
Exercise Session 7
2024 Autumn

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

○ Recap Assembly (Code Expert)

○ Assignment 4 – Questions

○ Lecture Recap: Linking and Loading

○ Own Introduction to GDB

○ GDB Debugger Introduction

○ GDB Demo
- with simple_bomb.c

○ Assignment 5 – Introduction & Tips

○ Assignment 5: Walkthrough first defuse stage and setup

Agenda

Assembly Recap
Theory & Code Expert Tasks

Systems Programming and Computer Architecture

Agenda

• Is stack frame clear for everyone or should I go through it at
the board again quickly, its really important?

Recall Stackframe

Recall Basic Operands

Recall Basic Operands

Recall Calling Conventions

• We saw, that callee
(the called function)
always stores the
base pointer of its
parent function
(caller), why does he
care?

• S.t. there are
registers where
caller can be assured
they are the same as
when he called the
callee

Calling Conventions

• I find “callee saved” and ”caller saved” confusing: I
remember

• “callee owned” (caller saved): callee owns them, so he can
do whatever he wants with them

• “caller owned” (callee saved): caller owns them, so if the
callee wants to do something with it he has to save them

Assembly Recap: Calling Conventions

• How to
approach this?

Assembly Recap: Calling Conventions

• How to approach
this?

• Idea: remember
1. arg in %rdi,
second one in
%rsi

• Careful: we are
passing INTs (4
bytes, use %edi,
%esi)

Assembly Recap: Calling Conventions

Recall Condition Codes: Explicitly via cmpx

Recall Condition Codes: Explicitly via testx

Calling Conventions

• Note: cmpx is like ”subx” that means if we compare
immediate with a register, we must have the register in the
second place i.e. cmpl $1, %edi (subq %edi, $1 wouldn’t
make any sense either)

• Here we set condition codes explicitly i.e. we do the whole
instruction BECAUSE we want the codes

• Cmpx does SUB, testx does logical AND

Recall Condition Codes: Implicitly

Calling Conventions

• Note: this means that for ANY instruction you do (add, sub,
etc.) you set condition codes implicitly based on the result

• If you do subq %rax, %rdi and this yields 0 as a result =>
zeroflag is set implicitly you don’t have to do anything and
you cannot prevent it

Recap: Reading Condition Codes

Calling Conventions

• This means based on the condition codes, if we later want to
do something like: set bit based on result, or jump etc. we
need to read them

• Intutive understanding: if result is zero (ZF set), its “equality”
so “sete” or “je”

• If you have a condition like if(a>2) think of what you want to
do: you can do a>2  a-2>0, so cmpq $2, %rdi a-2, then
we want to jump if its bigger so “jg”

Assembly Recap: Calling Conventions

Assembly Recap: Calling Conventions

• Careful with
compare again:
compl needs
register arg in
2nd pos

• A<12A-12<0
for cmpl $12,
%edi = %edi-12

Calling Conventions

• Also note: when doing a function call the rsp has to be 16
byte aligned according to calling conventions: so if rsp is
currently only 8 byte aligned, before you call a function you
need to substract another 8 byte from rsp and add this after
the call to make sure you are aligned

Assembly Recap: Calling Conventions

• Why does this
work then? It
was 16 byte
aligned when
we were called

• We pushed one
value, now its
not 16 byte
aligned?

Assembly Recap: Calling Conventions

• This fails?

Assembly Recap: Calling Conventions

• This works
again

Calling Conventions

• Why? When someone calls us, they have a 16 byte aligned
stack pointer

• Then the ”call” function pushes the return address, so now
rsp is NOT 16 byte aligned anymore

• If the callee doesn’t call another function himself hes fine,
but if he calls another function he needs a 16 byte aligned
RSP: gets this here implicitly by setting up the stack frame by
pushing rbp

• Makes sense?

Assembly: local variables

• Generally, if compiler doesn’t explicitly need a memory address
for a local variable it will try to do it in a register

• Add(long a, long b) = {return a+b;}

• The compiler would do
add:
movq %rdi, %rax
addq %rsi, %rax

ret

• So it uses registers to do the calculation instead of using a stack
relative address to store them

Assembly Recap: Calling Conventions

• Suggestions?

