (.c) file

» Executable object file

* Contains code and data in a form that can be copied directly into memory and then
executed.

* Shared object file (.so file)

. Special_ty||:)e of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run-time.

* Called Dynamic Link Libraries (DLLs) by Windows

.-

Object files: when a .c -> .0, how does this single
.0 get stored? That’s a relocatable object file

Systems @ ETH o

* Relocatable object file (.o file)

* Contains code and data in a form that can be combined with other relocatable object
files to form executable object file.

* Each .o file is produced from exactly one source (.c) file

ELF object file format

ELF header

Segment header table
* EIf header (required for executables)

* Word size, byte ordering, file type (.0, exec, . so), machine type, etc. .text section
* Segment header table

+ Page size, virtual addresses memory segments (sections), segment sizes.
+ .text section -data section

* Code .bss section
* .rodata section

* Read only data: jump tables, ...
* .data section

.rodata section

.symtab section

.rel.txt section

* Initialized global variables .rel.data section
* .bss section .debug section

+ Uninitialized global variables

* “Block Started by Symbol” Section header table

* “Better Save Space”

s Hac cortinn haadar hiit arriiniac nn cnars

Resolving symbols: Global, External and
Local

Resolving symbols

GIJc')baI External Local
int bl.'Hi[z] = {1, 2}; extern int buf[];
int main() static int *bufpe #£ &buf[0];
{ static int *bufpil;
swap();
refurn 0; void swap() <«<——— Global
} main.c
| int temp;
External Linker knows bufpl = &buf[1];
nothing of temp temp = *bufpe;
*bufpe = *bufpl;
*bufpl = temp;

} swap. c

==

Systems @ ETH o

Put all the .o files (which are in ELF format) E;
inside ONE big executable

Systems @ ETH o

Relocating code and data

Relocatable Object Files Executable Object File
Syst d .text 0
ystem code dat Headers)
System data .data System code
\ main()
. > text
main.o
texct swap()
main() -tex
#
int buf[2]={1,2} | .data More system code
System data
swap.o int buf[2]={1,2} .data
/ int *bufpe=abuf[e]
swap() -text Uninitialized data .bss
int *bufpe=&buf[@] | .data .symtab
int *bufpl .bss .debug

Inside each .o file we are still missing the m
references: currently O as placeholder

Systems @ ETH o

Relocation info (main)

main.c main.o
int buf[2] = {1,2}; Disassembly of section .text:
int main() 000PCPOV0OPOOROO <main>:
{ 9: 48 83 ec 08 sub $0x8,%rsp
4: b8 00 00 06 60 mov $0x0, %eax
swap(); 9: €8 00 90 @0 6@ callg e <main+@xe>
return @; a: R _X86_64 PC32 swap-0x4
} e: b8 00 00 0 6@ mov $0x0,%eax
13: 48 83 c4 08 add $6x8,%rsp
17: c3 retq

Disassembly of section .data:

0000000000000000 <buf>:
Q: 01 00 00 0 02 00 00 00

Source: objdump -D -r <file>

After merging them: we can check in the symbol E;
table where the function is in the final executable

Systems @ ETH zarn

* Now the linker can actually input the address of <swap>, but only after
everything got merged since only then the final addresses are clear

Executable after relocation (.text)

00000000004004ed <main>:

4004ed: 48 83 ec 08 sub $0x8,%rsp
4004f1: b8 00 00 O 00 mov $0x0, %eax
4004f6: e8 0a 00 00 00 callg 400505 <swap>
4004fb: b8 00 00 PO 00 mov $0x0, %eax

400500: 48 83 c4 08 add $0x8,%rsp
400504: c3 retq

=g~

Systems @ ETH o

Lecture Recap

Linking: Issues with duplicate symbol definitions

Systems Programming and Computer Architecture

Weak and Strong Symbols (UPDATED) m

Systems @ ETH zarn

* Sometimes, compiler doesn’t know if symbol should be a
global symbol or an external symbol

* So there is a concept of strong and weak symbols, for global
variables

Recall 3 Type of Symbols (UPDATED)

Resolving symbols

GI\Ic')baI External Local
int bdﬂfz] = {1, 2}; extern int buf[];
int main() static int *bufpe #£ &buf[0];
{ static int *bufpil;
swap();
refurn 0; void swap() <«<——— Global
} main.c
| int temp;
External Linker knows bufpl = &buf[1];
nothing of temp temp = *bufpe;

*bufpe = *bufpl;
*bufpl = temp;

} swap. c

==

Systems @ ETH o

For global symbols, we have a further
distinction (UPDATED)

Strong and weak symbols

* Program symbols are either strong or weak.
By default:

 Strong: procedures and initialized globals
* Weak: uninitialized globals if -fcommon

pl.c p2.c
strong — int foo0=5; int foo;
strong —— int p1() { int p2() {+
}

weak

strong

==

Systems @ ETH o

Weak and Strong Symbols (UPDATED) m

Systems @ ETH zarn

* Note: the concept of weak and strong linker symbols are related
exclusively to uninitialized global variables -f-common (old
behaviour): puts uninitialised globals into a common block and
they are weak symbols, allowing multiple uninitialized declerations
across different .c files

