
Exercise Session 8
Systems Programming and Computer Architecture

Fall Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich

Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides have additional slides (which are not
official part of the course) having a blue heading: they are
there to complement and go into more depth where I found
appropriate

• For the exam only the official exercise slides are relevant, if in
doubt always check the ones on the official moodle page

Agenda

Systems Programming and Computer Architecture

• Assignment 5 (Bomb Lab)
- Questions

• UNIX File System, Paths and Command Line Recap
• Linking Theory (Static and shared libraries)
• Linking
• - Theory recap

- Library linking demo

• Assignment 6
- Introduction

• Exam problem example

UNIX FHS
Filesystem, Paths, Binaries etc.

Systems Programming and Computer Architecture

• Fundamental to understand, not really taught in course
though

• Will help you a lot later on, although not super relevant for the
exam its super relevant for other courses, understanding and
praxis

Why look UNIX FHS again?

UNIX FHS

• Looked at
one/multiple C
files, mostly in
one directory
(Folder)

UNIX FHS

• Linux FHS is a
Graph: you are
just at a particular
node

UNIX FHS

• Linux FHS is a
Graph: you are
just at a particular
node

• What is at “...”?

UNIX FHS

UNIX FHS

• Terminal?

• “pwd” shows
where you are in
the graph

UNIX FHS

• Terminal?

• “pwd” shows
where you are in
the graph

UNIX FHS

• Pwd shows you
current path, by
concatenating
names of nodes to
where you are

UNIX FHS

• You are always
somewhere in this
graph, the current
working directory

• Refer to your own
position as “.”

UNIX FHS
• You can move

relative to your
current position

• Up: “cd ..”

• Now check pos
with “pwd”

UNIX FHS

• You can move relative to
your current position

• Up: “cd ..”

• Down: “cd fhsdemo/”

• Now check pos with
“pwd”

UNIX FHS

• You can move to a
absolute position

• “cd <absolutepath>”

• Example: “cd /"

UNIX FHS

• Check whats inside your
current directory
(node)?

• “ls” for list

UNIX FHS

• Lets check whats inside
“/”?

UNIX FHS

UNIX FHS
Binaries in the FHS

Systems Programming and Computer Architecture

UNIX FHS

• We have an
environment
: think of
having
variables
next to the
graph

• Can store
paths for
instance

UNIX FHS

• $PATH: Stores paths
PATH1 : PATH2 : … : PATHN

• Each Path separated by “:”
in between

• Path1= /opt
• Path2= /bin
• $PATH=/opt:/bin

UNIX FHS

• Every “ls” or ”pwd” etc.
executes a binary
(program)

• It finds it by looking in all
directories specified by
path variable $PATH

• “which <binary>” tells us
where it is in the graph

UNIX FHS

• Check out the path, and
check if its actually
here? IT IS

UNIX FHS

• We can do this for any
binary specified in the
$PATH

• Lets check out gcc

UNIX FHS

• Note: we can
be anywhere in
the FHS, and
execute those
commands as
$PATH specifies
where to look
for it

• Do not have to
be in the
directory /bin
to execute it

UNIX FHS

• Write own C program
printing “hello, world”

• Compile it

UNIX FHS

• Write own C program (you
know how to!)

• Compile it

• Execute via “./hello”

• Difference between
“./hello” and
“/home/bfalk/hello”?

UNIX FHS

• Write own C program (you
know how to!)

• Compile it

• Execute via “./hello”

• Difference between
“./hello” and
“/home/bfalk/hello”?

UNIX FHS

• Why doesn’t “hello”
work? “pwd” “ls” etc.
worked without the “./”?

UNIX FHS

• Why doesn’t “hello” work? “pwd” “ls” etc. worked without the
“./”?

• Issue: for non absolute path it checks $PATH variable, there is no
“hello” executable anywhere

UNIX FHS

• Why doesn’t “hello” work? “pwd” “ls” etc. worked without the “./”?

• Issue: for non absolute path it checks $PATH variable, there is no
“hello” executable anywhere

• Solution: add directory which has “hello” executable to path

UNIX FHS

• Now we can execute
hello from anywhere
just as “pwd” and “ls”
etc.

