
Exercise Session 9
Systems Programming and

 Computer Architecture

Autumn Semester 2024

© Systems Group | Department of Computer Science | ETH Zürich



Disclaimer

• Website: n.ethz.ch/~falkbe/

• (Extra) Demos on GitHub: github.com/falkbe

• My exercise slides differ from the official ones presented on 
moodle, marked with a blue heading

• For the exam only the official exercise slides are relevant, if in 
doubt always check the ones on the official moodle page



Agenda

• Remarks: Theory Assignment6

• Lecture Exploit Recap

• Demo Exploits

• Introduction Attack Lab

• Exam Tasks



Course Overview

• 1. Programming Language C

• History and Toolchain, C Integers, Pointers, Dynamic 
Memory Allocation

• 2. Assembly, x86, Linking and Loading: 

• x86 Architecture, Compiling C, Coroutines, Linking, Attacks, 
FP, Optimising Compilers

• 3. Computer Architecture: Processor Design, Exceptions, 
Virtual Memory

• CPU Architecture, Caches, Exceptions, Virtual Memory, 
Multiprocessing, Devices



In this session...

• Questions Regarding Linking 

• Theory on Exploits

• Preview assignment 7: Attack-Lab



Q&A

General linking questions?



Compilation Quiz: Which is the 
correct ordering of the 
compilation cycle?

A)

B)

C)

D)

E)

F)



Compilation Quiz: Which is the 
correct ordering of the 
compilation cycle?

A)

B)

C)

D)

E)

F)



Compilation Quiz: Which is not 
a section of an ELF File?

A)

B)

C)

D)

E)



Compilation Quiz: Which is not 
a section of an ELF File?

A)

B)

C)

D)

E)



Relocating Absolute 
References

Object file with relocation entries (shown in italic) of the swap.o file:
int buf[2] = {1, 2};

int main() 
{
  swap();
  return 0;
} main.c

extern int buf[]; 
 
static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
  int temp;
  bufp1 = &buf[1];
  temp = *bufp0;
  *bufp0 = *bufp1;
  *bufp1 = temp;
} swap.c



Relocating Absolute 
References

Upon linking the executable contains the following .text & .data
int buf[2] = {1, 2};

int main() 
{
  swap();
  return 0;
} main.c

extern int buf[]; 
 
static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
  int temp;
  bufp1 = &buf[1];
  temp = *bufp0;
  *bufp0 = *bufp1;
  *bufp1 = temp;
} swap.c



Line number Address Value

3 0x0000000000400512 0x000000000060103C

5 0x000000000040051C 0x0000000000601050

7

10

Relocating Absolute 
References



Line number Address Value

3 0x0000000000400512 0x000000000060103C

5 0x000000000040051C 0x0000000000601050

7 0x0000000000400526 0x0000000000601040

10

Relocating Absolute 
References



Line number Address Value

3 0x0000000000400512 0x000000000060103C

5 0x000000000040051C 0x0000000000601050

7 0x0000000000400526 0x0000000000601040

10

Relocating Absolute 
References



Line number Address Value

3 0x0000000000400512 0x000000000060103C

5 0x000000000040051C 0x0000000000601050

7 0x0000000000400526 0x0000000000601040

10 0x0000000000400533 0x0000000000601038

Relocating Absolute 
References



Relocating Absolute 
References

Now we should find for each relocated reference:
• the corresponding line number
• memory address of relocation
• value of relocated address

Line number Address Value

3 0x0000000000400512 0x000000000060103C

5 0x000000000040051C 0x0000000000601050

7 0x0000000000400526 0x0000000000601040

10 0x0000000000400533 0x0000000000601038



Overview of this session

• Questions Regarding Linking

• Theory on Exploits

• Preview assignment 7:
Attack-Lab



Theory Assignment6
Linking

Systems Programming and Computer Architecture



Task1: malloc



Task1: malloc

• Always check if malloc failed (and returned null)

• Don’t forget to free the stuff you allocated



Task1: malloc



Task1: malloc

• Recall: malloc does not 0 out memory (cant make any 
assumptions on that)



Task2: Symbol table



Task2: Symbol table



Task2: Symbol table

• Recall: local symbols are only stuff like static global variables 
or static functions (i.e. functions/vars only visible in its own 
compilation unit)



Task4: Relocating



• Check line 
number, 
address, value



Task4: Relocating



Task4: Relocating



Task4: Relocating



Task4: Relocating



Task5: Absolute vs. PC-

Relative



Task5: Absolute vs. PC-

Relative



Task5: Absolute vs. PC-

Relative

• This is what they wanted to show you in 5c)

• PC-relative call to swap in main



Task5: Absolute vs. PC-

Relative

• This is what they wanted to show you in 5c)

• PC-relative call to swap in main



Lecture Recap: Code Vulnerabilities
Buffer Overflow Attacks

Systems Programming and Computer Architecture



Why do we care?