* -f-nocommon (new default): this is not the case anymore,
uninitialized globals are also classified as strong symbols

* That means: the only weak to get weak symbols in Cis to either
compile with -f-common compiler flag or with #pragma weak

3 Linker Rules m

Systems @ ETH zarn

The linker’s symbol rules

1. Multiple strong symbols are not allowed
* Each item can be defined only once
e Otherwise: Linker error

2. Given a strong symbol and multiple weak symbol,
choose the strong symbol

* References to the weak symbol resolve to the strong symbol

3. If there are multiple weak symbols, pick an arbitrary one
* Can override this with gcc -fno-common

Will this yield an error? E;

Systems @ ETH o

Duplicate definitions

main.c: other.c:

int count = 9; #include <stdio.h>

int main(int argc, char *argv[]) int count = 1;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 0; }

}

Will this yield an error? E;

* Yes: there are two definitions of the same symbol (but we can only hav&'Ghéel"

Duplicate definitions

main.c: other.c:

#include <stdio.h>
int count = 1;
void print_count()

int count = 9;
int main(int argc, char *argv[])

count = 42;
print count(); printf("Count is %d\n", count);

main.o: other.o:

0000000000000000 B count 0000000000000000 D count
000000000000002% T main 0000000000000AS/ T print_count
U print_count U printf

Data segment (initialized
data)

Bss (uninitialized data)

Systems Programming 2023 Ch. 12: Linking -
}‘Sftm!..'"nu

Will this yield an error? m

Systems @ ETH o

One declaration and one definition

main.c: other.c:

extern int count; #tinclude <stdio.h>

int main(int argc, char *argv[]) int count = 1;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 0; }

}

Will this yield an error? E;

Systems @ ETH o

* No: the left extern int count (external linker symbol) refers to
the RHS int count (global linker symbol)

One declaration and one definition

main.c: other.c:

#include <stdio.h>
int count = 1;
void print_count()

extern int count;

int main(int argc, char *argv[])
{
count = 42;
print count();

main.o: other.o:

00000000000RLRRB U count 0000000000000000 D count
0000000000000027% T main 0000000000000 T print_count
U print_count U printf

Undefined reference I i \-
Systems Programming 2023 Ch. 12: Linking 26 .

Will this yield an error? E;

Systems @ ETH o

Two declarations

main.c: other.c:

extern int count; #include <stdio.h>

int main(int argc, char *argv[]) extern int count;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 9; }

}

Will this yield an error?

=g~

Systems @ ETH o

* Yes: we don’t have a global symbol for count (no definition),
only two references: but we would need a definition

Two declarations

main.c:

extern int count;
int main(int argc, char *argv[])

{
count = 42;
print count();
ret
I3
main.o:

000000000000RRA U count
000000P0RREORRE. T main
U print_count

other.c:

#tinclude <stdio.h>
extern int count;
void print_count()

other.o:

0000000000000008 U count
0000000000000 T print_count
U printf

| |

Will this yield an error? m

Systems @ ETH o

What about this?

main.c: other.c:

int count; #include <stdio.h>»

int main(int argc, char *argv[]) int count = 1;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 0; }

}

Will this yield an error? E;

Systems @ ETH o

* With -fcommon the unitialised global is a weak symbol, as the
other.c has definition for int count, the linker will turn “int count”
i.e. the weak symbol into an external symbol and it links fine.

* With —f-nocommon: all global vars are strong, so we have 2 strong
symbols which yields an error

With —fno-common With -fcommon
(default on very new compilers) (default pre-COVID)
main.c: other.c: main.c: other.c:
int count; #include <stdio.h> int count; #include <stdio.h>
oo ; . har * _ o int main(int argc, char *argv[]) int count = 1;
En main(int argc, char *argv[]) 1n1_:dcour.1tt- 1; . { void print_count()
count = 42: \{ml print_count() count = 42; {

] intf("Count is %d\n" t);
print count(); printf("Count is %d\n", count); ELd LS p°, count);
ret

}
main.o: other.o:
main.o: other.o: z
0000000000000000 C count 0000000000000000 D count
00000000000GGGGG B count 0000000000000000 D count 62g’ T main 0000000000000000 T print_count
0000000000000000 T main 0000000000000000 T print_count U print_count U printf
U print_count U printf i N

| gme

Will this yield an error? E;

Systems @ ETH o

Or this?

main.c: other.c:

int count; #include <stdio.h>

int main(int argc, char *argv[]) int count;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 0; }

}

Will this yield an error?