• It appears in which, so
we know its accessible
form everywhere

• “~” is short for my
home, i.e. /home/bfalk

UNIX FHS
Libraries in the FHS

Systems Programming and Computer Architecture

UNIX FHS

UNIX FHS

• Just as binaries have
their own locations
in FHS (mostly /bin),
libraries are also
somewhere in /lib or
/usr/lib

UNIX FHS

• Just as binaries have
their own locations
in FHS (mostly /bin),
libraries are also
somewhere in /lib

Assignment 5 (Bomb Lab)

Questions?

Linking – Theory Recap

• Compilation Pipeline

• ELF Object File

• Symbols

• Relocation

• Linking Libraries

UNIX FHS
Linking Theory: Static linking

Systems Programming and Computer Architecture

Linking and Loading

• Whats the “issue” with this C program?

Linking and Loading

• Whats the “issue” with this C program?

Static Linking in 2 Steps

Static Linking in 2 Steps

Object files

Object files: when a .c -> .o, how does this single
.o get stored? That’s a relocatable object file

Resolving symbols: Global, External and
Local

Put all the .o files (which are in ELF format)
inside ONE big executable

Inside each .o file we are still missing the
references: currently 0 as placeholder

After merging them: we can check in the symbol
table where the function is in the final executable

• Now the linker can actually input the address of <swap> , but only after
everything got merged since only then the final addresses are clear

Lecture Recap
Linking: Issues with duplicate symbol definitions

Systems Programming and Computer Architecture

Recall 3 Type of Symbols

Recall 3 Type of Symbols

Weak and Strong Symbols

• Sometimes, compiler doesn’t know if global variable
(uninitialized) should be a global symbol or an external
symbol (if not explicitly defined as external)

• So there is a concept of strong and weak symbols, for global
variables only!

Weak and Strong Symbols

• Note: the concept of weak and strong linker symbols are related
exclusively to uninitialized global variables -f-common (old
behaviour): puts uninitialised globals into a common block and
they are weak symbols, allowing multiple uninitialized declerations
across different .c files

• -f-nocommon (new default): this is not the case anymore,
uninitialized globals are also classified as strong symbols

• That means: the only weak to get weak symbols in C is to either
compile with -f-common compiler flag or with #pragma weak

3 Linker Rules

Will this yield an error?

Will this yield an error?

• With –fcommon the unitialised global is a weak symbol, as the
other.c has definition for int count, the linker will turn “int count”
i.e. the weak symbol into an external symbol and it links fine.

• With –f-nocommon: all global vars are strong, so we have 2 strong
symbols which yields an error

That’s why!
• Static: means it’s a local variable now, linker doesn’t care anymore
• Initialise: no ambiguity (both in –fcommon and –fno-common counts as

ddefinition)
• Extern: make it explicitly to an external variable

Lecture Recap
Static Libraries

Systems Programming and Computer Architecture

Why do we need libraries?

What are (static) libraries

What are (static) libraries

Example: check your linux system

Linking with static libraries

Lecture Recap
Shared Libraries (.so files)

Systems Programming and Computer Architecture

Issue with static libraries?

• 100 files which use printf? Then in 100 executables, the “printf” code was
pulled out of the library and inserted into the executables (duplication in
stored executables)

• Change something in a library: as we pulled the code out and compiled it
inside the executable: the old code stays in the exceutable

Solution: Shared libraries!

• Load time: when program is loaded into memory to be
executed

• Run time: when program already runs you get the code (as a
function pointer)

Solution: Shared libraries!

