Aufgabe 3 (Eigenwertproblem mit Symmetrie). (17 Punkte)

Betrachten Sie ein gleichseitiges Dreieck Δ in \mathbb{R}^3 , das in der xy-Ebene liegt und im Ursprung zentriert ist; die Eckpunkte seien

$$p_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad p_2 = \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 0 \end{pmatrix}, \qquad p_3 = \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \\ 0 \end{pmatrix}.$$

Die Symmetriegruppe G von Δ ist die Untergruppe der orthogonalen Gruppe O(3), die Δ auf sich selbst abbildet.

a) (5 Punkte)

Zeigen Sie, dass G isomorph ist zur Gruppe $D_3 \times (\mathbb{Z}/2\mathbb{Z})$.

(*Hinweis:* Sie dürfen hierfür die Tatsache verwenden, dass D_3 (die Symmetriegruppe eines regelmässigen Dreiecks in der Ebene \mathbb{R}^2) isomorph ist zur Untergruppe $\{R^aS^b: a=0,1,2,\ b=0,1\}\subset O(3)$, wobei

$$R = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \text{bzw.} \quad S = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

die Rotation um die z-Achse um 120°, bzw. die Spiegelung um die xz-Ebene bezeichnen.)

b) (4 Punkte)

Bestimmen Sie die Charaktertafel von G.

c) (6 Punkte)

Betrachten Sie die Darstellung $\rho: G \to GL(\mathbb{C}^3 \oplus \mathbb{C}^3 \oplus \mathbb{C}^3)$ mit

$$\rho(g)(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = (g\mathbf{x}_{\sigma^{-1}(1)}, g\mathbf{x}_{\sigma^{-1}(2)}, g\mathbf{x}_{\sigma^{-1}(3)}),$$

wobei $g \in G$, und $\sigma \in S_3$ ist durch $gp_i = p_{\sigma(i)}$ gegeben. (Hierbei ist $g\mathbf{x}$ für $g \in G$ und $\mathbf{x} \in \mathbb{C}^3$ durch Matrix-Vektor-Multiplikation definiert. Die Permutation σ beschreibt, wie die Ecken von Δ unter Anwendung von $g \in G$ vertauschen.) Bestimmen Sie die Dimensionen und Vielfachheiten der irreduziblen Darstellungen, die in der Zerlegung von ρ in irreduzible Darstellungen von G vorkommen.

d) (2 Punkte)

Sei A eine komplexe diagonalisierbare 9×9 Matrix mit der Eigenschaft

$$\rho(g)A = A\rho(g)$$

für alle $g \in G$.

Wie viele verschiedene Eigenwerte hat A höchstens?

Lösung 3.

a) Wir schreiben $T \in O(3)$ für die Spiegelung um die xy-Ebene; beachten Sie, dass T das Dreieck Δ auf sich selbst abbildet. Wir behaupten:

$$G = \{ T^c R^a S^b : a = 0, 1, 2, b = 0, 1, c = 0, 1 \}.$$

Zuerst '⊃': Da sicher $R, S, T \in G$ gilt, gilt auch $R^a S^b T^c \in G$ für alle a, b, c.

Nun ' \subset ': Sei umgekehrt $A \in G \subset O(3)$. Die Einschränkung von A auf

die xy-Ebene ist eine orthogonale Transformation, die Δ auf sich selbst abbildet, aber das sind ja gerade die D_3 -Elemente und man kann einfach den in der Aufgabenstellung gegebene Isomorphismus verwenden; also ist A gleich der Einschränkung eines Elementes R^aS^b auf die xy-Ebene.

Daher ist die Einschränkung von $A' := A(R^aS^b)^{-1} \in O(3)$ auf die xy-Ebene die Identitätsabbildung, und bildet die z-Achse auf sich selbst ab. Sei also $e_3 = (0,0,1)$. Falls $A'e_3 = e_3$ ist A' = I und daher $A = R^aS^b$; im verbleibenden Fall $A'e_3 = -e_3$ gilt A' = T, also $A = TR^aS^b$.

Schliesslich ist der Isomorphismus $G \cong D_3 \times (\mathbb{Z}/2\mathbb{Z})$ gegeben durch $\phi : T^c R^a S^b \mapsto (R^a S^b, c)$.

Um zu prüfen, dass ϕ wirklich ein Isomorphismus ist, müssen wir nur die Homomorphismus-Eigenschaft zeigen. Wir beobachten, dass T mit R und S kommutiert, also gilt

$$\begin{split} \phi(T^{c}R^{a}S^{b} \circ T^{c'}R^{a'}S^{b'}) &= \phi(T^{c+c'}R^{a}S^{b}R^{a'}S^{b'}) \\ &= (R^{a}S^{b}R^{a'}S^{b'}, c+c') \\ &= \phi(T^{c}R^{a}S^{b}) \circ \phi(T^{c'}R^{a'}S^{b'}). \end{split}$$

(Beachten Sie, dass die Gruppenoperation auf $\mathbb{Z}/2\mathbb{Z}$ durch Addition modulo 2 gegeben ist).

b) Die irreduziblen Darstellungen von $\mathbb{Z}/2\mathbb{Z}$ sind die triviale Darstellung ρ_0 und die Darstellung $\rho_1 \colon \mathbb{Z}/2\mathbb{Z} \to GL(1,\mathbb{C}) = \mathbb{C}\backslash 0$, gegeben durch $\rho_1(0) = 1$ und $\rho_1(1) = -1$.