Systems @ ETH ziv
* No: multiple weak symbols, it picks an arbitrary one (only works with -f-common)

Or this?

main.c: other.c:

#include <stdio.h>
int count;
void print_count()

int count;
int main(int argc, char *argv[])

count = 42;

print count ount is %d\n", count);

No errors: program links and runs

main.o: other.o:
0000V C count 0000000000000000 C count
000000000000 T main 0000000000000000 T print count
U print_count U printf

=

Some Linker Puzzels (Assuming -fcommon)

int x;

int p1() {} | |int p1() {}
int x; int x;

int p1() {} int p2() {}
int x; double x;
int y; int p2() {}
int p1() {}

int x=7; double x;
int y=5; int p2() {}
int p1() {}

int x=7; int x;

int p1() {}| |int p2() {}

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to X in p2 might overwrite y!
Evil!

Writes to X in p2 will overwrite y!
Nasty!

References to x will refer to the same initialized
variable.

=g~

Systems @ ETH o

=g~

Systems @ ETH o

Lecture Recap

What are libraries?

Systems Programming and Computer Architecture

Why do we need libraries? m

Swetomca ETH s

Packaging commonly-used functions

* How to package functions commonly used by programmers?
* Math, I/0, memory management, string manipulation, etc.

* Awkward, given the linker framework so far:

* Option 1: Put all functions into a single source file
* Programmers link big object file into their programs
* Space and time inefficient
* Option 2: Put each function in a separate source file
* Programmers explicitly link appropriate binaries into their programs
* More efficient, but burdensome on the programmer

What are (static) libraries m

Systems @ ETH zarn

Solution: static libraries

* Static libraries (.a archive files)

* Concatenate related relocatable object files into a single file with an index
(called an archive).

* Enhance linker so that it tries to resolve unresolved external references by
looking for the symbols in one or more archives.

* |f an archive member file resolves reference, link into executable.

What are (static) libraries m

Systems @ ETH zarn

Creating static libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random.o

T~

y

Archiver (ar)

unix> ar rs libc.a \
atoi.o printf.o .. random.o

librc .a C standard library

Archiver allows incremental updates
Recompile function that changes and replace .o file in archive.

Example: check your linux system

Systems @ ETH zarn

Commonly-used libraries

% ar -t /usr/lib/libc.a | sort

fork.o

¥printf.o
e 1ibc.a (the C standard library) ﬁgﬁ?gtmm
* 8 MB archive of 900 object files. freopen.o
. . fscanf.o
* /0, memory allocation, signal fseek.o
handling, string handling, data and fstab.o

time, random numbers, integer math

* 1ibm.a (the C math library)
* 1 MB archive of 226 object files. e_acos.o

e_acosf.o

* floating point math (sin, cos, tan, log, e_aCOSE%O
e_acoshf.o

exp, sqrt,) e _acoshl.o
e _acosl.o
e_asin.o
e_asinf.o

e_asinl.o
Systems Programming 2023 Ch. 12:{linking 13

% ar -t /usr/lib/libm.a | sort

Linking with static libraries E;

Systems @ ETH o

addvec.o multvec.o

L

main2.c vector.h Archiver

T o

Translators |
(cpp, ccl, as) libvector.a libc.a Static libraries
\ :
ﬁiﬁﬁf}fﬁf ma 1"2'\0‘ addvec.o ﬁq’;ﬂﬂs anéﬂdbﬁrgﬁlt: i} 0
Linke‘rr (1d)
" Fully linked

executable object file

Systems Programming 2023 Ch. 12: Linking

Assignment 4

Questions? !:3:

¥ YOR EAX EAX
MOV EAX, 1{ * Qe

)

Systems @ ETH o

==

Systems @ ETH ziro

GDB

Overview

=g~

Systems @ ETH o

Quick Introduction to Debugging
GDB («Gnu DeBugger»)

Systems Programming and Computer Architecture

Debugging Intro m

Systems @ ETH zarn

* What is debugging?

e So far (Eprog, Pprog): probably
just printed out everything

Debugging Intro E;

Systems @ ETH zarn

 Might have worked then: but generally not a good idea,
especially not when doing low level stuff

* It has a huge advantage, going instruction by instruction
through your program, and in each step you can check which
value is in which register, when you do which function call etc.

* Seems abstract but | will show you this later on an example,
first some basics about gdb

Debugging Intro: Start gdb

Systems @ ETH zarn

e Gdb (binary) starts the given program: then we see nothing, now what?

user@4865h4f533e3:~/exs7/bomb510% gdb bomb

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from

(gdb) |}

(gdbh) layout asml

Systems @ ETH zarn

Debugging Intro: Start gdb

* | recommend: first start
assembly view of the e o s

<main+14> mov %rsi,%rbx
. . . ° <main+17> cmp $0x2,%edi
b I n a ry (Its I I ke Objd u m p <main+20> jne <main+315>
<main+26> mov 0x8(%rsi) ,%rdi
. . <main+30> lea Ox1b56(%rip),%rsi
b ut d I rectly aS a VIeW <main+37> call <fopen@plt>
<main+42> mov %rax,0x41f6(%rip) <infile>

