Woche 4

Mathematische Methoden der Physik II

Gil Vieira Pereira

19. März, 2025

Abschluss Charaktertheorie, alte Prüfungsaufgaben

Unser Ziel

Wir haben nun Darstellungen definiert und dabei gesehen, dass die irreduziblen Darstelluzngen die Bausteine dafür sind. Es ist nicht verwunderlich also, dass uns bei einer gegebenen Gruppe G am meisten interessiert, welche irreduziblen Darstellungen man zu dieser Gruppe G finden kann.

- Gibt es endlich viele? Oder unendlich viele?
- Wie kann man alle finden?
- Wenn wir eine Darstellung ρ haben, wie finden wir schnell ihre Zerlegung?

Systematischer approach mit Charaktertheorie. Ziel: Charaktertabelle.

$6S_3$	[1]	3[s]	2[t]
χ_1	1	1	1
χ_2	2	0	-1
χ_{ϵ}	1	-1	1

Charakter 2 / 13

Charakter

Definition Charakter

Der Charakter einer endlichdimensionalen Darstellung $\rho:G\to \mathrm{GL}(V)$ einer Gruppe G ist die komplexwertige Funktion auf G:

$$\chi_{\rho}(g) = \operatorname{Tr}(\rho(g)) = \sum_{j=1}^{\dim V} \rho_{jj}(g)$$

Eigenschaften:

$$2 \chi_{\rho}(hgh^{-1}) = \chi_{\rho}(g)$$

$$\chi_{\rho}(e) = \dim(\rho)$$

$$4 \chi_{o^*}(g) = \chi_o(g^{-1})$$

$$0 \chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$$

8
$$\rho \sim \rho' \iff \chi_{\rho} = \chi_{\rho'}$$

Charakter 3 / 13

Konjugationsklassen

Die Eigenschaft, dass $\chi_{\rho}(hgh^{-1}) = \chi_{\rho}(g)$ suggeriert eine wichtige Definition.

Definition Konjugationsklassen

Eine Konjugationsklasse von G ist eine Teilmenge von G der Form $\{hgh^{-1},\,h\in\,G\}.$

Die Gruppe G zerfällt in Konjugationsklassen, der Äquivalenzklassen bezüglich der Äquivalenzrelation $\sim: g \sim g'$ falls ein $h \in G$ existiert, so dass $g' = hqh^{-1}$.

Die Eigenschaft oben impliziert also, dass χ_{ρ} für alle Elemente aus der Konjugationsklasse den gleichen Wert liefert, i.e. $\chi_{\rho}([g])$ ist wohldefiniert.

Charakter 4 / 13

Orthogonalitätsrelationen der Charakteren

Wir definieren auf dem Raum der komplexwertigen Funktionen $f:G \to \mathbb{C}$ das Skalarprodukt

$$(f_1, f_2) = \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g).$$

Aus den Orthogonalitätsrelationen folgt ein enorm wichtiger Satz:

Orthogonalitätsrelationen der Charakteren (Satz 3.4.1)

Seien ρ, ρ' irreduzible Darstellungen der endlichen Gruppe G, und seien $\chi_{\rho}, \chi_{\rho'}$ ihre Charakteren. Dann gilt

- Sind ρ, ρ' inaquivalent, so gilt $(\chi_{\rho}, \chi_{\rho'}) = 0$.
- Sind ρ, ρ' äquivalent, so gilt $(\chi_{\rho}, \chi_{\rho'}) = 1$.

Charakter 5 / 13

Orthogonalitätsrelationen der Charakteren

Orthogonalitätsrelationen der Charakteren (Satz 3.4.1)

Seien ρ, ρ' irreduzible Darstellungen der endlichen Gruppe G, und seien $\chi_{\rho}, \chi_{\rho'}$ ihre Charakteren. Dann gilt

- Sind ρ, ρ' inaquivalent, so gilt $(\chi_{\rho}, \chi_{\rho'}) = 0$.
- Sind ρ, ρ' äquivalent, so gilt $(\chi_{\rho}, \chi_{\rho'}) = 1$.

Sei $\rho = \rho_1 \oplus \cdots \oplus \rho_n$ eine Zerlegung einer Darstellung ρ in irreduzible Darstellungen, und sei σ eine irreduzible Darstellung.

Korollar

- ▶ Dann ist die Anzahl ρ_i , die äquivalent zu σ sind, gleich (χ_ρ, χ_σ) .
- ρ irreduzibel \iff $(\chi_{\rho}, \chi_{\rho}) = 1$.

