==

Systems @ ETH zarn

Exercise Session 8

Systems Programming and Computer Architecture

Fall Semester 2024

Disclaimer E;

Systems @ ETH zarn

 Website: n.ethz.ch/~falkbe/
* (Extra) Demos on GitHub: github.com/falkbe

* My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where | found
appropriate

* For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Agenda :E;

Systems @ ETH zarn

e Assignment 5 (Bomb Lab)
- Questions

* UNIX File System, Paths and Command Line Recap
* Linking Theory (Static and shared libraries)
* Linking
* -Theory recap
- Library linking demo
* Assignment 6
- Introduction
 Exam problem example

Systems Programming and Computer Architecture

=g~

Systems @ ETH o

UNIX FHS

Filesystem, Paths, Binaries etc.

Systems Programming and Computer Architecture

Why look UNIX FHS again? m

Systems @ ETH zarn

 Fundamental to understand, not really taught in course
though

* Will help you a lot later on, although not super relevant for the
exam its super relevant for other courses, understanding and
praxis

UNIX FHS

* Looked at
one/multiple C
files, mostly in
one directory
(Folder)

¥ fhsdemo

==

Systems @ ETH zarn

BB folder1
BB folder2

a] test.c

UNIX FHS

W fhsdemo BB folder1
BB folder2

* Linux FHS is a B testc
Graph: you are
just at a particular
node

ekt [Loleled
(v d:\\& ;

Lile (lead) | s ghemo

TN

UNIX FHS

¥ fhsdemo BB folder1
BB folder2

* Linux FHS is a B testc
Graph: you are
just at a particular
node

e Whatisat “...”? @ 22
NS ﬁtk%[QOMH

o ey ¥
lite (leat) | s ghemro

(m'g |4a\aeu\m\m

[N

UNIX FHS wa

Systems @ ETH zarn

root

L]

| Ibin/ | | Iboot/ | [;’dew] [!etc:’] | Thome! | nitﬂ | Imedia/ | | !mnt;'l
|:’opb’| | /root/ I | /sbin/ | | Isrvf l | itmp/ | lusr/ ? Ivarl/ l

| i/ | [includer | | o/ | | /sbin/| |/cacher| (riog/| (/spoolr| | nmpr]

UNIX FHS

fhsdemo > B folder1

B folder2

* Terminal? B testc

* “pwd” shows
where you are in
the graph

user@4865h4f533e3:~/exs8/fhsdemo$ pwd
/home/user/exs8/fhsdemo

A

[760/) | Jotl] ~ Tnomel

fhsdemo B folder1
B folder2

a, test.c

user@4865h4f533e3:~/exs8/fhsdemo$ pwd
/home/user/exs8/fhsdemo

UNIX FHS

* Pwd shows you
current path, by
concatenating
names of nodes to
where you are

/ N
[/90ldly1/) VWD | (Fesr.c

——

/]

UNIX FHS // /
| /bin/ m |/Homa/

* You are always
somewhere in this

graph, the current | fuger [
working directory \

e Refer to your own mg,

o »”

p05|t|on as

l /%sdmnﬂ]
m | /40‘du2/|

A

UNIX FHS /(/
* You can move | /bin/ \Txﬂ ‘ l/home/

relative to your
current position

* Up: “cd.” ” /\
* Now check pos \

with “pwd” [/exs¥/)
user@4865h4f533e3:~/exs8/fhsdemo$ pwd ///
/home/user/exs8/fhsdemo ‘ /4h$dzMOB

user@4865h4f533e3:~/exs8/fhsdemo$ cd ..
user@4865b4f533e3:~/exs8% pwd |/4ddu2/|

/home/user/exs8

/]

UNIX FHS f(/
* You can move relative to | /E’"“/ m T |/Homa/

your current position

 Up: “cd .. I/
* Down: “cd fhsdemo/” /\
* Now check pos with \

llde” stg/

user@4865h4f533e3:~/exs8$ pwd
/home/user/exs8 l /%Sdu\nt)]]

user@4865b4f533e3:~/exs8% cd fhsdemo/

A1
user@4865h4f533e3:~/exs8/Fhsdemo$ pwd [Jooldu/ I/Qoiduz/l ¢ .c

/home/user/exs8/fhsdemo o gy

UNIX FHS

* You can move to a
absolute position

* “cd <absolutepath>”"

* Example: “cd /"

user@4865h4f533e3:~/exs8/fhsdemo$ pwd
/home/user/exs8/fhsdemo
user@4865h4f533e3:~/exs8/fhsdemo$ cd /
user@4865h4f533e3:/$ pwd

/

UNIX FHS

e Check whats inside your
current directory
(node)?

e “Is” for list

user@4865b4f533e3:~/exs8/fhsdemo$ pwd
/home/user/exs8/fhsdemo
user@P4865b4f533e3:~/exs8/fhsdemo$ 1s

folderl folder?2 test.c

A

|/Mome /

UNIX FHS

e Lets check whats inside
H/H?

UNIX FHS C wa

Systems @ ETH zarn

| /bin/ l | /boot/ | l /dev/ I [Etcf | /home/ I | llib/ l | /media/ l | fmntfl
fopt/ [Iroot!] [Isbin:'] |.|'srw' l | ftmp/ | fusr/ ? Ivar/ l

[soinv | (includer | [io/ | {ssbin | (1cacher] (10g/] [sspootr] [nmpr]

user@4865h4f533e3:/$ pwd

/
user@4865bh4f533e3:/$ 1s

bin dev home 1ib32 1ibx32 mnt proc run srv tmp var
boot etc 1ib 1ib64 media opt root shin sys usr

=g~

Systems @ ETH o

UNIX FHS
Binaries in the FHS

Systems Programming and Computer Architecture

UNIX FHS ‘\ Envilonmyt
Vancaley

* We have an LPATH =
environment PATHA = PATHL: .. . PAWN
: think of : e
having _/’-\ ex: opt | 1 /b
variables BSHELL=...
next to the
graph