Load time Linking

Load time Linking

Load Time Linking

• Since the code is not compiled into the executable (as in the
static version): the library functions used cannot be in the
.text segment as the linker didn’t have the code

• Instead: the dynamic linker simply puts them into ”memory
mapped regions for shared libraries”: between stack and
heap

Load time Linking

Load time Linking

Shared Libraries Demo

Systems Programming and Computer Architecture

A few old exam tasks on Linking
HS21 Question 4

Systems Programming and Computer Architecture

Linking Exam Task (a)

Linking Exam Task (a)

Linking Exam Task (a)

Linking Exam Task (b)

Linking Exam Task (b)

Linking Exam Task (b)

Linking Exam Task (d)

Linking Exam Task (d)

Linking Exam Task (d)

• Compilation: only a warning that we used a undeclared
function foo() in main (as we dindnt #include): but this still
compiles

• Linking error: as we have two strong initialized ints

Linking Exam Task (e)

Linking Exam Task (e)

A few old exam tasks on Linker
Symbols

HS20 Question 8

Systems Programming and Computer Architecture

Linker Symbols Exam Task

Linker Symbols Exam Task

Linker Symbols Exam Task

• Structs: are just a type definition, (like enums, typdefs etc.)
they are not linker symbols because they don’t allocate
memory or have linkage themselves

• Defining struct in header file makes it usable in different files,
but is still no linker symbol

• Only was we instantiate (define) the struct and then have a
variable, linker symbols apply

Linker Symbols Exam Task

int buf[2] = {1, 2};

int main()
{
swap();
return 0;

} main.c

extern int buf[];

static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
int temp;

bufp1 = &buf[1];
temp = *bufp0;
*bufp0 = *bufp1;
*bufp1 = temp;

} swap.c

We have the following C files:

Compilation Pipeline

Programs are translated and linked using a compiler driver:

unix> gcc -O2 -g -o main main.c swap.c

unix> ./main

Compilation Pipeline

$ gcc –v main.c swap.c –o main
/usr/lib/gcc/x86_64-linux-gnu/4.8/cc1 -quiet -v -imultiarch x86_64-linux-gnu

main.c -quiet -dumpbase main.c -mtune=generic -march=x86-64 -auxbase main -

version -fstack-protector -Wformat -Wformat-security -o /tmp/ccmA4h2y.s

[…]

as -v --64 -o /tmp/cc6h3tRf.o /tmp/ccmA4h2y.s

[…]

/usr/lib/gcc/x86_64-linux-gnu/4.8/cc1 -quiet -v -imultiarch x86_64-linux-gnu

swap.c -quiet -dumpbase swap.c -mtune=generic -march=x86-64 -auxbase swap -

version -fstack-protector -Wformat -Wformat-security -o /tmp/ccmA4h2y.s

[…]

as -v --64 -o /tmp/ccecqv3W.o /tmp/ccmA4h2y.s

[…]

Compilation Pipeline

/usr/lib/gcc/x86_64-linux-gnu/4.8/collect2 --sysroot=/ --build-id --eh-

frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -dynamic-linker

/lib64/ld-linux-x86-64.so.2 -z relro -o main /usr/lib/gcc/x86_64-linux-

gnu/4.8/../../../x86_64-linux-gnu/crt1.o /usr/lib/gcc/x86_64-linux-

gnu/4.8/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-

gnu/4.8/crtbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/4.8 -

L/usr/lib/gcc/x86_64-linux-gnu/4.8/../../../x86_64-linux-gnu -

L/usr/lib/gcc/x86_64-linux-gnu/4.8/../../../../lib -L/lib/x86_64-linux-gnu -

L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -

L/usr/lib/gcc/x86_64-linux-gnu/4.8/../../.. /tmp/cc6h3tRf.o /tmp/ccecqv3W.o

-lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed -lgcc_s --no-

as-needed /usr/lib/gcc/x86_64-linux-gnu/4.8/crtend.o /usr/lib/gcc/x86_64-

linux-gnu/4.8/../../../x86_64-linux-gnu/crtn.o

https://gcc.gnu.org/onlinedocs/gccint/Collect2.html*

Compilation Pipeline
Linking + collecting

constructors *

https://gcc.gnu.org/onlinedocs/gccint/Collect2.html

$ file main

main: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux

$ hexdump -C main

00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

|.ELF............|

00000010 02 00 3e 00 01 00 00 00 90 48 40 00 00 00 00 00

|..>......H@.....|

[…]