Charakter 6 / 13

Die reguläre Darstellung

Reguläre Darstellung (Definition 2.1.2)

Die reguläre Darstellung einer endlichen Gruppe G ist die Darstellung auf dem Raum $\mathbb{C}(G)$ aller Funktionen von G nach \mathbb{C} ,

$$(\rho_{\text{reg}}(g)f)(h) = f(g^{-1}h), \quad f \in \mathbb{C}(G), g, h \in G.$$

Diese Darstellung hat folgende alternative Beschreibung: $\mathbb{C}(G)$ hat eine Basis $(\delta_g)_{g\in G}$ von delta-Funktionen: $\delta_g(g)=1, \delta_g(h)=0$ wenn $h \neq g$. Dann ist ρ_{reg} die Darstellung, sodass $\rho_{reg}(g)\delta_h = \delta_{ah}$.

In dieser Basis hat aber ho_{reg} keine Diagonaleinträge (da $\delta_{ah}
eq \delta_h$ für $q \neq e$) und es folgt, dass der Charakter gegeben ist durch

$$\chi_{\mathrm{reg}} \; (g) = \left\{ \begin{array}{ll} |G|, & \mathrm{falls} \; g = 1 \\ 0, & \mathrm{sonst.} \end{array} \right.$$

Charakter 7 / 13

Reguläre Darstellung

Satz 3.5.1

Jede irreduzible Darstellung einer endlichen Gruppe G kommt in der regulären Darstellung vor. Hat eine irreduzible Darstellung die Dimension d, so kommt sie d mal in der regulären Darstellung vor.

Sei ${\cal V}$ eine irreduzible, zweidimensionale komplexe Darstellung einer endlichen Gruppe ${\cal G}.$

- (W/F) Es folgt, dass die reguläre Darstellung von G eine Unterdarstellung besitzt, die zu V isomorph ist.
- (W/F) Es folgt, dass die reguläre Darstellung von G drei verschiedene Unterdarstellungen besitzt, die jeweils zu V isomorph sind.
- ► (W/F) Es ist möglich, dass die reguläre Darstellung der Gruppe G dreidimensional ist.
- (W/F) Es folgt, dass die reguläre Darstellung von G irreduzibel ist.

Charakter 8 / 13

Dim. & Anzahl irred. ρ einer Gruppe G

Über die Zerlegung der regulären Darstellung lassen sich für eine endliche Gruppe G die zwei folgenden Korollare ableiten:

Anzahl der irreduziblen Darstellungen (Korollar 3.5.5)

Eine endliche Gruppe hat so viele Äquivalenzklassen irreduzibler Darstellungen wie Konjugationsklassen (insbesondere endlich viele).

Dimensionen der irreduziblen Darstellungen (Korollar 3.5.2)

Ist ρ_1,\ldots,ρ_k eine Liste von irreduziblen inäquivalenten Darstellungen, eine in jeder Äquivalenzklasse, so gilt für ihre Dimensionen d_i

$$d_1^2 + \dots + d_k^2 = |G|$$
.

Charakter 9 / 13

Abelsche Gruppen - kurzer Input

Wir haben bereits gesehen, dass

Korollar 2.4.2

Jede irreduzible endlichdimensionale komplexe Darstellung einer abelschen Gruppe ist eindimensional.

Tatsächlich gilt die andere Richtung auch:

Umgekehrte Richtung von Korollar 2.4.2

Falls ${\cal G}$ nur eindimensionale irreduzible Darstellungen hat, so ist ${\cal G}$ abelsch.

Aufgabe: Beweise die obige Aussage.

Zusammenfassend:

G abelsch \iff alle irred. ρ sind von $\dim = 1$

Charakter 10 / 13

Wahr/Falsch

Sei $G = S_5$.

- \blacktriangleright (W/F) Alle irreduziblen Darstellungen von G sind eindimensional.
- (W/F) G hat eine 11 dimensionale irreduzible Darstellung.

Sei $G = \mathbb{Z}/n\mathbb{Z}$, $n \geq 3$. Dann folgt:

- $lackbox{(W/F)}\ G$ besitzt genau n paarweise nicht isomorphe irreduzible komplexe Darstellungen.
- (W/F) Sei ρ eine $\dim = 3$ komplexe Darstellung, sodass $(\chi_{\rho}, \chi_{\rho}) = 5$. Dann kommt eine irreduzible Darstellung genau 3 mal in ρ vor.

Sei G eine nicht abelsche, endliche Gruppe mit |G| = 12.

- \bigvee (W/F) G muss eine dim = 2 irreduzible Darstellung haben.
- \triangleright (W/F) G muss eine dim = 3 irreduzible Darstellung haben.
- \triangleright (W/F) G hat mindestens 4 Konjugationsklassen.

Charakter 11 / 13