* Can store
paths for
iInstance \

Environmyt

U N |X F H S \‘jwmmf
LPATH =

» SPATH: Stores paths PATHA ?mz: . PAWN

PATH1 : PATH2 : ... : PATHN ex: opt /i
* Each Path separated by “:” BSHELL =,

in between
* Pathl=/opt
* Path2=/bin

* SPATH=/opt:/bin

user@4865h4f533e3:/$ echo $PATH

Jfusr/local/shin:/usr/1local/bin:/usr/shin:/usr/bin:/sbhin:/bin

Environmyt

LPATH =
e Every “Is” or "pwd” etc A A2 el
executes a binary Ex: opt /b
(program) BSHELL =,

* It finds it by looking in all 77%4
directories specified by g

path variable SPATH \ \

* “which <binary>" tells us \m@m ﬁm
where it is in the graph]

user@486sh4fs533esl:
/usr/bin/1s

user@4865h4f533e3:/$ which pwd
/usr/bin/pwd

UNIX FHS Ei

_,] Envitonmy
* Check out the path, and /V W Udnicl¥ich
check if its actually // CPl <

\ PATHA - PATH‘).

[ﬁ)\ Ex: opt |z /bin
RSRELL=. .

here? ITIS BAD ;1“/‘*“ | Jgtl]

user@4865h4f533e3:/usr/bin$ pwd

Jusr/bin ‘\\
user@4865h4f533e3:/usr/bin$ 1s |grep pwd /]

pwd X

user@4865h4f533e3: /usr/bin$ which gcc

Jusr/bin/gcc
UNlX FHS user@4865h4f533e3:/usr/bin$ cd /usr/bin/
user@4865h4f533e3:/usr/bin$ pwd
Jusr/bin
. user@4865h4f533e3:/usr/bin$ 1s |grep gcc
* We can do this for any ¢89-gec
. . . 99 -
binary specified in the se
gcc-11
SPATH gcc-ar
gcc-ar-11
* Lets check out gcc gee-nm

gcc-nm-11

gcc-ranlib

gcc-ranlib-11
x86_b64-1inux-ghu-gcec
x86_64-1linux-gnu-gcc-11
x86_64-1inux-gnu-gcc-ar
x86_64-1linux-gnu-gcc-ar-11
x86_64-1inux-gnu-gcc-nm
x86_64-1inux-gnu-gcc-nm-11
x86_b64-1inux-gnu-gcc-ranlib
x86_64-1linux-gnu-gcc-ranlib-11
user@4865h4f533e3:/usr/bin$ I

Envitonmyt
Vanaibley
LPATH =
PATRA : PAHL: .. . PAWN
ex: opt /&

UNIX FHS

* Note: we can
be anywhere in
the FHS, and
execute those
commands as
SPATH specifies
where to look
forit

* Do not have to
be in the

directory /bin \
to execute it \ /Ooldw" } WD \‘

BSRELL=. .,

UNIX FHS wa

Systems @ ETH zarn
* Write own C program [bfalk@pioral ~1$ pwd
— “) /home/bfalk
prlntlng he”O; World [bfalk@Epioral ~]$ cat hello.c

#include <stdio.h>

e Compileit

int main(int argc, char** argv)-{
printf("hello, world\n");
return 0;

].
[bfalk@Epioral ~]$ gcc -o hello hello.c
[bfalk@Epioral ~1$ 1s

hello.c simpleadd.c
[bfalk@pioral ~1$ |

UNIX FHS

Write own C program (you
know how to!)

Compile it
Execute via “./hello”

Difference between
“ [hello” and
“/home/bfalk/hello”?

[bfalk@pioral
hello, world
[bfalk@pioral
/home/bfalk
[bfalk@Epioral
hello, world
[bfalk@Epioral

==

Systems @ ETH zarn

~]1$./hello

~]1$ pwd

~]1% /home/bfalk/hello

~1$

UNIX FHS

Write own C program (you
know how to!)

Compile it
Execute via “./hello”

Difference between
“ [hello” and
“/home/bfalk/hello”?

[bfalk@pioral
hello, world
[bfalk@pioral
/home/bfalk
[bfalk@Epioral
hello, world
[bfalk@Epioral

==

Systems @ ETH zarn

~]1$./hello

~]1$ pwd

~]1% /home/bfalk/hello

~1$

UNIX FHS wa

Systems @ ETH zarn

* Why doesn’t “hello”
work? “pwd” “Is” etc.

[bfalk@Epioral ~]$ hello
_ -bash: hello: command not found
worked without the “./”? [bfalk@pioral ~1$ [

UNIX FHS wa

Systems @ ETH zarn

* Why doesn’t “hello” work? “pwd” “Is” etc. worked without the
ll./”?

* Issue: for non absolute path it checks SPATH variable, there is no
“hello” executable anywhere

[bfalk@pioral ~]$ hello
-pbash: hello: command not found

[bfalk@Epioral ~]$ which hello
no hello in (/cm/local/apps/gcc/13.1.0/bin:/home/bfalk/.local/bin:/home/bfalk/bin:/

/usr/bin/which:
cm/local/apps/environment-modules/4.5.3//bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/shin:/sbi

n:/usr/shin:/cm/local/apps/environment-modules/4.5.3/bin)
[bfalk@pioral ~1$ [

UNIX FHS wa

Systems @ ETH zarn
 Why doesn’t “hello” work? “pwd” “Is” etc. worked without the “./”?

