Woche 1

Mathematische Methoden der Physik II

Gil Vieira Pereira

26. Februar, 2025

Einführung, (Lie)-Gruppen, Homomorphismen, Bahnensatz und Bahnformel

Gruppen

Eine Gruppe ist eine Menge G mit einem Produkt $\bullet: G \times G \to G$, sodass $(g \bullet h \equiv gh)$:

- (gh)k = g(hk),
- $ightharpoonup \exists e \text{ mit } eg = ge = g \text{ für alle } g \in G,$
- $\forall g \; \exists g^{-1}, \; \text{sodass} \; gg^{-1} = g^{-1}g = e.$

Die Gruppe ist abelsch falls gh = hg für alle $g, h \in G$.

Ausgehend von dem kann man Folgendes zeigen oder definieren:

- \triangleright Das neutrale Element e ist eindeutig,
- das Inverse ist f
 ür jedes g eindeutig,
- Untergruppen, Ordnung, (semi)direktes Produkt, ...

Definition. Für ein $g \in G$ definiere die Ordnung |g| als das kleinste $n \in \mathbb{N}$ s.d. $g^n = e$. Existiert kein solches n, schreiben wir $|g| = \infty$.

Gruppen 2 / 13

Gruppen - kurze Aufgaben

$$\bullet: G \times G \to G$$
$$(g,h) \mapsto ggT(g,h),$$

Überprüfe alle Gruppenaxiome. Ist die Gruppe abelsch?

- ② Sei |g|=n. Zeige, dass $\{e,g,g^2,...,g^{n-1}\}$ alles verschiedene Elemente sind. Folgere, dass $|g| \leq |G|$.
- 3 Sei G eine Gruppe mit |g|=2 für alle $g\in G$. Zeige, dass die Gruppe abelsch ist.
- @ Bis zu welchem n sind alle möglichen Gruppen mit Ordnung n abelsch?

Gruppen 3 / 13

Alte Prüfungsaufgaben

Welche der folgenden Teilmengen ist keine Untergruppe?

- ▶ Die Menge der oberen Dreiecksmatrizen in $GL(n, \mathbb{R})$.
- $ightharpoonup C_n \subset D_n$.
- Die Menge der durch 5 teilbaren Zahlen in \mathbb{Z} , wobei \mathbb{Z} mit Gruppenoperation "+" verstanden ist.
- Die Menge aller ungeraden Permutationen in der symmetrischen Gruppe S_{10} .

Was ist die grösste Ordnung eines Elementes von S_5 ?

- **4**
- **5**
- **6**
- **120**

Gruppen 4 / 13

Abbildungen auf Gruppen

Auf Gruppen kann man grundsätzlich beliebige Funktionen definieren. Wir interessieren uns jedoch nur für strukturerhaltende Funktionen, i.e. Homomorphismen:

$$\varphi: G \to H, \quad \varphi(g \bullet h) = \varphi(g) \bullet \varphi(h)$$

wobei ullet die Gruppenoperation von G und ullet die Gruppenoperation von H bezeichnet. Falls φ bijektiv ist, sprechen wir von einem Isomorphismus.

Eigenschaften:

- $ightharpoonup \varphi(e_G) = e_H$,
- $ightharpoons \operatorname{Ker}(\varphi), \operatorname{Im}(\varphi)$ sind Untergruppen von G resp. H,
- $ightharpoonup \varphi$ injektiv $\iff \operatorname{Ker}(\varphi) = \{e\}.$

Gruppen 5 / 13

Homomorphismen - kurze Aufgaben

- ① Sei $\varphi: \mathbb{R} \to \mathbb{R}_{>0}$ definiert als $\varphi(x) = \exp(x)$. Unter welchen Bedingungen ist dies ein Homomorphismus? Ist es ein Isomorphismus?
- ② Seien $G=\mathbb{Z}_{12}$ und $H=\mathbb{Z}_4$. Betrachte die Abbildung $\varphi:G\to H,\quad \varphi([n]_{12})=[n]_4$. Zeige, dass φ ein Gruppenhomomorphismus ist und bestimme $\mathrm{Ker}(\varphi)$ und $\mathrm{Im}(\varphi)$.

Gruppen 6 / 13

Lie Gruppen

Den Gruppen kann man zusätzliche Strukturen verleihen, wie z.B. Topologien (d.h. deklarieren, welche Mengen offen sind etc.).

Beispiel: Wir definieren auf der Matrixgruppe $\mathrm{GL}(n,\mathbb{R})$ die Metrik

$$d(A,B)^{2} = \sum_{i,j=1}^{n} |A_{ij} - B_{ij}|^{2},$$

wobei die Topologie durch die offenen Bälle bzgl. dieser Metrik beschrieben wird. Wenn man zusätzlich noch eine C^{∞} -Struktur auf die Gruppe definiert (und \bullet , \square^{-1} glatt) und sie dadurch zu einer glatten Mannigfaltigkeit macht, ist es eine Lie Gruppe.

Die endlichen, diskreten Gruppen D_n , S_n , \mathbb{Z}_n sind tatsächlich auch 0 dimensionale Lie Gruppen - und als solche nicht spannend.

Gruppen 7 / 13

Beispiele von (Matrix) Lie Gruppen

- $O(n) = \{ A \in \mathbb{R}^{n \times n} \mid A^T A = I \}$
- $ightharpoonup SO(n) = \{ A \in O(n) \mid \det(A) = 1 \}$
- $U(n) = \{ A \in \mathbb{C}^{n \times n} \mid A^{\dagger} A = I \}$
- $ightharpoonup SU(n) = \{ A \in U(n) \mid \det(A) = 1 \}$
- $ightharpoonup \operatorname{Sp}(2n) = \{A \in \operatorname{GL}(2n,\mathbb{R}) \mid A^T J A = J\}, \text{ mit}$

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

 $ightharpoonup \mathrm{O}(1,3) = \{\Lambda \in \mathbb{R}^{4\times 4} \mid \Lambda^T \eta \Lambda = \eta\}, \ \mathsf{mit}$

$$\eta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Gruppen 8 / 13

Linksnebenklassen

Definition. Sei H eine Untergruppe einer Gruppe G. Die Menge G/H der (Links-) Nebenklassen von H in G ist die Menge der Äquivalenzklassen bezüglich der Äquivalenzrelation

$$g_1 \sim g_2 \Longleftrightarrow \exists h \in H \text{ mit } g_2 = g_1 h$$

G/H mit dem Gruppenprodukt $[g_1][g_2] = [g_1g_2]$ ist in der Regel keine Gruppe, aber falls H ein Normalteiler ist, schon.

Definition. Ein Normalteiler von G ist eine Untergruppe H mit der Eigenschaft, dass $ghg^{-1} \in H$ für alle $g \in G, h \in H$.

Satz von Lagrange

Für eine Gruppe G mit beliebiger Untergruppe H gilt

$$|G/H| = |G|/|H|$$

Gruppen 10 / 13