Defn. Worm and Virus



Fundamental Issue



Fundamental Issue



Buffer Overflow Attack



Buffer Overflow Attack



Buffer Overflow Attack



Buffer Overflow Attack



Buffer Overflow Attack



Two Types of Exploits

• Code Injection: You write your own code in the buffer

• Return Oriented Programming (ROP): You take already 
existing code (we call those “gadgets”), concatenate them

• Advantages of ROP? It doesn’t need the stack to be executable



Code Injections

• Usually program 
in memory looks 
like this: we will 
abstract it to the 
following



Code Injections

• Usually program 
in memory looks 
like this: we will 
abstract it to the 
following



Code Injections

• Code injections 
put their own 
code for 
instance in a 
buffer, overwrite 
the ret address 
to point to the 
start

• We now 
execute on the 
stack



Code Injections

• But we can prevent this by randomizing stack offset, or simply 
making the stack not executable (i.e. if %rip points to some 
stack address we fail)

• So these attacks are usually easier to prevent

• This is where ROP comes into play: more sophisticated attack, 
highly non trivial if done properly on a large scale



ROP

• Usually program 
in memory looks 
like this: we will 
abstract it to the 
following



ROP

• Remember this: we 
still overwrite the 
return address via 
buffer overflow

• What if we wanted to 
have $2 in register 
%rax without writing 
our own code (inject)?

• Idea: search for 
assembly which does 
the job, and directly 
returns



ROP



ROP

• We just deallocate the 
stackframe as usual



ROP

• We just 
deallocate the 
stackframe as 
usual

• Now we execute 
the return 
instruction: 
however we 
changed the ret 
addr via the 
overflow



ROP

• Now %rip points 
to our first 
gadget: so at 
addr1 

• We movq $1, 
%rax



ROP

• Now %rip points 
to our first 
gadget: so at 
addr1 

• We movq $1, 
%rax, and return

• But what does 
return do?

• Pop the current 
value at the %rsp 
in to %rip

• We put addr2 in 
$rip



ROP

• Now %rip points 
to our second 
gadget: so at 
addr2 

• We incq %rax



ROP

• Now %rip points 
to our second 
gadget: so at 
addr2 

• We incq %rax, 
and return

• We would now 
return to the 
actual return 
address



General ROP

• An image like above should now make sense to you (and also 
the rest of official the exercise session slides)



ROP

• Notice how we simply use already existing code snippets to 
execute what we want

• Of course this doesn’t always work: if the code does not have 
the code we want to execute we cannot execute it

• Notice however how %rip always stays in the .text segment: 
the stack does not have to be executable

• Note: depending on whether or not we directly have “ret” or 
first a deconstruction of the stack frame like “popq %rbp” we 
would need to account for this



Lecture Recap: Code Vulnerabilities
Preventing Buffer Overflow Attacks

Systems Programming and Computer Architecture



System Level Protection



Attack Demo
Code Injection and ROP

Systems Programming and Computer Architecture



Exam Questions

Systems Programming and Computer Architecture



Exam Questions
Linking: HS19 Question 10

Systems Programming and Computer Architecture



Why linker symbols again

• Generally not hard: but come often in exam (easy to ask on 
moodle exam too) and there are some details you need to 
know about

• A lot of other topics in the exam cover contents we have not 
yet visited in the lecture (Virtual Memory etc.)