* Issue: for non absolute path it checks SPATH variable, there is no
“hello” executable anywhere

e Solution: add directory which has “hello” executable to path
alk@pioral ~|$]

ocal/apps/gcc/13.1.0/bin:/home/bfalk/.local/bin:/home/bfalk/bin:/cm/local/apps/environment-mod
¢s/4.5.3//bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/shin:/sbin:/usr/sbhin:/cm/local/apps/en
vironment-modules/4.5.3/D1N

[bfalk@pioral ~1$ pwd
/home/bfalk

[bfalk@pioral ~]$ export PATH=/home/bfalk:$PATH

[bfalk@pior 21$ echo $PATH

/home/bfalkcm/'l.oca'l./apps/gcc/13 .1.0/bin:/home/bfalk/.Llocal/bin:/home/bfalk/bin:/cm/local/apps/env
Lituniern - iu s/4.5.3//bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/shin:/sbhin:/usr/shin:/cm/1
ocal/apps/environment-modules/4.5. 3&

[bfalk@Epioral ~]1$ hello

hello, world
[bfalkepioral ~1% |

UNIX FHS wa

Systems @ ETH zarn

* Now we can execute
hello from anywhere
just as “pwd” and “Is”
etc.

bfalk@pioral ~]1$ cd /
bfalk@Epioral /1% pwd

[
[
/
[

bfalk@pioral /1$ hello
hello, world

* |t appears in which, so [bfalkepioral /1% I
we know its accessible
form everywhere

((F ¥

[bfalk@pioral /]1$ which hello
is short for my ~/hello

home, i.e. /home/bfalk [bfalk@pioral /1$ i

=g~

Systems @ ETH o

UNIX FHS
Libraries in the FHS

Systems Programming and Computer Architecture

UNIX FHS C wa

Systems @ ETH zarn

| /bin/ l | /boot/ | l /dev/ I [Etcf | /home/ I | llib/ l | /media/ l | fmntfl
fopt/ [Iroot!] [Isbin:'] |.|'srw' l | ftmp/ | fusr/ ? Ivar/ l

[soinv | (includer | [io/ | {ssbin | (1cacher] (10g/] [sspootr] [nmpr]

user@4865h4f533e3:/$ pwd

/
user@4865bh4f533e3:/$ 1s

bin dev home 1ib32 1ibx32 mnt proc run srv tmp var
boot etc 1ib 1ib64 media opt root shin sys usr

UNIX FHS

e Just as binaries have
their own locations
in FHS (mostly /bin),

Inset /|
libraries are also \ L
somewhere in /lib or
Jusr/lib | [exs8/ /‘—\
| (hsdewmo/] »\
AN~

[bfalk@pioral 1ibl$ pwd
/1ib
[hfalk@pioral 1ibl$ 1s

[7be]) |

crtl.o
crti.o
crtn.o

| /e

[[($hsde

l /qoidwa gcrtl.o

———

Assignment 5 (Bomb Lab)

Questions?

Linking — Theory Recap :EQ

Systems @ ETH zarn

® Compilation Pipeline
® ELF Obiject File

® Symbols

® Relocation

® Linking Libraries

=g~

Systems @ ETH o

UNIX FHS
Linking Theory: Static linking

Systems Programming and Computer Architecture

Linking and Loading m

Systems @ ETH zarn

* Whats the “issue” with this C program?

Example C program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufpe = &buf[e];
{ static int *bufpl;
swap();
return @; void swap()
}
int temp;
bufpl = &buf[1];
temp = *bufpo;
*bufpe = *bufpil;

*bufpl = temp;

Static linking m|

I'r.: Ll

* Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -0 p main.c swap.c

unix> ./p
mai_n € Swip' C Source files
Translators Translators
(cpp,ccl,as) (cpp,ccl,as) {
l l Separately compiled
na in i@ Swip 0 relocatable object files
Linker (1d) |

l Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c
Systems Programming 2023 Ch. 12: Linking

Static Linking in 2 Steps m

Systems @ ETH zarn

 Step 1: Symbol resolution
* Programs define and reference symbols (variables and functions):
 void swap() {..} /* define symbol swap */
* swap(); /* reference symbol swap */
 int *xp = &x; /* define xp, reference x */

» Symbol definitions are stored (by compiler) in symbol table.
* Symbol table is an array of structs
* Each entry includes name, type, size, and location of symbol.

* Linker associates each symbol reference with exactly one symbol definition.

Static Linking in 2 Steps m

Systems @ ETH zarn

What do linkers do?

* Step 2: Relocation
* Merges separate code and data sections into single sections

* Relocates symbols from their relative locations in the . o files to their final
absolute memory locations in the executable.

* Updates all references to these symbols to reflect their new positions.

Object files m

3 kinds of object files (modules)

* Relocatable object file (.o file)

* Contains code and data in a form that can be combined with other relocatable object
files to form executable object file.

* Each .ofile is produced from exactly one source (.c) file

» Executable object file

* Contains code and data in a form that can be copied directly into memory and then
executed.

* Shared object file (.so file)

. Special_ty||:)e of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run-time.

* Called Dynamic Link Libraries (DLLs) by Windows

.-

Object files: when a .c -> .0, how does this single
.0 get stored? That’s a relocatable object file

Systems @ ETH o

* Relocatable object file (.o file)

* Contains code and data in a form that can be combined with other relocatable object
files to form executable object file.

* Each .o file is produced from exactly one source (.c) file

ELF object file format

ELF header

Segment header table
* EIf header (required for executables)

* Word size, byte ordering, file type (.0, exec, . so), machine type, etc. .text section
* Segment header table

+ Page size, virtual addresses memory segments (sections), segment sizes.
+ .text section -data section

* Code .bss section
* .rodata section

* Read only data: jump tables, ...
* .data section

.rodata section

.symtab section

.rel.txt section

* Initialized global variables .rel.data section
* .bss section .debug section

+ Uninitialized global variables

* “Block Started by Symbol” Section header table

* “Better Save Space”

s Hac cortinn haadar hiit arriiniac nn cnars

Resolving symbols: Global, External and
Local

Resolving symbols

GIJc')baI External Local
int bl.'Hi[z] = {1, 2}; extern int buf[];
int main() static int *bufpe #£ &buf[0];
{ static int *bufpil;
swap();
refurn 0; void swap() <«<——— Global
} main.c
| int temp;
External Linker knows bufpl = &buf[1];
nothing of temp temp = *bufpe;
*bufpe = *bufpl;
*bufpl = temp;