<main+49> test %rax,%rax

: <main+52> je <main+281>

WI ndOW) <main+58> call <initialize_bomb>

<main+é63> lea 0x1bb9 (%rip),%rdi
<main+70> call <puts@plt>
<main+75> lea Ox1bed(%rip),%rdi
<main+82> call <puts@plt>
<main+87> call <read_line>
<main+92> mov %rax,%rdi
<main+95> call <phase_1>
<main+100> call <phase_defused>
<main+105> lea Ox1bff (%rip),%rdi
<main+112> call <puts@plt>
<main+117> call <read_line>
<main+122> uls}% %rax,%rdi
<main+125> call <phase_2>
<main+130> call <phase_defused>
<main+135> lea 0x1h26(%rip) ,%rdi
<main+142> call <puts@plt>
<main+147> call <read_line>

exec No process In:

(gdbh) layout asml

Systems @ ETH zarn

Debugging Intro: Start gdb

* You can now run your
code and also give it e o s

<main+14> mov %rsi,%rbx
<main+17> cmp $0x2,%edi
a rg u m e nts <main+20> jne <main+315>
<main+26> mov 0x8(%rsi) ,%rdi
<main+30> lea Ox1b56(%rip),%rsi
<main+37> call <fopen@plt>
<main+42> mov %rax,0x41f6(%rip) <infile>
<main+49> test %rax,%rax
<main+52> je <main+281>
<main+58> call <initialize_bomb>
<main+é63> lea 0x1bb9 (%rip),%rdi
<main+70> call <puts@plt>
Y Generall <main+75> lea Ox1bed(%rip),%rdi
y <main+82> call <puts@plt>
<main+87> call <read_line>
<main+92> mov %rax,%rdi
<main+95> call <phase_1>
<main+100> call <phase_defused>
<main+105> lea Ox1bff (%rip),%rdi
{ gdb } run a rgl a r"‘gz <main+112> call <puts@plt>

<main+117> call <read_line>
<main+122> uls}% %rax,%rdi

<main+125> call <phase_2>
<main+130> call <phase_defused>
<main+135> lea 0x1h26(%rip) ,%rdi
<main+142> call <puts@plt>
<main+147> call <read_line>

exec No process In:

Debugging Intro: Moving inside gdb m

Systems @ ETH zarn

e After having started the program we can move

(gdb) run argl arg2

* One soure code instruction forward, is “next”, one assembly
code instruction is “nexti” or “ni” for short: next does NOT
step into functions

* “step” and "stepi” or “si” for short steps into functions
* For your lab “ni” will be the most important one

Debugging Intro: Breakpoints and
Wachtpoints m

Systems @ ETH zarn

* One huge advantage of debuggers: lets you set
“breakpoints”, i.e. points where your debugger goes to, and
then you can step through this function slowly, instruction
by instruction

* While doing this you can print values in registers, variables
and in memory (on the stack for instance)

Debugging Intro: Breakpoints and
Wachtpoints m

Systems @ ETH zarn

* “Breakpoint <location>" or “b <location>” for short to set

(gdb) b main # Break at function "main’
(gdb) b 42 # Break at line 42

(gdb) b file.c:10 # Break at line 10 in file.c

* “delete <breakpoint>" or “d <breakpoint” for short to delete
* “clear” to delete all breakpoints

Debugging Intro: Printing and Expecting
Variables m

Systems @ ETH zarn

* “print <expression>" or “p <expression>" prints values of
expressions, variables or registers

(gdb) p x # Print variable “x’
(gdb) p $rdi # Print value in "rdi" register

(gdb) p/x $rdi # Print "rdi register in hexadecimal

e “X <expression>” examines memory at a specific address

(gdb) x/x &x # Examine memory at address of x , in hex

(gdb) x/d $rsp # Examine memory at address in "rsp register, in decimal
(gdb) x/s < > # Examine as a string

General Debugging Information m

Systems @ ETH zarn

e Recall: we have “objdump -d <binaryname>" to look at the
assembly code from a binary (reversing the step of
compiling and assemlying)

e Compiling: source code -> assembly -> executable
* Objdump: assembly <- executable

General Debugging Information m

Systems @ ETH zarn

* If assembly view from our gdb breaks do “ctrl |” for control
load

* To exit either “q” or “ctrl d”

Debugging m

Systemsa Zorich

“If debugging is the process o
removing bugs, then

_ programming must be the
Tlh'zf“'?'g process of putting them in.”
2. s@zﬁﬂgﬁ"
Why the hell isn't it working?

3. Bargaining

If | use enough print statements, I'll figure this out.

4. Depression

I will never fix this bug.