Linker Symbols



Linker Symbol: Solution



Remarks

• Otherstring none? Because theoretically 
its an “external symbol”, but we never 
actually use it in the code to reference 
something so we do not care about it: the 
linker will not emit a external symbol for it

• Pull none: same explanation above (we 
do not use it)



Exam Questions
Struct Size, Preprocessor: HS19 Question 9

Systems Programming and Computer Architecture



HS19 Question 9: Struct size



HS19 Question 9: Struct size



HS19 Question 9: Struct size

• Recall: each element needs to be aligned on its own boundary, 
the whole struct on the size of the biggest element



HS19 Question 9: Struct size



HS19 Question 9: Struct size

• Recall: C Pre Processor (CPP) copies and pasts all the elements 
of the .h file into the compilation unit: so now we have 3x 
definition of the buffer (redefinition not allowed)

• Solution: CPP conditionals



Exam Questions
Multiple Choice: HS23 Question 1

Systems Programming and Computer Architecture



HS23 Question 1: General Theory



HS23 Question 1: General Theory



HS23 Question 2: General Theory



HS23 Question 2: General Theory



HS23 Question 3: Linking



HS23 Question 3: Linking

• b: local in main, so 2 anyway

• C: local variable (c=4) shadows 
global variable

• A: variable a in init refers to the 
same as main: changes the value 5



Remark

• This was already half of the theory part in the moodle exam

• The rest was coding: so do the labs and the Code Experts for 
your own good



Any questions about anything in the
course so far?

Otherwise I will recap what we looked at last exercise
session for those who have not been here

Systems Programming and Computer Architecture



UNIX FHS – Recap From Last Lecture
Filesystem, Paths, Binaries etc.

Systems Programming and Computer Architecture



Remark

• This is the same we discussed last exercise session, as many 
people weren’t there

• In case you have been here last exercise session or are already 
proficient with the terminal this is not relevant for you



• Fundamental to understand, not really taught in course 
though

• Will help you a lot later on, although not super relevant for the 
exam its super relevant for other courses, understanding and 
praxis

Why look UNIX FHS again?



UNIX FHS

• Looked at 
one/multiple C 
files, mostly in 
one directory 
(Folder) 



UNIX FHS

• Linux FHS is a 
Graph: you are 
just at a particular 
node 



UNIX FHS

• Linux FHS is a 
Graph: you are 
just at a particular 
node 

• What is at “...”?



UNIX FHS



UNIX FHS

• Terminal?

• “pwd” shows 
where you are in 
the graph



UNIX FHS

• Terminal?

• “pwd” shows 
where you are in 
the graph



UNIX FHS

• Pwd shows you 
current path, by 
concatenating 
names of nodes to 
where you are



UNIX FHS

• You are always 
somewhere in this 
graph, the current 
working directory

• Refer to your own 
position as “.”



UNIX FHS
• You can move 

relative to your 
current position

• Up: “cd ..”

• Now check pos 
with “pwd”



UNIX FHS

• You can move relative to 
your current position

• Up: “cd ..”

• Down: “cd fhsdemo/”

• Now check pos with 
“pwd”



UNIX FHS

• You can move to a 
absolute position

• “cd <absolutepath>”

• Example: “cd /"



UNIX FHS

• Check whats inside your 
current directory 
(node)?

• “ls” for list



UNIX FHS

• Lets check whats inside 
“/”?



UNIX FHS



UNIX FHS
Binaries in the FHS

Systems Programming and Computer Architecture



UNIX FHS

• We have an 
environment
: think of 
having 
variables 
next to the 
graph

• Can store 
paths for 
instance



UNIX FHS

• $PATH: Stores paths
PATH1 : PATH2 : … : PATHN

• Each Path separated by “:” in 
between

• Path1= /opt
• Path2= /bin
• $PATH=/opt:/bin



UNIX FHS

• Every “ls” or ”pwd” etc. 
executes a binary 
(program)

• It finds it by looking in all 
directories specified by 
path variable $PATH

• “which <binary>” tells us 
where it is in the graph



UNIX FHS

• Check out the path, and 
check if its actually 
here? IT IS



UNIX FHS

• We can do this for any 
binary specified in the 
$PATH

• Lets check out gcc



UNIX FHS

• Note: we can 
be anywhere in 
the FHS, and 
execute those 
commands as 
$PATH specifies 
where to look 
for it

• Do not have to 
be in the 
directory /bin 
to execute it



UNIX FHS

• Write own C program 
printing “hello, world” 

• Compile it



UNIX FHS

• Write own C program (you 
know how to!)

• Compile it

• Execute via “./hello”

• Difference between 
“./hello” and 
“/home/bfalk/hello”?



UNIX FHS

• Write own C program (you 
know how to!)

• Compile it

• Execute via “./hello”

• Difference between 
“./hello” and 
“/home/bfalk/hello”?



UNIX FHS

• Why doesn’t “hello” 
work? “pwd” “ls” etc. 
worked without the “./”?



UNIX FHS

• Why doesn’t “hello” work? “pwd” “ls” etc. worked without the 
“./”?