} swap. c

==

Systems @ ETH o

Put all the .o files (which are in ELF format) E;
inside ONE big executable

Systems @ ETH o

Relocating code and data

Relocatable Object Files Executable Object File
Syst d .text 0
ystem code dat Headers)
System data .data System code
\ main()
. > text
main.o
texct swap()
main() -tex
#
int buf[2]={1,2} | .data More system code
System data
swap.o int buf[2]={1,2} .data
/ int *bufpe=abuf[e]
swap() -text Uninitialized data .bss
int *bufpe=&buf[@] | .data .symtab
int *bufpl .bss .debug

Inside each .o file we are still missing the m
references: currently O as placeholder

Systems @ ETH o

Relocation info (main)

main.c main.o
int buf[2] = {1,2}; Disassembly of section .text:
int main() 000PCPOV0OPOOROO <main>:
{ 9: 48 83 ec 08 sub $0x8,%rsp
4: b8 00 00 06 60 mov $0x0, %eax
swap(); 9: €8 00 90 @0 6@ callg e <main+@xe>
return @; a: R _X86_64 PC32 swap-0x4
} e: b8 00 00 0 6@ mov $0x0,%eax
13: 48 83 c4 08 add $6x8,%rsp
17: c3 retq

Disassembly of section .data:

0000000000000000 <buf>:
Q: 01 00 00 0 02 00 00 00

Source: objdump -D -r <file>

After merging them: we can check in the symbol E;
table where the function is in the final executable

Systems @ ETH zarn

* Now the linker can actually input the address of <swap>, but only after
everything got merged since only then the final addresses are clear

Executable after relocation (.text)

00000000004004ed <main>:

4004ed: 48 83 ec 08 sub $0x8,%rsp
4004f1: b8 00 00 O 00 mov $0x0, %eax
4004f6: e8 0a 00 00 00 callg 400505 <swap>
4004fb: b8 00 00 PO 00 mov $0x0, %eax

400500: 48 83 c4 08 add $0x8,%rsp
400504: c3 retq

=g~

Systems @ ETH o

Lecture Recap

Linking: Issues with duplicate symbol definitions

Systems Programming and Computer Architecture

Recall 3 Type of Symbols

Systems @ ETH o

Resolving symbols

GIJc')baI External Local
int bl.'ni[z] = {1, 2}; extern int buf[];
int main() static int *bufpe #£ &buf[0];
{ static int *bufpil;
swap();
refurn 0; void swap() <«<——— Global
} main.c
| int temp;
External Linker knows bufpl = &buf[1];
nothing of temp temp = *bufpe;
*bufpe = *bufpl;
*bufpl = temp;

} swap. c I

Recall 3 Type of Symbols

Systems @ ETH o

Resolving symbols

GIJc')baI External Local
int bl.'ni[z] = {1, 2}; extern int buf[];
int main() static int *bufpe #£ &buf[0];
{ static int *bufpil;
swap();
refurn 0; void swap() <«<——— Global
} main.c
| int temp;
External Linker knows bufpl = &buf[1];
nothing of temp temp = *bufpe;
*bufpe = *bufpl;
*bufpl = temp;

} swap. c I

Weak and Strong Symbols m

Systems @ ETH zarn

 Sometimes, compiler doesn’t know if global variable
(uninitialized) should be a global symbol or an external
symbol (if not explicitly defined as external)

* So there is a concept of strong and weak symbols, for global
variables only!

Weak and Strong Symbols m

Systems @ ETH zarn

* Note: the concept of weak and strong linker symbols are related
exclusively to uninitialized global variables -f-common (old
behaviour): puts uninitialised globals into a common block and
they are weak symbols, allowing multiple uninitialized declerations
across different .c files

* -f-nocommon (new default): this is not the case anymore,
uninitialized globals are also classified as strong symbols

* That means: the only weak to get weak symbols in Cis to either
compile with -f-common compiler flag or with #pragma weak

3 Linker Rules m

Systems @ ETH zarn

The linker’s symbol rules

1. Multiple strong symbols are not allowed
* Each item can be defined only once
e Otherwise: Linker error

2. Given a strong symbol and multiple weak symbol,
choose the strong symbol

* References to the weak symbol resolve to the strong symbol

3. If there are multiple weak symbols, pick an arbitrary one
* Can override this with gcc -fno-common

Will this yield an error? m

Systems @ ETH o

What about this?

main.c: other.c:

int count; #include <stdio.h>»

int main(int argc, char *argv[]) int count = 1;

{ void print_count()
count = 42; {
print_count(); printf("Count is %d\n", count);
return 0; }

}

Will this yield an error? E;

Systems @ ETH o

* With -fcommon the unitialised global is a weak symbol, as the
other.c has definition for int count, the linker will turn “int count”
i.e. the weak symbol into an external symbol and it links fine.

* With —f-nocommon: all global vars are strong, so we have 2 strong
symbols which yields an error

With —fno-common With -fcommon
(default on very new compilers) (default pre-COVID)
main.c: other.c: main.c: other.c:
int count; #include <stdio.h> int count; #include <stdio.h>
oo ; . har * _ o int main(int argc, char *argv[]) int count = 1;
En main(int argc, char *argv[]) 1n1_:dcour.1tt- 1; . { void print_count()
count = 42: \{ml print_count() count = 42; {

] intf("Count is %d\n" t);
print count(); printf("Count is %d\n", count); ELd LS p°, count);
ret

}
main.o: other.o:
main.o: other.o: z
0000000000000000 C count 0000000000000000 D count
00000000000GGGGG B count 0000000000000000 D count 62g’ T main 0000000000000000 T print_count
0000000000000000 T main 0000000000000000 T print_count U print_count U printf
U print_count U printf i N

| gme

That's why! m

e Static: means it’s a local variable now, linker doesn’t care anymore Systems @ ETH o

* Initialise: no ambiguity (both in —-fcommon and —fno-common counts as
ddefinition)

* Extern: make it explicitly to an external variable

Global variables
* Avoid if you can!

e Otherwise
e Use static if youcan
* |nitialize if you define a global variable
* Use extern if you use external global variable

=g~

Systems @ ETH o

Lecture Recap

Static Libraries

Systems Programming and Computer Architecture

Why do we need libraries? m

Swetomca ETH s

Packaging commonly-used functions

* How to package functions commonly used by programmers?
* Math, I/0, memory management, string manipulation, etc.

