Woche 2

Mathematische Methoden der Physik II

Gil Vieira Pereira

5. März, 2025

Lie-Gruppen, Quotientengruppen, Normalteiler, Bahnsatz und Bahnformel, Darstellungen, Beispiele, Satz von Schur

Lie Gruppen

Den Gruppen kann man zusätzliche Strukturen verleihen, wie z.B. Topologien (d.h. deklarieren, welche Mengen offen sind etc.).

Beispiel: Wir definieren auf der Matrixgruppe $\mathrm{GL}(n,\mathbb{R})$ die Metrik

$$d(A,B)^{2} = \sum_{i,j=1}^{n} |A_{ij} - B_{ij}|^{2},$$

wobei die Topologie durch die offenen Bälle bzgl. dieser Metrik beschrieben wird. Wenn man zusätzlich noch eine C^{∞} -Struktur auf die Gruppe definiert (und \bullet , \square^{-1} glatt) und sie dadurch zu einer glatten Mannigfaltigkeit macht, ist es eine Lie Gruppe.

Die endlichen, diskreten Gruppen D_n , S_n , \mathbb{Z}_n sind tatsächlich auch 0 dimensionale Lie Gruppen - und als solche nicht spannend.

Lie Gruppen 2 / 19

Beispiele von (Matrix) Lie Gruppen

- $O(n) = \{ A \in \mathbb{R}^{n \times n} \mid A^T A = I \}$
- $ightharpoonup SO(n) = \{ A \in O(n) \mid \det(A) = 1 \}$
- $U(n) = \{ A \in \mathbb{C}^{n \times n} \mid A^{\dagger} A = I \}$
- $Variation SU(n) = \{ A \in U(n) \mid \det(A) = 1 \}$
- $ightharpoonup \operatorname{Sp}(2n) = \{A \in \operatorname{GL}(2n,\mathbb{R}) \mid A^T J A = J\}, \text{ mit}$

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

 $ightharpoonup \mathrm{O}(1,3) = \{\Lambda \in \mathbb{R}^{4\times 4} \mid \Lambda^T \eta \Lambda = \eta\}, \ \mathsf{mit}$

$$\eta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Lie Gruppen 3 / 19

Lie Gruppen - kurze Aufgaben

① Zeige, dass $\mathrm{SL}(n,\mathbb{R})\subset\mathrm{GL}(n,\mathbb{R})$ und $\mathrm{O}(n,\mathbb{R})\subset\mathrm{GL}(n,\mathbb{R})$ resp. geschlossen ist.

Lie Gruppen 4 / 19

Linksnebenklassen

Definition. Sei H eine Untergruppe einer Gruppe G. Die Menge G/H der (Links-) Nebenklassen von H in G ist die Menge der Äquivalenzklassen bezüglich der Äquivalenzrelation

$$g_1 \sim g_2 \Longleftrightarrow \exists h \in H \text{ mit } g_2 = g_1 h$$

G/H mit dem Gruppenprodukt $[g_1][g_2] = [g_1g_2]$ ist in der Regel keine Gruppe, aber falls H ein Normalteiler ist, schon.

Definition. Ein Normalteiler von G ist eine Untergruppe H mit der Eigenschaft, dass $ghg^{-1} \in H$ für alle $g \in G, h \in H$.

Satz von Lagrange

Für eine Gruppe G mit beliebiger Untergruppe H gilt

$$|G/H| = |G|/|H|$$

Quotienten 5 / 19

Alte Prüfungsaufgabe zu Normalteiler

Welche der folgenden Untergruppen ist kein Normalteiler?

- ightharpoonup Die geraden Permutationen in der symmetrischen Gruppe S_{10} .
- ▶ Die oberen Dreiecksmatrizen in $GL(10, \mathbb{R})$.
- $ightharpoonup C_{10} \subset D_{10}$.
- ightharpoons $\mathbb{Z}^{10}\subset\mathbb{R}^{10}$, wobei die Gruppenoperation "+" ist.

Follow-up Frage:

Sei G eine abelsche Gruppe und H eine Untergruppe von G. Zeige, dass G/H eine abelsche Gruppe ist. Gib ein Beispiel einer nicht-abelschen Gruppe G mit einer echten Untergruppe H ($H \subsetneq G$), sodass G/H eine abelsche Gruppe ist. Du darfst nur $G \in \{D_n, \mathbb{Z}_n, S_n\}$ wählen.