9. Acceptance

It's a feature

Problem !:;

C Source Output e
1. int foo(char *a) { Segmentation fault
2. return strlen(a);
3.} Problem:
The output does not tell you
4. int main(...) { where the Segmentation fault
5. char *a = NULL; happened
6. printf("%d", foo(a));
7. return ©;
8. }

Solution

Use a debugger to execute the
program step by step

In our case this will be gdb

With help from the binutils

=g~

Systems @ ETH zarn

https://sourceware.org/gdb/documentation/

https://sourceware.org/binutils/docs/binutils/

https://sourceware.org/gdb/documentation/
https://sourceware.org/binutils/docs/binutils/

Getting the Assembly m

Systems @ ETH zarn

objdump: example.c
display info about object files

int foo(int a) {
printf("%d", a);

return a;

Note: The generated code not
necessarily looks that good.

int main(int argc, char** argv) {

int b = ;
int ¢ = foo(b);
return c;

Stop after
compiler

Getting the Assembly

Systems @ ETH zarn

Example program assembly file with gcc: gcc -S example.c

.section
LCE: main;
string "%d" .LFEL:
Ctext

.globl foo

Ltype foo, @function

o

-8(%rhp)
.cfi_def_cfa_register & mowvl -B(%rbp), %eax
subg $16, %rsp mowvl %eax, %edi
mowvl %edi, -4(%rbp)

mowvl -4(%rbp), %eax
mov L %eax, %esl

leaq LCB(%rip), Srdi
mowvl 30, Zeax

call printf@PLT

mowvl -4 {%rbp), %eax
leave

.cfi_def cfa 7, &

ret

.cfi_endproc

.LFEL:

call foo
mowvl %eax, -4(%rbp)
mowvl -4 ({%rbp), %eax

ret
.cfi_endproc

.51ze main, .-main
Jddent "GCC: (Ubuntu

section note., GHU-st

T.5.0"

Getting the Assembly

Comparison:

output of objdump
-d ./example

objdump E;
Param Description Sstems e ETH.c
-d Display the assembly of the machine instructions

(only sections which are expected to contain instructions)

-D Display the assembly of all sections

-| Display line numbers when debugging information are present

- Print the relocation entries
-S Display the source code (only if possible)
-t Display the symbol table entries

-X Equivalent to —a —f-h —p —r -t

Getting String Info m

stems @ ETH zio
[)

strings: printf(“Result %d”, 153 R
Prints printable character

sequences > 3 chars with \0’

termination.

This is helpful to get strings used
In the printfs

==

S t r‘ i n g S Systems @ ETH ziio
Param Description
-a Scan whole file, not just initialized and loaded sections

Change minimum string length

So Far m

Outputs show program structure

Systems @ ETH zarn

but no information about execution

- Next step: run program in gdb

Debug Info m

Include debug info in binary:
Compile with -g flag and have source code available

Systems @ ETH zarn

In the assignment:
bomb. c has debug info

phase N() does not have debug info

Bomb: Debug Info

0 OO reto®reto-VirtualBox: ~feth/casp2013/bomblab

74 phase_defused(); /* Drat! They figured it out!
(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/reto/eth/casp2013/bomblab/bomb

Breakpoint 1, main (argc=1, argv=0xbffff214) at bomb.c:36

{
step

if (argc == 1) { 1
o debug info
infile stdin;
e (source code)
initialize_bomb();
step
}
step
Welcome to my fiendish little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!
72 input = read_line(); /* Get input o |
(gdb) step
fff
73 phase_1(input); /* Run the phase L |
(gdb) stepti
Ox08048afe 73 phase _1(input); /* Run the phase
(gdb) stepi
0x08048bb0 in phase_1 ()
(gdb) stepi

exoseaﬁbw in phase_1 () no debug infO

(gdb)

Systems @ ETH zarn

GDB: Interactive Shell

=g~

. Systems @ ETH v
gdb behaves pretty much like Not sure about a command?
Linux shell _ _

. . o Online documentation
auto Completlon7 hIStory Of http://www.gnu.org/software/gdb/documentation/
commands, ...

Cheat Sheet

http://darkdust. net/files/GDB%20Cheat% 20Sheet.pdf

o GDB help
(gdb) help [command]

http://www.gnu.org/software/gdb/documentation/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Start GDB m

Start gdb with binary as Start gdb and then load binary
argument: afterwards:

gdb the_program gdb

(gdb) (gdb) file the_program

at beginning of line indicates GDB running

Run Program m

run program (also restart) Additional information like
(gdb) run o Function
o Line
File

rogram runs like in shell directl .
program runs like in shell directly where the crash occurred is

missing

Breakpoint: Set

In file file.c at line 123:
(gdb) break file.c:123

At function foo():
(gdb) break foo

At address:
(gdb) break *0x80487dd

=g~

Breakpoint at next instruction to be

executed:
(gdb) break

Delete breakpoint:
(gdb) delete <breakpoint>

Show information about all
breakpoints:

(gdb) info breakpoints

Breakpoint: Execute

Until next source code line
(first instruction of new line)
(if debug info available)

(gdb) step [n]

One assembly instruction
(gdb) stepi [n]

=g~

Syste

Until next line of source code but
function calls are one instruction.
(like step)

(gdb) next [n]