* Awkward, given the linker framework so far:

* Option 1: Put all functions into a single source file
* Programmers link big object file into their programs
* Space and time inefficient
* Option 2: Put each function in a separate source file
* Programmers explicitly link appropriate binaries into their programs
* More efficient, but burdensome on the programmer

What are (static) libraries m

Systems @ ETH zarn

Solution: static libraries

* Static libraries (.a archive files)

* Concatenate related relocatable object files into a single file with an index
(called an archive).

* Enhance linker so that it tries to resolve unresolved external references by
looking for the symbols in one or more archives.

* |f an archive member file resolves reference, link into executable.

What are (static) libraries m

Systems @ ETH zarn

Creating static libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random.o

T~

y

Archiver (ar)

unix> ar rs libc.a \
atoi.o printf.o .. random.o

librc .a C standard library

Archiver allows incremental updates
Recompile function that changes and replace .o file in archive.

Example: check your linux system

Systems @ ETH zarn

Commonly-used libraries

% ar -t /usr/lib/libc.a | sort

fork.o

¥printf.o
e 1ibc.a (the C standard library) ﬁgﬁ?gtmm
* 8 MB archive of 900 object files. freopen.o
. . fscanf.o
* /0, memory allocation, signal fseek.o
handling, string handling, data and fstab.o

time, random numbers, integer math

* 1ibm.a (the C math library)
* 1 MB archive of 226 object files. e_acos.o

e_acosf.o

* floating point math (sin, cos, tan, log, e_aCOSE%O
e_acoshf.o

exp, sqrt,) e _acoshl.o
e _acosl.o
e_asin.o
e_asinf.o

e_asinl.o
Systems Programming 2023 Ch. 12:{linking 13

% ar -t /usr/lib/libm.a | sort

Linking with static libraries E;

Systems @ ETH o

addvec.o multvec.o

L

main2.c vector.h Archiver

T o

Translators |
(cpp, ccl, as) libvector.a libc.a Static libraries
\ :
ﬁiﬁﬁf}fﬁf ma 1"2'\0‘ addvec.o ﬁq’;ﬂﬂs anéﬂdbﬁrgﬁlt: i} 0
Linke‘rr (1d)
" Fully linked

executable object file

Systems Programming 2023 Ch. 12: Linking

=g~

Systems @ ETH o

Lecture Recap

Shared Libraries (.so files)

Systems Programming and Computer Architecture

Issue with static libraries? m
Shared libraries

» Static libraries have the following disadvantages:

* Duplication in the stored executables
(every function needs the standard libc)
* Duplication in the running executables
* Minor bug fixes of system libraries require each application to explicitly relink

* 100 files which use printf? Then in 100 executables, the “printf” code was
pulled out of the library and inserted into the executables (duplication in
stored executables)

* Change something in a library: as we pulled the code out and compiled it
inside the executable: the old code stays in the exceutable

Solution: Shared libraries! m

Systems @ ETH zarn

e Solution: shared libraries

* Object files that contain code and data that are loaded and linked into an
application dynamically, at either load-time or run-time

* Also called: dynamic link libraries, DLLs, .so files

* Load time: when program is loaded into memory to be
executed

* Run time: when program already runs you get the code (as a
function pointer)

Solution: Shared libraries! m

Systems @ ETH zarn

Shared libraries

* Dynamic linking can occur when executable is first loaded and run (load-
time linking).
 Common case for Linux, handled automatically by the dynamic linker (1d-
linux.so).
 Standard C library (1ibc. so) usually dynamically linked.

* Dynamic linking can also occur after program has begun
(run-time linking).
* In Unix, this is done by calls to the dlopen() interface.
* High-performance web servers.
* Runtime library interpositioning
* Shared library routines can be shared by multiple processes.
* More on this when we learn about virtual memory

Load time Linking

Systems @ ETH o

Dynamic linking at load-time

main2.c vector.h unix> gcc -shared -o libvector.so \

addvec.c nultvec.c
Translators /
(cpp, ccl, as) libc.so
l libvector.so
Relocatable . .
. . main2.o Relocation and symbol table
object file l info
| Linker (1d) |
Partially linked p%!
executable object file .
l libc.so
‘ Loader (execve) ‘ libvector.so
l Code and data
Fully linked
executable ‘ Dynamic linker (1d-1inux. so)
in memory Systems Programming 2023 Ch. 12: Tinking 50

Load time Linking

Systems @ ETH o

Dynamic linking at load-time

main2.c vector.h unix> gcc -shared -o libvector.so \

addvec.c nultvec.c
Translators /
(cpp, ccl, as) libc.so
l libvector.so
Relocatable . .
. . main2.o Relocation and symbol table
object file l info
| Linker (1d) |
Partially linked p%!
executable object file .
l libc.so
‘ Loader (execve) ‘ libvector.so
l Code and data
Fully linked
executable ‘ Dynamic linker (1d-1inux. so)
in memory Systems Programming 2023 Ch. 12: Tinking 50

Load Time Linking m

Systems @ ETH zarn

 Since the code is not compiled into the executable (as in the
static version): the library functions used cannot be in the
.text segment as the linker didn’t have the code

* Instead: the dynamic linker simply puts them into "memory

mapped regions for shared libraries”: between stack and
heap

Load time Linking

Loading

* When the OS loads a program, it:
* creates an address space
* inspects the executable file to see
what’s in it
* (lazily) copies regions of the file
into the right place in the address
space

* does any final linking, relocation,
or other needed preparation

OXFFFFFFFF

0xXCc0000000

0x40000000

0x08048000

0x00000000

Kernel virtual memory

User stack
(created at runtime)

}

?