Assembly Recap: Calling Conventions

• Will this work?

Assembly Recap: Calling Conventions

• Will this work?
• ALMOST, but

remember
alignment, we
push %rbp: now its
16 byte aligned

• BUT THEN we
subq $8 to make
space for our local
value: now its not
16 byte aligned
anymore

Assembly Recap: Calling Conventions

• Either substract
16 directly

Assembly Recap: Calling Conventions

• Or 8 to store it

• Then another 8
for it to be
aligned before
and after the
call

Lecture Recap
Linking: Symbol Resolution and Relocation

Systems Programming and Computer Architecture

Linking and Loading

• Whats the “issue” with this C program?

Linking and Loading

• Whats the “issue” with this C program?

Static Linking in 2 Steps

Static Linking in 2 Steps

Object files

Object files: when a .c -> .o, how does this single
.o get stored? That’s a relocatable object file

Resolving symbols: Global, External and
Local

Put all the .o files (which are in ELF format)
inside ONE big executable

Inside each .o file we are still missing the
references: currently 0 as placeholder

After merging them: we can check in the symbol
table where the function is in the final executable

• Now the linker can actually input the address of <swap> , but only after
everything got merged since only then the final addresses are clear

Lecture Recap
Linking: Issues with duplicate symbol definitions

Systems Programming and Computer Architecture

Weak and Strong Symbols (UPDATED)

• Sometimes, compiler doesn’t know if symbol should be a
global symbol or an external symbol

• So there is a concept of strong and weak symbols, for global
variables

Recall 3 Type of Symbols (UPDATED)

For global symbols, we have a further
distinction (UPDATED)

Weak and Strong Symbols (UPDATED)

• Note: the concept of weak and strong linker symbols are related
exclusively to uninitialized global variables -f-common (old
behaviour): puts uninitialised globals into a common block and
they are weak symbols, allowing multiple uninitialized declerations
across different .c files

• -f-nocommon (new default): this is not the case anymore,
uninitialized globals are also classified as strong symbols

• That means: the only weak to get weak symbols in C is to either
compile with -f-common compiler flag or with #pragma weak

3 Linker Rules

Will this yield an error?

Will this yield an error?
• Yes: there are two definitions of the same symbol (but we can only have one)

Will this yield an error?

Will this yield an error?

• No: the left extern int count (external linker symbol) refers to
the RHS int count (global linker symbol)

Will this yield an error?

Will this yield an error?

• Yes: we don’t have a global symbol for count (no definition),
only two references: but we would need a definition

Will this yield an error?

Will this yield an error?

• With –fcommon the unitialised global is a weak symbol, as the
other.c has definition for int count, the linker will turn “int count”
i.e. the weak symbol into an external symbol and it links fine.

• With –f-nocommon: all global vars are strong, so we have 2 strong
symbols which yields an error

Will this yield an error?

Will this yield an error?
• No: multiple weak symbols, it picks an arbitrary one (only works with -f-common)

Some Linker Puzzels (Assuming –fcommon)

Lecture Recap
What are libraries?

Systems Programming and Computer Architecture

Why do we need libraries?

What are (static) libraries

What are (static) libraries

Example: check your linux system

Linking with static libraries

Assignment 4

Questions?

GDB
Overview

Quick Introduction to Debugging
GDB («Gnu DeBugger»)

Systems Programming and Computer Architecture

Debugging Intro

• What is debugging?

• So far (Eprog, Pprog): probably
just printed out everything

Debugging Intro

• Might have worked then: but generally not a good idea,
especially not when doing low level stuff

• It has a huge advantage, going instruction by instruction
through your program, and in each step you can check which
value is in which register, when you do which function call etc.

• Seems abstract but I will show you this later on an example,
first some basics about gdb

Debugging Intro: Start gdb
• Gdb (binary) starts the given program: then we see nothing, now what?