One instruction, but function calls
are one instruction

(gdb) nexti [n]

step goes function calls,
next goes them

Breakpoint: Execute m

Systems @ ETH zarn

Until next breakpoint
(gdb) continue

Until current function returns
(gdb) finish

Every time we hit a breakpoint:
The program pauses and gdb prompts for a command

Breakpoint: Conditional m

Systems @ ETH zarn

Trigger breakpoint only if condition holds:
(gdb) break file.c:123 if variable > 456

Also works for watchpoints

Watchpoint

Be informed about changes to a
variable

Like setting a breakpoint on the
assignment operator for a certain
variable

You will see the old and new
values

=g~

Systems @ ETH zarn

Set a watchpoint:
(gdb) watch <variable>

Program State m

Print content of a variable:
(gdb) print variable|address
(gdb) print/x variable|address
Treat variable as string:
(gdb) x/s stringvariable|address
GDB printf:
(gdb) printf "%s\n", stringvariable|address
CPU registers:
(gdb) info registers

Systems @ ETH zarn

Program State

You can access pointers like in C

Pointer address:
(gdb) print ptr

Value of struct field:
(gdb) print ptr->field

All struct content
(gdb) print *ptr

=g~

Systems @ ETH zarn

Useful Commands

Stack trace at seg fault
(gdb) backtrace

Stack trace at current position
(e.g. how did it get to this
breakpoint)

(gdb) where

=g~

Systems @ ETH 2

Show source/assembly code
around current position

(gdb) 1list
(gdb) disassemble

GDB Ul

activate nice “TUI” layout
(gdb) layout asm

gdb-dashboard (recommended)
or another (ddd, pwndbg, ...)

gdb-dashboard

default layout
(gdb) layout off

=g~

Systems @ ETH zarn

https://github.com/cyrus-and/gdb-dashboard

Binary Edit

To edit your binary use a hex
editor, e.g. GHex

apt install ghex
ghex <file>

=g~

Systems @ ETH zarn

==

stems @ ETH zio

Demo of GDB on
simple bomb

Quick Introduction to the idea of the lab /
following demo E;

Systems @ ETH zarn

* Given is some code, which calls a secret function, a “bomb”
which you have to defuse by giving it a certain input

* However, you only see that the function is called and not
what its actually doing: you only have the executable not the
source code

* Firstidea?

Quick Introduction to the idea of the lab /
following demo
IEYOU KNOW ASSEMBLY

* Given is some code, which c
which you have to defuse b

* However, you only see that
what its actually doing: you
source code

* First idea?

* Look at assembly EVERY SOFTWARE
~ ISIOPEN SOURGE

Quick Introductio
following demo

* On asecond
thought: don’t
want to read 1700
lines of assembly
(for your lab)

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

0000000000002b0Od <driver_
2h0d: f3 0f le fa
2h11: 53
2h12: 4c 89 c3
2h15: 85 c9
2b17: 75 17
2h19: 48 85 ff
2hlc: 74 05
2ble: 80 3f 00
2h21: 75 33

2h23: 66 c7 03 4f 4b
2h28: cé6 43 02 00

2b2c: 89 c8
2b2e: Sb
2b2f: c3

2h30: 48 8d 35 5a 0Qa
2h37: bf 01 00 00 0O
2h3c: b8 00 00 00 0O
2b41: e8 ca e7 ff ff
2h46: 66 c7 03 4f 4b
2h4b: cé6 43 02 00

2h4f: b8 00 B0 00 0O

2h54: eb d8
2h56: 41 50
2h58: 52

2h59: 4c 8d 0d 48 DBa
2hé0: 49 89 fO

2h63: 48 89 f9

2hé6: 48 8d 15 44 Da
2héd: be 6e 3b 608 00
2h72: 48 8d 3d Bb Da
2h79: e8 66 f5 ff ff
2h7e: 48 83 c4 18
2h82: eb aa

post>:

00 00

00 00

00 00

00 00

Disassembly of section .fini:

00060000B0B02h84 <_fini>:

2h84: f3 0f 1le fa
2h88: 48 83 ec 08
2h8c: 48 83 c4 08
2h90: c3

endbré4
pushqg
movq
testl
jne
testq
je
cmpb
jne
movw
movhb
movl
popq
retq
leaq
movl
movl
callg
movw
movhb
movl
jmp
pushqg
pushq
leaq
movq
movq
leaq
movl
leaq
callg
addq
jmp

endbré4
subq
addq
retq

%rbx

%r8, %rbx

%ecx, %ecx

0x2h30 <driver_post+0x23>
%rdi, %rdi

0x2h23 <driver_post+0x16>

$0x0, (%rdi)
0x2h56 <driver_post+0x49>
$0x4b4f, (%rbx) #

$0x0, 0x2(%rbx)
%ecx, %eax
%rbx

0xa5a(%rip), %rsi #
$0x1, %edi

$0x0, %eax

0x1310 <.plt.sec+0x120>
$0x4b4f, (%rbx) #
$0x0, 0x2(%rbx)