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory inaccessible
to user code

«—Stack pointer

<+«— brk

Loaded
from

the
executable
file

5

Systems @ ETH zui

Load time Linking m

Systems @ ETH ziro
Skalie inhing Dynamic Linliy (Loed | Uu)
Ulreny codly: l Lb . exitly ONE Wy |
‘. § o lﬁ' @iy oo exislg LI
b it e execnlarblU pukhere ke al +;lt!§awne
¢xec: copicd] :
_lrewmd _ Rewnd i__f e | wremd
Stach Slach Stach Stavh
ks Libs L'b:Jé | penc R
Heap Hewp Hewp Hewp
[dwlq . chutg . chl g . chat g
dext QJ s | exk Xk Xk
cotd4 CoPY 2

=g~

Systems @ ETH o

Shared Libraries Demo

Systems Programming and Computer Architecture

=g~

Systems @ ETH o

A few old exam tasks on Linking
HS21 Question 4

Systems Programming and Computer Architecture

Linking Exam Task (a) m

Systems @ ETH zarn

a) Which of the following is the correct ordering (left to right) of a file’s compilation cycle? Note: a
filename without an extension is an executable.

(2 points)

foo.c & foo.o0 — foo.s — foo

foo.h — foo.o0 — foo.s — foo

foo.c — foo.so0 — foo

foo.c — foo.s — foo.0 — foo

foo.c = foo.0 — foo.s0 — foo

None of the above.

Linking Exam Task (a) m

Systems @ ETH zarn

a) Which of the following is the correct ordering (left to right) of a file’s compilation cycle? Note: a
filename without an extension is an executable.

(2 points)

foo.c & foo.o0 — foo.s — foo

foo.h — foo.o0 — foo.s — foo

foo.c — foo.so0 — foo

foo.c — foo.s — foo.0 — foo

foo.c = foo.0 — foo.s0 — foo

None of the above.

Linking Exam Task (a) m

Systems @ ETH zarn

GNU gcc Toolchain

o 2. Compile each Cfile into
1. Macro substitution, assembly language

Include header files y
‘ | cpp ccl as Id

3. Assemble each file into 4. Link object files into

object code program binary

Linking Exam Task (b) m

Systems @ ETH o

b) Which of the following is not a section of an ELF file?

(2 points)

.code

.data

.bss

.text

.rodata

Linking Exam Task (b) E;

Systems @ ETH o

b) Which of the following is not a section of an ELF file?

- .code

.data

(2 points)

.bss

.text

.rodata

Linking Exam Task (b)

ELF header ELF header

Executable Object File Systems @ ETH i

Program header table

Segment header table
(required for executables)

(required for executables)

.text section .init section

.rodata section .text section

.data section .rodata section

.data section

.bss section
.symtab section .bss section
.symtab
.rel.txt section y
.debu
.rel.data section g
; .line
.debug section
.strtab

Section header table Section header table

(required for relocatables)

ystems

Linking Exam Task (d)

d) Consider the following two blocks of code, which are contained in separate files:

// main.c // foo.c

#include <stdio.h> #include <stdio.h>

int i = 0; int i = 1;

int main() { void foo() {
foo(); printf ("%d", i);
return 0; }

}

What will happen when you attempt to compile, link, and run this code?

Compilation error

Linking error

Segmentation fault

It will print O

It will print 1

It may print 0 or it may print 1

(2 points)

Systems @ ETH zarn

Linking Exam Task (d)

d) Consider the following two blocks of code, which are contained in separate files:

// main.c // foo.c

#include <stdio.h> #include <stdio.h>

int i = 0; int i = 1;

int main() { void foo() {
foo(); printf ("%d", i);
return 0; }

}

What will happen when you attempt to compile, link, and run this code?

Compilation error

- Linking error

Segmentation fault

It will print O

It will print 1

It may print O or it may print 1

(2 points)

Systems @ ETH o

Linking Exam Task (d) E;

Systems @ ETH zarn

* Compilation: only a warning that we used a undeclared

function foo() in main (as we dindnt #include): but this still
compiles

* Linking error: as we have two strong initialized ints

Linking Exam Task (e) m

Systems @ ETH zarn

e) Which of the following is an advantage of using static vs. dynamic libraries?

(2 points)

Changes to the library do not require recompiling or re-linking all programs that use the
library.

Program executables can be smaller

Program executables are self-contained

Library code can be shared by multiple processes; the OS can map different program
virtual addresses to the same physical address to share pages with library code.

Most programs will run noticeably faster

Linking Exam Task (e) m

Systems @ ETH zarn

e) Which of the following is an advantage of using static vs. dynamic libraries?

(2 points)

Changes to the library do not require recompiling or re-linking all programs that use the
library.

Program executables can be smaller

S Program executables are self-contained

Library code can be shared by multiple processes; the OS can map different program
virtual addresses to the same physical address to share pages with library code.

Most programs will run noticeably faster

=g~

Systems @ ETH o

A few old exam tasks on Linker
Symbols

HS20 Question 8

Systems Programming and Computer Architecture

For each of the following identifiers, state whether they are a strong linker symbol definition, a
weak linker symbol definition, a pure declaration, a local definition, or none of these.

| | B a2 WVAeral ol UL NWA o 'al o WWa W N L_- W7 /™ vV laSK

Consider the following C source code:

Systems @ ETH zarn

#include <stdio.h>

struct el { int i; struct el *next; }; el: | main:
extern unsigned long rr;
extern unsigned calc(int to int bot); —_—
. &n (P) IY. max_th:
int max_th = 42;
int min_th;
int main(int argc, char *argv[]) argv. min_th:
{

int count;

calc: top:
for(count=0; count < 100; count++)
rr += calc(max_th, min_th);

printf ("%lu\n", rr); count:

return 0;
}

Linker Symbols Exam Task

Svstems @ ETH ziro

* elisnone. We're just declaring a struct type of name el, but there is no variable

Consider the following C source code: being declared here.