Zuletzt: Zeige mit dem Satz von Lagrange, dass eine Gruppe G mit |G|=5 abelsch sein muss.

Quotienten 6 / 19

Isomorphiesatz und Bahnensatz

Isomorphiesatz (Satz 1.1.5)

Sei $\varphi:G o H$ ein Homomorphismus von Gruppen. Dann gilt

$$G/\mathrm{Ker}(\varphi) \cong \mathrm{Im}(\varphi),$$

mit dem Isomorphismus $[g] \mapsto \varphi(g)$.

Definitionen. Eine Gruppe G operiert auf einer Menge X, wenn eine Abbildung $G \times X \to X$, $(g,x) \mapsto gx$ gegeben ist, welche die Eigenschaften $g_1(g_2x) = (g_1g_2)x$ und ex = x erfüllt. Wir definieren auserdem für ein $x \in X$ die Bahn von x als

$$Gx := \{gx \mid g \in G\} \subset X$$

und den Stabilisator von x als

$$\operatorname{Stab}_{x} := \{ g \in G \mid gx = x \} \subset G.$$

Bahnensatz 7 / 19

Darstellungen

Definition Darstellung (Def. 2.1.1)

Eine (reelle bzw. komplexe) Darstellung einer Gruppe G auf einem \mathbb{R} -(bzw. \mathbb{C})-Vektorraum $V \neq 0$ ist ein Homomorphismus $\rho: G \to GL(V)$. Der Vektorraum V heisst dann Darstellungsraum der Darstellung ρ .

Da ρ ein Homomorphismus ist, wissen wir bereits, dass

- $\rho(e) = \mathrm{Id}$
- $\rho(g^{-1}) = \rho(g)^{-1}$

Die Dimension einer Darstellung (ρ, V) ist definiert als $\dim(V)$.

Darstellungen 9 / 19

Darst. als Operationen auf Vektorräumen

Erinnere dich wie wir eine Gruppenoperation auf einer Menge X definiert haben: Eine Gruppe G operiert auf einer Menge X, wenn eine Abbildung $G\times X\to X$, $(g,x)\mapsto g\cdot x$ gegeben ist, welche die Eigenschaften $g_1\cdot (g_2\cdot x)=(g_1g_2)\cdot x$ und $e\cdot x=x$ erfüllt.

Wir können also eine Darstellung auch als eine Gruppenoperation auf Vektorräumen verstehen: Wir definieren für eine Darstellung (ρ,V) die Gruppenoperation $G\times V\to V$ auf V als

$$g \cdot v := \rho(g)v$$

Die Eigenschaften $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$ und $e \cdot x = x$ werden automatisch durch die Homomorphismuseigenschaften von ρ erfüllt.

Darstellungen sind Gruppenoperationen auf Vektorräumen, die durch bijektive lineare Abbildungen operieren!

Darstellungen 10 / 19

Darstellungen - kommende Serienaufgabe

Welche der folgenden Abbildungen $\rho:G\to \mathrm{GL}(V)$ sind Darstellungen?

- $Q G = (\mathbb{Z}, +), V = \mathbb{C}, \rho : n \mapsto n.$
- $G = \mathrm{GL}(n,\mathbb{C}), V = \mathbb{C}^n, \rho : A \mapsto A.$

- $G = GL(n, \mathbb{C}), V = Hom(\mathbb{C}^n, \mathbb{C}^n), \rho(A)\phi = A\phi A^{-1}.$

Darstellungen 11 / 19

Darstellungen von \mathbb{Z}_n, D_n, S_n

 $ightharpoonup G=\mathbb{Z}_n, V=\mathbb{C}$ mit

$$\rho(m) = \exp\left(\frac{2\pi i}{n}m\right)$$

wobei $GL(\mathbb{C}) \cong \mathbb{C} \setminus \{0\}.$

 $ightharpoonup G=D_n, V=\mathbb{R}^2$, $\varphi=2\pi m/n$ und $m\in\{0,1,...,n-1\}$:

$$\rho(R_{\varphi}) = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}, \quad \rho(S) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $ightharpoonup G = S_n, \ V = \mathbb{C}^n, \ \rho(\sigma)e_i = e_{\sigma(i)}.$

Aufgabe: Finde $\dim(V) = 1$ Darstellungen der Gruppen D_n und S_n .

Darstellungen 12 / 19