Debugging Intro: Start gdb
• I recommend: first start

assembly view of the
binary (its like objdump
but directly as a view
window)

Debugging Intro: Start gdb
• You can now run your

code and also give it
arguments

• Generally

Debugging Intro: Moving inside gdb

• After having started the program we can move

• One soure code instruction forward, is “next”, one assembly
code instruction is “nexti” or “ni” for short: next does NOT
step into functions

• “step” and ”stepi” or “si” for short steps into functions

• For your lab “ni” will be the most important one

Debugging Intro: Breakpoints and
Wachtpoints

• One huge advantage of debuggers: lets you set
“breakpoints”, i.e. points where your debugger goes to, and
then you can step through this function slowly, instruction
by instruction

• While doing this you can print values in registers, variables
and in memory (on the stack for instance)

Debugging Intro: Breakpoints and
Wachtpoints

• “Breakpoint <location>” or “b <location>” for short to set

• “delete <breakpoint>” or “d <breakpoint” for short to delete

• “clear” to delete all breakpoints

Debugging Intro: Printing and Expecting
Variables

• “print <expression>” or “p <expression>” prints values of
expressions, variables or registers

• “x <expression>” examines memory at a specific address

General Debugging Information

• Recall: we have “objdump -d <binaryname>” to look at the
assembly code from a binary (reversing the step of
compiling and assemlying)

• Compiling: source code -> assembly -> executable

• Objdump: assembly <- executable

General Debugging Information

• If assembly view from our gdb breaks do “ctrl l” for control
load

• To exit either “q” or “ctrl d”

“If debugging is the process of

removing bugs, then

programming must be the

process of putting them in.”

Debugging

Output

Segmentation fault

Problem:

The output does not tell you

where the Segmentation fault

happened

C Source

1. int foo(char *a) {

2. return strlen(a);

3. }

4. int main(...) {

5. char *a = NULL;

6. printf("%d", foo(a));

7. return 0;

8. }

Problem

https://sourceware.org/gdb/documentation/

https://sourceware.org/binutils/docs/binutils/

Use a debugger to execute the

program step by step

In our case this will be gdb

With help from the binutils

Solution

https://sourceware.org/gdb/documentation/
https://sourceware.org/binutils/docs/binutils/

example.cobjdump:

display info about object files

Note: The generated code not

necessarily looks that good.

Getting the Assembly

#include <stdio.h>

int foo(int a) {

printf("%d", a);

return a;

}

int main(int argc, char** argv) {

int b = 10;

int c = foo(b);

return c;

}

Example program assembly file with gcc: gcc -S example.c

Getting the Assembly Stop after
compiler

Comparison:

output of objdump
-d ./example

Getting the Assembly

objdump
Param Description

-d Display the assembly of the machine instructions
(only sections which are expected to contain instructions)

-D Display the assembly of all sections

-l Display line numbers when debugging information are present

-r Print the relocation entries

-S Display the source code (only if possible)

-t Display the symbol table entries

-x Equivalent to –a –f -h –p –r –t

printf(“Result %d”, 123);strings:

Prints printable character

sequences > 3 chars with ‘\0’

termination.

This is helpful to get strings used

in the printfs

Getting String Info

strings

Param Description

-a Scan whole file, not just initialized and loaded sections

-n Change minimum string length

Outputs show program structure

but no information about execution

→ Next step: run program in gdb

So Far

Include debug info in binary:

Compile with -g flag and have source code available

In the assignment:

bomb.c has debug info

phase_N() does not have debug info

Debug Info

Bomb: Debug Info

no debug info

debug info
(source code)

Not sure about a command?