#include <stdio.h> e rris adeclaration; it is declared as an extern.

e argvisnone
struct el { int i; struct el *next; }; g

e calcis a declaration; there is no definition of this procedure in this file, hence
extern unsigned long rr; the extern and declaration.

extern unsigned calc(int top, int bot); e countis a local definition; it is a local variable inside the main function.
int max_th = 42;

. . e main is a strong linker symbol
int min_th;

e max_th is a strong linker symbol
int main(int argc, char *argv[]) ¢ min_th is a weak linker symbol

{ e topis none
int count;

for(count=0; count < 100; count++)
rr += calc(max_th, min_th);

printf ("%lu\n", rr);

return 0;

Linker Symbols Exam Task m

Systems @ ETH zarn

e Structs: are just a type definition, (like enums, typdefs etc.)
they are not linker symbols because they don’t allocate
memory or have linkage themselves

* Defining struct in header file makes it usable in different files,
but is still no linker symbol

* Only was we instantiate (define) the struct and then have a
variable, linker symbols apply

Linker Symbols Exam Task

"mystruct.h"
struct el shared_element;

Systems @ ETH zarn

"mystruct.h"
struct el shared_element;

struct el {
int i
struct el #next;

}

"mystruct.h"
struct el elementl;

"mystruct.h"
struct el element2;

Compilation Pipeline m

Systems @ ETH zarn

We have the following C files:

int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufpo = &buf[0];
{ static int *bufpl;
swap();
return 0; void swap()
} main. c {
int temp;

bufpl = &buf[1l];
temp = *bufpo;
*bufpO = *bufpl;
*bufpl = temp;

t swap. ¢

Compilation Pipeline

Systems @ ETH zarn

Programs are translated and linked using a compiler driver:
unix> gcc -02 -g -o main main.c swap.c
unix> ./main

Source Code (.c, .cpp, .h]i
Preprocessing Step 1: Preprocessor (cpp)
Include Header, Expand Macro (.1, .ii]l
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (. 5]|¢
Assemble Step 3: Assembler (as)
Machine Code (.o, .Dbj]l
Static Library (. 1ib, .a)—» Linking Step 4: Linker (1d)
Executable Machine Code {.exe]l

Compilation Pipeline T

$ gcc —-v main.c swap.c —-oO main

/usr/lib/gcc/x86 64-linux-gnu/4.8/ccl -quiet -v -imultiarch x86 64-linux-gnu
main.c -quiet -dumpbase main.c -mtune=generic -march=x86-64 -auxbase main -
version -fstack-protector -Wformat -Wformat-security -o /tmp/ccmAdhly.s

[...]
as -v —-64 -o /tmp/cc6h3tRf.o /tmp/ccmAdhly.s

[...]
/usr/lib/gcc/x86 64-linux-gnu/4.8/ccl -quiet -v -imultiarch x86 64-linux-gnu
swap.c —quiet -dumpbase swap.c -mtune=generic -march=x86-64 -auxbase swap -

version -fstack-protector -Wformat -Wformat-security -o /tmp/ccmAdhly.s

[...]
as -v —--64 -o /tmp/ccecqgv3W.o /tmp/ccmAdhly.s

[...]

Compilation Pipeline

Linking + collecting Systems @ ETH zivo

/ constructors *

/usr/lib/gcc/x86 64-linux-gnu/4.8/collect2 --sysroot=/ --build-id --eh-
frame-hdr -m elf x86 64 --hash-style=gnu --as-needed -dynamic-linker
/1ib64/1d-1inux-x86-64.s0.2 -z relro -o main /usr/lib/gcc/x86 64-linux-
gnu/4.8/../../../x86 64-linux-gnu/crtl.o /usr/lib/gcc/x86 64-linux-—
gnu/4.8/../../../x86 64-linux-gnu/crti.o /usr/lib/gcc/x86 64-linux-
gnu/4.8/crtbegin.o -L/usr/lib/gcc/x86 64-linux-gnu/4.8 -

L/usr/lib/gcc/x86 64-linux-gnu/4.8/../../../x86 64-linux-gnu -
L/usr/lib/gcc/x86 64-linux-gnu/4.8/../../../../1ib -L/1ib/x86 64-linux-gnu -
L/1ib/../1ib -L/usr/1lib/x86 64-linux-gnu -L/usr/lib/../lib -
L/usr/lib/gcc/x86 64-linux-gnu/4.8/../../.. /tmp/cc6h3tRf.o /tmp/ccecqv3W.o
-lgcc --as-needed -lgcc s --no-as-needed -lc -lgcc --as-needed -lgcc s —--no-
as-needed /usr/lib/gcc/x86 64-linux-gnu/4.8/crtend.o /usr/lib/gcc/x86 64-
linux-gnu/4.8/../../../x86 64-linux-gnu/crtn.o

* https://gcc.gnu.org/onlinedocs/gccint/Collect2.html

https://gcc.gnu.org/onlinedocs/gccint/Collect2.html

A Closer Look into a Binary E;

Systems @ ETH zarn

S file main

main: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux

$ hexdump -C main

00000000 7f454c 46 02 010100 00 0000 00 00 00 00 00

00000010 02 00 3e 00 01 00 00 00 90 48 40 00 00 00 00 00
> H@....

[..]

ELF Object File Format

* ELF header

* Segment header table
* .text section

®* .rodata section

* .data section

* .bss section

ELF header

Segment header table
(required for executables)

.text section
.rodata section
.data section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

Systems @ ETH zarn

ELF Sections E;

Systems @ ETH zarn

® .data
— contains global tables, variables

® .text
— this is where the code of your program is

® bss
— “better save space” i.e. all your uninitialized variables

ELF Header Format

Systems @ ETH zarn

typedef struct { ELF header

unsigned char e_ident[El_NIDENT];
Elf32_Half e type;

Elf32_Half e_machine;

Elf32 Word e_version;
Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32 Word e flags;

Segment header table
(required for executables)

.text section
.rodata section

.data section

Elf32_Half e_ehsize; .bss section
Elf32_Half e _phentsize;)
Elf32_Half e_phnum; -symtab section
Elf32 Half e _shentsize; .rel.txt section
Elf32 Half e shnum,;

Elf32_Half e_shstrndx; .rel.data section
Elf32_Ehdr;

.debug section

Section header table

ELF Header Format

S readelf —--header main

ELF Header:
Magic: 7f 45 4c 46 02 010100 00 00 00 00 0000 00 00
Class: ELF64

Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V

[...]
Entry point address: 0x404890

[...]
Start of program headers: 64 (bytes into file)

Start of section headers: 108288 (bytes into file)
[...]