$0x0, %eax

0x2b2e <driver_post+0x21>
%r8

%rdx

0xa48(%rip), %r9 #
%rsi, %r8

%rdi, %rcx

Oxa44 (%rip), %rdx #
$0x3bbe, %esi #
0xaBb(%rip), %rdi #

0x20e4 <submitr>
$0x10, %rsp
0x2h2e <driver_post+0x21>

$0x8, %rsp
$0x8, %rsp

imm = Ox4B4F

0x3591 <array.0+0x3dl>

imm = Ox4B4F

0x35a8 <array.0+0x3e8>

0x35b1 <array.0+0x3fl>
imm = Bx3B6E
0x3584 <array.0+0x3c4d>

Quick Introduction to the idea of the lab /
following demo m

Systems @ ETH zarn

* That’s not even the issue: the actual issue is you will blow up
your bomb all the time if you cant go through it step by step
(ill show you later)

Quick Introduction to the idea of the lab /
following demo m

Systems @ ETH zarn

* That’s why we use gdb, the “debugger” introduced before

» “sscanf(input, "%*s %d", &middle)”
* Also by now you should know:

e 1stargument - rdi

* 2nd argument = rsi

* 3rd argument - rdx

e 4th argument - rcx, etc.

==

Systems @ ETH ziro

Assignhment

Bomb Lab

People here with ARM native macbooks E;
using x86 Linux in Docker?

Systems @ ETH zarn

* Apparently you cannot look into registers in this
configuration

e Use maximus via ssh (ask me if you need help setting it up),
since maximus is native x86

* Also, please don’t run anything compute intensive, and
don’t something which crashes the cluster, also be aware it
has 2 cores, once multiple people are on it it gets slow

Backstory m

Systems @ ETH zarn

Welcome Mr. Powers,

Here is your individual bomb.

| am friendly enough to give you
the bomb’s main function, but it
won't help much.

Setup

Individual bomb (executable binary)

Different from everybody else’s
-> solution differs
assignment5/bomb*/bomb

Bomb’s main function given
assignment5/bomb*/bomb. c

=g~

Systems @ ETH zarn

Hints

Write key file & supply it via
argument to avoid typing the
known keys

./bomb psol.txt

After using up all provided keys,
bomb program switches to stdin
(= you can type)

=g~

Systems @ ETH zarn

Don't go into C library functions
printf(), malloc(), etc.

==

St rate g y Systems @ ETH ziio

WHICH WIRE JUST KIDOING/
SHOULD | ITS THE GREEN
cure ONE/ HAMA/l

/

oh

YOU SHOWLD
HAVE SEEN YOUR
FACE/

o

\

Cyamde and Happiness © Explosm.net

IF AT FIRST YOU DON'T SUCCEED

The why are you on the bomb squad?

Strategy
Get overview of program

Think of when to set breakpoints
(functions, lines, ...) or
watchpoints (variables)

You don’t want the bomb to
explode think about how to
prevent that

=g~

Systems @ ETH zarn

Submission m

Server graded

Systems @ ETH zarn

Follow instructions in assignment

Ensure path & filenames are as
stated

initialize_bomb();

Let me give

printf("Welcome to my fiendish little bomb. You have 6 phases with\n");

helpful tips printf("which to blow yourself up. Have a nice day!\n");
input = read_line();
° There phase_1(input);
are 6 phase_defused();
phases printf("Phase 1 defused. How about the next one?\n");
(each
one I|ke input = read_line();
phase_2(input);
on tr]fa phase_defused();
printf("That's number 2. Keep going!\n");
RHS)

input read_line();
phase_3(input);
phase_defused();
printf("Halfway there!\n");

Let me give you an actual preview, and m
helpful tips for the lab to get started

Systems @ ETH zarn

e As said before, you only have access to the binary and
bomb.c file which calls functions where you don’t have

access to the source code => that’s why we need objdump
or gdb

Xxr-xr-x 1 benediktfalk staff JOK 30 0Okt 09:34 *

-r--r-- 1 benediktfalk staff 4,0K 30 Okt 09:34 bomb.c

Let me give you an actual preview, and m
helpful tips for the lab to get started

Systems @ ETH zarn

* S.t. you don’t have to retype everything once you passed a
level: write your strings in a file and call the binary with the
file instead of an actual string

* So create this file first before you do anything, you don’t
even have to write anything in it just “touch <filename>"

* | called mine "defuse”

Let me give you an actual preview, and E;
helpful tips for the lab to get started

Systems @ ETH zarn

* How to get started (example for first bomb): start gdb, set
breakpoint at the first function that gets called

input = read_line();
phase_1(input);
phase_defused();

user@P4865h4f533e3:~/exs7/bomb510% gdb bhomb

(gdb) b phase_1
Breakpoint 1 at

(gab) |}

Let me give you an actual preview, and
helpful tips for the lab to get started

Systems @ ETH zarn

* Then start assembly lay

<main+4> push %rbx
<main+5> cmp $0x1,%edi
<main+8> je <main+262>
(d b) 'L a D U .t a S rn <mayw+14> mov %rsi,%rb)}
g ‘Y‘ <main+17> cmp $0x2,%edi