○ Online documentation
http://www.gnu.org/software/gdb/documentation/

○ Cheat Sheet
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

○ GDB help

(gdb) help [command]

gdb behaves pretty much like

Linux shell

auto completion, history of

commands, …

GDB: Interactive Shell

http://www.gnu.org/software/gdb/documentation/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Start gdb and then load binary

afterwards:

gdb

(gdb) file the_program

Start gdb with binary as

argument:

gdb the_program

(gdb)

Start GDB

(gdb) at beginning of line indicates GDB running

Additional information like

○ Function

○ Line

○ File

where the crash occurred is

missing

run program (also restart)

(gdb) run

program runs like in shell directly

Run Program

Breakpoint at next instruction to be

executed:

(gdb) break

Delete breakpoint:

(gdb) delete <breakpoint>

Show information about all

breakpoints:

(gdb) info breakpoints

In file file.c at line 123:

(gdb) break file.c:123

At function foo():

(gdb) break foo

At address:

(gdb) break *0x80487dd

Breakpoint: Set

Until next line of source code but

function calls are one instruction.

(like step)

(gdb) next [n]

One instruction, but function calls

are one instruction

(gdb) nexti [n]

step goes into function calls,

next goes over them

Until next source code line

(first instruction of new line)

(if debug info available)

(gdb) step [n]

One assembly instruction

(gdb) stepi [n]

Breakpoint: Execute

Every time we hit a breakpoint:

The program pauses and gdb prompts for a command

Until next breakpoint

(gdb) continue

Until current function returns

(gdb) finish

Breakpoint: Execute

Trigger breakpoint only if condition holds:

(gdb) break file.c:123 if variable > 456

Also works for watchpoints

Breakpoint: Conditional

Set a watchpoint:

(gdb) watch <variable>

Be informed about changes to a

variable

Like setting a breakpoint on the

assignment operator for a certain

variable

You will see the old and new

values

Watchpoint

Print content of a variable:

(gdb) print variable|address

(gdb) print/x variable|address

Treat variable as string:

(gdb) x/s stringvariable|address

GDB printf:

(gdb) printf "%s\n", stringvariable|address

CPU registers:

(gdb) info registers

Program State

You can access pointers like in C

Pointer address:

(gdb) print ptr

Value of struct field:

(gdb) print ptr->field

All struct content

(gdb) print *ptr

Program State

Show source/assembly code

around current position

(gdb) list

(gdb) disassemble

Stack trace at seg fault

(gdb) backtrace

Stack trace at current position

(e.g. how did it get to this

breakpoint)

(gdb) where

Useful Commands

default layout

(gdb) layout off

activate nice “TUI” layout

(gdb) layout asm

gdb-dashboard (recommended)

or another (ddd, pwndbg, …)

gdb-dashboard

GDB UI

https://github.com/cyrus-and/gdb-dashboard

To edit your binary use a hex

editor, e.g. GHex

apt install ghex

ghex <file>

Binary Edit

Demo of GDB on

simple_bomb

Quick Introduction to the idea of the lab /
following demo

• Given is some code, which calls a secret function, a “bomb”
which you have to defuse by giving it a certain input

• However, you only see that the function is called and not
what its actually doing: you only have the executable not the
source code

• First idea?

Quick Introduction to the idea of the lab /
following demo

• Given is some code, which calls a secret function, a “bomb”
which you have to defuse by giving it a certain input

• However, you only see that the function is called and not
what its actually doing: you only have the executable not the
source code

• First idea?

• Look at assembly

Quick Introduction to the idea of the lab /
following demo

• On a second
thought: don’t
want to read 1700
lines of assembly
(for your lab)

Quick Introduction to the idea of the lab /
following demo

• That’s not even the issue: the actual issue is you will blow up
your bomb all the time if you cant go through it step by step
(ill show you later)

Quick Introduction to the idea of the lab /
following demo

• That’s why we use gdb, the ”debugger” introduced before

• “sscanf(input, "%*s %d", &middle)”

• Also by now you should know:

• 1st argument → rdi

• 2nd argument → rsi

• 3rd argument → rdx

• 4th argument → rcx, etc.

Assignment 5
Bomb Lab

People here with ARM native macbooks
using x86 Linux in Docker?

• Apparently you cannot look into registers in this
configuration

• Use maximus via ssh (ask me if you need help setting it up),
since maximus is native x86

• Also, please don’t run anything compute intensive, and
don’t something which crashes the cluster, also be aware it
has 2 cores, once multiple people are on it it gets slow

Welcome Mr. Powers,

Here is your individual bomb.