A Closer Look into a Binary

ELF Object File Format

• ELF header

• Segment header table

• .text section

• .rodata section

• .data section

• .bss section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

0

.data section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

• .data

– contains global tables, variables

• .text

– this is where the code of your program is

• .bss

– “better save space” i.e. all your uninitialized variables

ELF Sections

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
Elf32_Ehdr;

}

ELF header

Segment header table
(required for executables)

.text section

.rodata section

0

.data section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

ELF Header Format

$ readelf --header main

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V

[…]
Entry point address: 0x404890
[…]
Start of program headers: 64 (bytes into file)
Start of section headers: 108288 (bytes into file)

[…]

ELF Header Format

int buf[2] = {1, 2};

int main()
{
swap();
return 0;

} main.c

extern int buf[];

static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
int temp;

bufp1 = &buf[1];
temp = *bufp0;
*bufp0 = *bufp1;
*bufp1 = temp;

} swap.c

Global

External

External Local

Global

The linker doesn’t
know anything about

temp

Resolving Symbols

swap()

Headers

System code

main()

main.o

int *bufp0=&buf[0]

swap.o

main()

swap()

0System code

int buf[2]={1,2}

System data

More system code

int *bufp1

System data

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss

.data

.bss

int buf[2]={1,2}
int *bufp0=&buf[0]

Uninitialized data

.symtab
.debug

Relocating Code and Data

• Program symbols are either strong or weak

–Strong: procedures and initialized globals

–Weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

Strong and Weak Symbols

The Linker’s Symbol Rules

• Rule 1: Multiple strong symbols are not allowed

– Each item can be defined only once

– Otherwise: Linker error

• Rule 2: Given a strong symbol and multiple weak symbol, choose the
strong symbol

– References to the weak symbol resolve to the strong symbol

• Rule 3: If there are multiple weak symbols, pick an arbitrary one

*Assume the compiler flag -fcommon is used

New Default: -fno-common
● Recent versions of gcc and clang use the -fno-common flag by default.

int glob;

int main()
{
} main.c

int glob = 42;

other.c

This would give a multiple
definition link-time error!

“tentative definition” placed
in .bss section of main.o

int glob = 42;

extern int glob;

int main()
{
} main.c

other.c

extern explicitly marks this
as a declaration
=> Linker looks for the
symbol definition in other
object files

This compiles.

● Use extern in every declaration.
The only place without externmust be the (possibly tentative) definition.

• Static libraries (.a archive files)

– Concatenate related relocatable object files into a single file with

an index (called an archive).

– Enhance linker so that it tries to resolve unresolved external

references by looking for the symbols in one or more archives.

– If an archive member file resolves reference, link into executable.

Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

p2

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

Linking with Static Libraries

• Linker’s algorithm for resolving external references:

– Scan .o files and .a files in the command line order.

– During the scan, keep a list of the current unresolved references.

– As each new .o or .a file, obj, is encountered, try to resolve each unresolved reference in the

list against the symbols defined in obj.

– If any entries in the unresolved list at end of scan, then error.

• Problem:

– Command line order matters!

– Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

Using Static Libraries

Dynamic Linking at Load-Time

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

p2

Dynamic linker (ld-linux.so)

Relocation and symbol table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader (execve)

unix> gcc -shared -o libvector.so \
addvec.c multvec.c

Loading Executable Object Files
Kernel virtual memory

User stack
(created at runtime)

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

ELF header

Program header table
(required for executables)

0
Executable Object File

0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

Loaded
from
the
executable
file

.init section

.text section

.rodata section

.data section

.bss section

.symtab

.debug

.line

.strtab

Section header table
(required for relocatables)

Library Linking Demo

• Pen-and-Paper exercises

• If you wish to receive feedback - Submit as PDF via email or GitLab

113

Not the case for
our class :)

Assignment 6

Self-explanatorymacro

For each symbol listed in the following C object file, say whether it is a strong linker symbol, a weak
linker symbol, a macro, a symbol local to the compilation unit, on none of these.

(Assume –fcommon used)

local Declared as static

none Simply a struct declaration

strong Initialized global

none Not used, so no symbol generated

none Not used, so no symbol generated

strong

weak Uninitialized global

HS19 – Question 10

Function definitions are strong

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Resolving Symbols
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: Questions?