• Issue: for non absolute path it checks $PATH variable, there is no 
“hello” executable anywhere



UNIX FHS

• Why doesn’t “hello” work? “pwd” “ls” etc. worked without the “./”?

• Issue: for non absolute path it checks $PATH variable, there is no 
“hello” executable anywhere

• Solution: add directory which has “hello” executable to path



UNIX FHS

• Now we can execute 
hello from anywhere 
just as “pwd” and “ls” 
etc.

• It appears in which, so 
we know its accessible 
form everywhere

• “~” is short for my 
home, i.e. /home/bfalk



UNIX FHS
Libraries in the FHS

Systems Programming and Computer Architecture



UNIX FHS



UNIX FHS

• Just as binaries have 
their own locations 
in FHS (mostly /bin), 
libraries are also 
somewhere in /lib or 
/usr/lib



UNIX FHS

• Just as binaries have 
their own locations 
in FHS (mostly /bin), 
libraries are also 
somewhere in /lib



Theory

Buffer Overflow Bugs and 

how to exploit them

Goal: Be able to use buffer overflows to change program behavior



Exploits

• 2 Step Process

– Leverage memory corruption to control process 
execution

– Direct process execution to injected shellcode



Exploits

• 2 Step Process

– Leverage memory corruption to control process 
execution

– Direct process execution to injected shellcode

• 2 ways to get an exploit running:

– Code Injection

– Return Oriented Programming



Stack Frame Layout

long myfunc(long a, long b, long c, long d,

            long e, long f, long g, long h)

{

    long xx = a * b * c * d * e * f * g * h;

    long yy = a + b + c + d + e + f + g + h;

    long zz = utilfunc(xx, yy, xx % yy);

    return zz + 20;

}

* Only mandatory, when 
stack size unknown

*



Stack Frame for echo
(24 bytes)

Stack Frame
for main

Buffer overflow stack

%rsp

Input:  123

(0x7fffffffe210)

%rsp+0x18Back to main c306400000000000

31323300buf:



Stack Frame for echo
(24 bytes)

Stack Frame
for main

Buffer overflow stack

%rsp

Input:  AAAAAAAA12

(0x7fffffffe210)

%rsp+0x18Back to main c306400000000000

4141414141414141

313200



Stack Frame
for echo
(24 bytes)

Stack Frame
for main

Buffer overflow stack

%rsp

Input:  AAAAAAAABBBBBBBBCCCCCCC

(0x7fffffffe210)

%rsp+0x18Back to main c306400000000000

4141414141414141

4242424242424242

4343434343434300



00

Buffer overflow stack

Input: AAAAAAAABBBBBBBBCCCCCCCD

Back to ???

Stack Frame
for echo
(24 bytes)

Stack Frame
for main

%rsp
(0x7fffffffe210)

%rsp+0x1806400000000000

4141414141414141

4242424242424242

4343434343434344

What about something more interesting than crashing?



Malicious use of buffer 
overflow

• Input string contains byte representation of executable code

• Overwrite return address with address of buffer

• When bar() executes ret, will jump to exploit code

int bar() {
  char buf[64]; 
  gets(buf); 
  ...
  return ...; 
}

void foo(){
  bar();
  ...
}

Stack after call to gets()

B’s ret add

return
address
A

foo stack frame

bar stack frame

new B’s return

exploit
code

paddata written
by gets()



Code Injection

Using a buffer overflow:

void echo() {

char buf[4];

gets(buf);

puts(buf);

}

Problem with gets?



Code Injection

Using a buffer overflow:

void echo() {

char buf[4];

gets(buf);

puts(buf);

}
No check for size!

Problem with gets?



What to do with this?

Use buffer overflow to write code that gets 
executed by program

Option 1: 

⚫ Change the function to be called (or 
returned to)

Option 2:

⚫  Push assembly code to the stack and use 
that for execution



System-level protections

134
Systems Programming 2021 Ch. 12: Code 

Vulnerabilities

• Compiler-inserted checks on functions
• Compiler now understands library calls…



System-level protections

135
Systems Programming 2021 Ch. 12: Code 

Vulnerabilities

• Compiler-inserted checks on functions
• Compiler now understands library calls…

• Randomized stack offsets
• At start of program, allocate random amount of space on 

stack

• Makes it difficult to predict beginning of inserted code



System-level protections

• Compiler-inserted checks on functions
• Compiler now understands library calls…