I am friendly enough to give you

the bomb’s main function, but it

won’t help much.

Backstory

Individual bomb (executable binary)

Different from everybody else’s

-> solution differs

assignment5/bomb*/bomb

Bomb’s main function given

assignment5/bomb*/bomb.c

Setup

Write key file & supply it via

argument to avoid typing the

known keys

./bomb psol.txt

After using up all provided keys,

bomb program switches to stdin

(→ you can type)

Hints

Don’t go into C library functions

printf(), malloc(), etc.

Strategy

Get overview of program

Think of when to set breakpoints

(functions, lines, …) or

watchpoints (variables)

You don’t want the bomb to

explode think about how to

prevent that

Strategy

Server graded

Follow instructions in assignment

Ensure path & filenames are as

stated

Submission

Let me give you an actual preview, and
helpful tips for the lab to get started

• There
are 6
phases
(each
one like
on the
RHS)

Let me give you an actual preview, and
helpful tips for the lab to get started

• As said before, you only have access to the binary and
bomb.c file which calls functions where you don’t have
access to the source code => that’s why we need objdump
or gdb

Let me give you an actual preview, and
helpful tips for the lab to get started

• S.t. you don’t have to retype everything once you passed a
level: write your strings in a file and call the binary with the
file instead of an actual string

• So create this file first before you do anything, you don’t
even have to write anything in it just “touch <filename>”

• I called mine ”defuse”

Let me give you an actual preview, and
helpful tips for the lab to get started

• How to get started (example for first bomb): start gdb, set
breakpoint at the first function that gets called

Let me give you an actual preview, and
helpful tips for the lab to get started

• Then start assembly layout and start stepping through it

Let me give you an actual preview, and
helpful tips for the lab to get started

• Now do “run” but instead of passing the string like in my
demo, just write the name of your file, in my case “defuse”

• Then step through it like in the demo with “ni”, check
registers and memory locations with p/x, x/s etc.

Let me give you an actual preview, and
helpful tips for the lab to get started

• In case your gdb window freezes, don’t forget to use “Ctrl l”
for “control load” to reload the window

Let me give you an actual preview, and
helpful tips for the lab to get started

• DO NOT FORGET TO
SET YOUR
BREAKPOINTS or your
bomb will ALWAYS
blow up (especially
don’t forget to set it the
first time you do the
lab: you are going to
ruin your score)

Let me give you an actual preview, and
helpful tips for the lab to get started

• Everyone has their personal bomb: I stole a bomb from
someone, if you want we can look how to solve the first task
together

• Or do you want to do it alone?

Submission

See you

next week!

	Slide 1
	Slide 2
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Assignment 4
	Slide 69: Questions?
	Slide 70: GDB
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Debugging
	Slide 84: Problem
	Slide 85: Solution
	Slide 86: Getting the Assembly
	Slide 87: Getting the Assembly
	Slide 88: Getting the Assembly
	Slide 89: objdump
	Slide 90: Getting String Info
	Slide 91: strings
	Slide 92: So Far
	Slide 93: Debug Info
	Slide 94: Bomb: Debug Info
	Slide 95: GDB: Interactive Shell
	Slide 96: Start GDB
	Slide 97: Run Program
	Slide 98: Breakpoint: Set
	Slide 99: Breakpoint: Execute
	Slide 100: Breakpoint: Execute
	Slide 101: Breakpoint: Conditional
	Slide 102: Watchpoint
	Slide 103: Program State
	Slide 104: Program State
	Slide 105: Useful Commands
	Slide 106: GDB UI
	Slide 107: Binary Edit
	Slide 108: Demo of GDB on simple_bomb
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Assignment 5
	Slide 115
	Slide 116: Backstory
	Slide 117: Setup
	Slide 118: Hints
	Slide 119: Strategy
	Slide 120: Strategy
	Slide 121: Submission
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Submission
	Slide 132: See you next week!