<main+20> jne <main+315>
<main+26> mov 0x8(%rsi), %rdi
<main+30> lea 0x1b56(%rip),%rsi
<main+37> call <fopen@plt>
<main+42> mov %rax,0x41f6(%rip) <infile>
<main+49> test %rax,%rax

<main+52> je <main+281>
<main+58> call <initialize_bomb>
<main+63> lea 0x1bb9(%rip) ,%rdi
<main+70> call <puts@plt>
<main+75> lea Ox1bed(%rip),%rdi
<main+82> call <puts@Eplt>
<main+87> call <read_line>
<main+92> mov %rax,%rdi

<main+95> call <phase_1>
<main+100> call <phase_defused>
<main+105> lea Ox1bff(%rip),%rdi
<main+112> call <puts@Eplt>
<main+117> call <read_line>
<main+122> mov %rax,%rdi

<main+125> call <phase_2>
<main+130> call <phase_defused>
<main+135> lea 0x1b26(%rip) ,%rdi
<main+142> call <puts@plt>
<main+147> call <read_line>

exec No process In:

Let me give you an actual preview, and m
helpful tips for the lab to get started

* Now do “run” but instead of passing the string like in my
demo, just write the name of your file, in my case “defuse”

* Then step through it like in the demo with “ni”, check
registers and memory locations with p/x, x/s etc.

II
Starting program: defuse
[Thread debugging using libthread_db enabled]

Using host libthread_db library "

Welcome to my fiendish 1little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!

Let me give you an actual preview, and m
helpful tips for the lab to get started

Systems @ ETH o

* |n case your gdb window freezes, don’t forget to use “Ctrl I”
for “control load” to reload the window

Let me give you an actual preview, and m
helpful tips for the lab to get started

Systems @ ETH zarn

* DO NOT FORGETTO
SET YOUR '
BREAKPOINTS or your | Pl
bomb will ALWAYS |
blow up (especially |
don’t forget to set it the D | - —
first time you do the b“?(:;,d(:,) |
lab: you are going to

ruin your score)

Let me give you an actual preview, and m
helpful tips for the lab to get started

* Everyone has their personal bomb: | stole a bomb from
someone, if you want we can look how to solve the first task

together
* Ordoyou wanttodoitalone?

==

Systems @ ETH o

See you
next week!

==

Systems @ ETH ziro

THERE'S BEEN A L{T OF CONFUSION QVER (024 vs |O0O,
KBITE vs KBIT, AND THE CAPITALIZATION FOR EACH.

HERE, AT LAST, 1S A SINGLE, DEFINITIVE STANDARD:

SYMRoL| NAME SIZE NOTES
1024 BYTESe=| |000 BYTES DURING LEAP
kB | KLOBYTE |00 yree | YEARS, 1024 OTHERWIGE
KELLY-BOOTLE. COMPROMISE BETWEEN

KB STANDARD UNIT Wrl BeTeS 1000 AND 1024 BYTES
IMAGINARY USED IN GUANTUM

KiB | kicogyre [102497BTES| comeuring

kb INTEL 1023.957528 | CALCULATED ON
KILOBYTE BYTES PENTIUM FPL.

Kb DRIVEMAKERS | CURRENTLY |SHRINKS BY 4 BYTES EACH YEAR
KILOBYTE | 908 BYTES | FOR MARKETING REASONS
BAKERS G BITS TO THE BYTE SINCE

KBa | xiogyie | ""52 BTES | yoyie sucH A Good CUSTOMER

	Slide 1
	Slide 2
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Assignment 4
	Slide 69: Questions?
	Slide 70: GDB
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Debugging
	Slide 84: Problem
	Slide 85: Solution
	Slide 86: Getting the Assembly
	Slide 87: Getting the Assembly
	Slide 88: Getting the Assembly
	Slide 89: objdump
	Slide 90: Getting String Info
	Slide 91: strings
	Slide 92: So Far
	Slide 93: Debug Info
	Slide 94: Bomb: Debug Info
	Slide 95: GDB: Interactive Shell
	Slide 96: Start GDB
	Slide 97: Run Program
	Slide 98: Breakpoint: Set
	Slide 99: Breakpoint: Execute
	Slide 100: Breakpoint: Execute
	Slide 101: Breakpoint: Conditional
	Slide 102: Watchpoint
	Slide 103: Program State
	Slide 104: Program State
	Slide 105: Useful Commands
	Slide 106: GDB UI
	Slide 107: Binary Edit
	Slide 108: Demo of GDB on simple_bomb
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Assignment 5
	Slide 115
	Slide 116: Backstory
	Slide 117: Setup
	Slide 118: Hints
	Slide 119: Strategy
	Slide 120: Strategy
	Slide 121: Submission
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Submission
	Slide 132: See you next week!