• Randomized stack offsets
• At start of program, allocate random amount of space on 

stack

• Makes it difficult to predict beginning of inserted code

• Nonexecutable code segments
• In older x86, can mark region of memory as either 

“read-only” or “writeable”
• Can execute anything readable

• Add explicit “execute” permission to hardware

136
Systems Programming 2021 Ch. 12: Code 

Vulnerabilities



Return Oriented Programming

• (Ab)use code snippets in the binary itself (aka 
“gadgets”) to change control flow

• Generally unsolved problem to defend against



Return Oriented Programming

• In principle like code injection

– Exploit buffer overflow but …

– Use existing code gadgets

– Build “stackframe“ from those

• Call different functions

 
� 
�	   
�	   
	   

c3 Gadget 1 code 

c3 Gadget 2 code 

c3 Gadget n code 

%rsp 

Stack 



ROP Example

void foo(char *input) {
   char buf[32];
   …
   strcpy (buf, input);
   return;
}

We want to:

• pop a value 0xBBBBBBBB 
into %rbx

• move it into %rax



ROP Example

void foo(char *input) {
   char buf[32];
   …
   strcpy (buf, input);
   return;
}

Our available gadgets:
Address1: 

 mov %rbx, %rax;

Address2: 
 pop %rbx; ret

We want to:

• pop a value 0xBBBBBBBB 
into %rbx

• move it into %rax



ROP Example

???

???

???

to caller of foo()

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
(filler ...)

buf

return 
address

void foo(char *input) {
   char buf[32];
   …
   strcpy (buf, input);
   return;
}

Our available gadgets:
Address1: 

 mov %rbx, %rax;

Address2: 
 pop %rbx; ret

caller
stack frame



ROP Example

???

???

0xBBBBBBBB

Address2

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
(filler ...)

buf

return address
use first gadget

void foo(char *input) {
   char buf[32];
   …
   strcpy (buf, input);
   return;
}

Our available gadgets:
Address1: 

 mov %rbx, %rax;

Address2: 
 pop %rbx; ret



ROP Example

Rest of ROP chain …

Address1

0xBBBBBBBB

Address2

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF
(filler ...)

buf

return address
use first gadget

void foo(char *input) {
   char buf[32];
   …
   strcpy (buf, input);
   return;
}

Our available gadgets:
Address1: 

 mov %rbx, %rax;

Address2: 
 pop %rbx; ret



Hands On Demonstration



Overview of this session

• Questions Regarding Linking

• Theory on Exploits

• Preview assignment 7:
Attack-Lab



Assignment 7

• We have prepared 2 custom targets for you

– assignment7/targetk/(c|r)target

• Extra tools included:

– Readme

– hex2raw converter

– “Gadget farm” source for rtarget



Other tools you may want

• Use objdump for stack layout

• gdb for debugging

• gcc -c assembly.s for machine code generation

• May need some padding data

• You might want to use a script for automation



Overview

• Goal is to teach you concepts and 
implementation of

– Code Injection (ctarget)

– Return Oriented Programming (rtarget)

• Deadline: 1 week



Target Programs

• ctarget:

– 3 phases, increasingly difficult

– Uses pure code injection, very static

Main focus, this we expect you to understand

• rtarget:

– 2 phases, quite difficult

Can still be used on modern executables



ctarget (Part 1)

• Level 1
– Similar to code exploit demonstrated
– Call touch1()

• Level 2
– Insert some small amount of code to fool the 

comparator
– Call touch2()

• Level 3
– Similar to previous level, but expects a string as a 

passed argument
– Call touch3()



rtarget (Part 2)

• Level 1
– Repetition of ctarget’s level 2 using gadgets

– Call touch2()

• Level 2

– Repetition of ctarget’s level 3 using gadgets

– Call touch3()
Important gadgets:

movq/movl (see writeup)

popq (see writeup)

ret 0xc3

nop 0x90



Helpful Material

• Lab writeup

• Exercise sessions

• Lecture

• Google/DuckDuckGo: “Code injection” & 

“Return oriented programming” & “CTF 

writeup” of those



Have fun!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Compilation Quiz: Which is the correct ordering of the compilation cycle?
	Slide 8: Compilation Quiz: Which is the correct ordering of the compilation cycle?
	Slide 9: Compilation Quiz: Which is not a section of an ELF File?
	Slide 10: Compilation Quiz: Which is not a section of an ELF File?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153