==

Systems @ ETH zarn

Resolving Symbols :E;

Systems @ ETH zarn
Global External Loca

int bdeZ] = {1, 2}; extern int buf[];

int main() static int *bufpe £ &buf[0];

{ static int *bufpl;

External —> swap();
return 0; void swap() «——— Global
} main. c {

int temp; «-—-_.-—_._______ The linker doesn’t
know anything about

bufpl = &buf[1];

temp
temp = *bufpo;
*bufpo = *bufpil;
*bufpl = temp;

} swap. c

Relocating Code and Data

Systems @ ETH o
Relocatable Object Files Executable Object File
Syst d .text 0
ystem code dat Headers)
.data
System data \ System code
main()
. > .text
main.o
swap()
main() .text #
int buf[2]={1,2} |.data More system code
System data
swap.o / int buf[2]={1,2} .data
int *bufpe=&buf[0]
swap() -text Uninitialized data .bss
int *bufpe=&buf[e] | .data .symtab
int *bufpl .bss .debug

Strong and Weak Symbols

® Program symbols are either strong or weak

—Strong: procedures and initialized globals
—Weak: uninitialized globals

pl.c p2.c
strong —| int foo0=5; int foo; | «— weak
strong ——| P1() { p2() { <+ strong
¥ }

==

Systems @ ETH zarn

The Linker’s Symbol Rules ﬁ;

Systems @ ETH zarn

*Assume the compiler flag -fcommon is used

* Rule 1: Multiple strong symbols are not allowed
— Each item can be defined only once
— Otherwise: Linker error

* Rule 2: Given a strong symbol and multiple weak symbol, choose the
strong symbol
— References to the weak symbol resolve to the strong symbol

* Rule 3: If there are multiple weak symbols, pick an arbitrary one

New Default: -fno-common E;

Systems @ ETH zarn
® Recent versions of gcc and clang use the -fno-common flag by default.

int glob; <— “tentative definition” placed extern int glob;
in.bss section of main.o 7

int main int main

t ma () extern explicitly marks this t ma ()

{ as a declaration {

} main.c => Linker looks for the } main.c
symbol definition in other

int glob = 42; object files

int glob = 42;

other.c other.c

This would give a multiple

s . . This compiles.
definition link-time error! P

e Use extern in every declaration.
The only place without extern must be the (possibly tentative) definition.

Static Libraries :E;

Systems @ ETH zarn

® Static libraries (.a archive files)

— Concatenate related relocatable object files into a single file with
an index (called an archive).

— Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives.

— If an archive member file resolves reference, link into executable.

Linking with Static Libraries m

Systems @ ETH o

addvec.o multvec.o

b

main2.c vector.h Archiver
(ar)
Translators o .
(cpp, ccl, as) libvector.a libc.a Static libraries
Relocatabmainz.o addvec.o printf.o and any other
object files modules called by printf.o
Linker (1d)
Fully linked

executable object file

Using Static Libraries

Systems @ ETH zarn

» Linker’s algorithm for resolving external references:
— Scan .o files and .a files in the command line order.
— During the scan, keep a list of the current unresolved references.

— As each new .o or .a file, obj, is encountered, try to resolve each unresolved reference in the
list against the symbols defined in obj.

— If any entries in the unresolved list at end of scan, then error.

* Problem:

— Command line order matters!
— Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -1mine
unix> gcc -L. -lmine libtest.o
libtest.o: In function "main':
libtest.o(.text+0x4): undefined reference to “libfun'

Dynamic Linking at Load-Time

main2.c vector.h

Systems @ ETH o

unix> gcc -shared -o libvector.so \

1 1 addvec.c multvec.c
Translators /
(cpp, ccl, as) libc.so
‘ libvector.so
Relocatable main2.o
object file ‘ : l Relocation and symbol table info
Linker (1d)
Partially linked 12
executable object file '1
Loader (execve) 1ibc. so
libvector.so
1 Code and data
Fully linked
executable Dynamic linker (1d-1inux. so)

in memory

Loading Executable Object Files

Executable Object File

ELF header

Program header table
(required for executables)

.init section

.text section

.rodata section

.data section

.bss section

.symtab

.debug

.line

.strtab

Section header table
(required for relocatables)

Kernel virtual memory 1 !V'e.".’Ory
invisible to
User stack user code
(created at runtime)
«—%rsp
v (stack
4 pointer)
Memory-mapped region for
shared libraries
T <+— brk
Run-time heap
(created by malloc)
Read/write segment Loaded
(.data, .bss) from
} the
Read-only segment executable
(.init, .text, .rodata) file

Unused

Systems @ ETH zarn

Library Linking Demo

Assignment 6 m

Systems @ ETH zarn

® Pen-and-Paper exercises
® |f you wish to receive feedback - Submit as PDF via email or GitLab

IF YOU DONT TURN IN
AT LEAST ONE HOMEWDRK

7' ASSIGNMENT, YoU'LL
FAIL THIS CLASS. YEAH. BUTIF I CAN FAIL
THIS CLASS THE GRADES
\ ON MY REFORT CARD WILL
Not the case for BE INALPHABETICAL ORGER!
our class :) X

113

HS19 — Question 10

For each symbol listed in the following C object file, say whether itis a strong linker symbol, a weak Systems @ ETH zio
linker symbol, a macro, a symbol local to the compilation unit, on none of these.

(Assume —fcommon used)

count: |0cal <«—— Declared as static

#define string "hello, world"
static int count;

extern char *otherstring;
struct element {

element. NQNE@ +—— Simply a struct declaration

void xdata; head: gtrong <+ Initialized global

struct element *next;
}; otherstring: NONE <+— Not used, so no symbol generated
struct element *head = NULL;
struct slement *tail; pull: nONe <«— Not used, so no symbol generated

void push(struct element *e)

!

push: SIFONQ <— Function definitions are strong

e->next
head

head;

e; string: MacCro <— Self-explanatory

}
struct element *pull(); tail: Weak <—— Uninitialized global

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Resolving Symbols
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: Questions?