Wir betrachten nun die Darstellungen von $D_3 \times \mathbb{Z}/2\mathbb{Z}$, die Produkte von irreduziblen Darstellungen von D_3 und von $\mathbb{Z}/2\mathbb{Z}$ sind; ist χ_j (j=0,1,2) der Charakter der Darstellung von D_3 und ω_k (k=0,1) der Charakter der Darstellung ρ_k , so ist der Charakter $\chi_{j,k}$ der Produktdarstellung gerade

$$\chi_{j,k}(T^c R^a S^b) = \chi_j(R^a S^b)\omega_k(c).$$

(vergleichen Sie auch Serie 6 Aufgabe 3 und Aufgabe 1b) dieser Prüfung).

Die Charaktertafel von $D_3\cong S_3$ ist vorgegeben. Sind $[C_1]=[I]$ (ein Element), $[C_2]=[R]$ (zwei Elemente), $[C_3]=[S]$ (3 Elemente) die Konjugationsklassen von D_3 , so sind die Konjugationsklassen von G gegeben durch $[C_j^0]=\{g:g\in C_j\}$ und $[C_j^1]=\{Tg:g\in C_j\}$ für j=1,2,3 (ebenfalls analog zum Vorgehen von Serie 6 Aufgabe 3). Wir erhalten also:

	$[C_1^0] = [I] (1)$	$[C_2^0] = [S]$ (3)	$[C_3^0] = [R] (2)$	$[C_1^1] = [T] (1)$	$[C_2^1] = [TS] (3)$	$[C_3^1] = [TR] (2)$
$\chi_{1,1}$	1	1	1	1	1	1
$\chi_{1,2}$	1	1	1	-1	-1	-1
$\chi_{2,1}$	1	-1	1	1	-1	1
$\chi_{2,2}$	1	-1	1	-1	1	-1
$\chi_{3,1}$	2	0	-1	2	0	-1
$\chi_{3,2}$	2	0	-1	-2	0	1

c) Wir berechnen zunächst den Charakter χ_{ρ} von ρ . Für $g \in G \subset O(3)$ gilt $\operatorname{tr} \rho(g) = (\operatorname{tr} g)N$, wobei N die Anzahl der Fixpunkte der zu g gehörigen Permutation $\sigma \in S_3$ ist. (Siehe z.B. Felder-Skript, pg. 28.)

Für g = I, S, R, T, TS, TR gilt dann trg = 3, 1, 0, 1, -1, -2, und N =

Irreduzible Darstellugen van Su

Nie kann man die irred. Darstellugen von den Vang Diagrammen honstmieren?

- 1) Sy, ax ~> cx bestimmen.
- 2) Dimension der Med. Darstelling mit Hahenlänzenformel berkmmen - so viele Basis vehtoren suchen WM.
 - 3) $V_{\lambda} = \mathbb{C}[G]^{\frac{1}{2}}C_{\lambda}$ bestimmen: $\sqrt[p]{Nicht}$ das ganze Produkt berechnen. Da

 $C[G] = a_0g_0 + a_ng_n + \dots$

ist, ist das Resultat von der Form:

 $V_{\lambda} = a_0 g_0 C_{\lambda} + a_1 g_{\Lambda} C_{\lambda} + \dots$

Jei go=e (neutrales Element). Dann vehmen wir C)
als erster Basirvehter für VI. Dann betrachter wir
gr Ch. 1st dreper linear unabh. von C)? Wenn ja → streichen,
8 onst ist gr C1 zweiter Basirvehter. Dies machen wir
8 olange, bis wir 8 oviele Basirvehteren haben, wie die
Dimension von V2 (S. 6))

4) Sobald wir Vi bestimmt haben (durch Berir behtoren), können ur dre Darstellungsmatnien berechenen. (dre Darstelling ist ja einfach linhsmultiplihation; das Theorem versichert uns, dass die Basisvehtoren ineinander transformieren, da 1/2 invariant ist). 5) Wenn wit herawfinden midster, zu welcher Derstelling P/V agrivalent ist, könner unt einfach

i) Den Chosalites Tp beechnen und (xp, Xo) = 1 überprinfen ii) Ernen expliziter Darstellugsisomorphismus p finden, $V \xrightarrow{\varphi} V_{\lambda}$ ol Ply

Beispiel: S3.

$$\overline{[1|2|3]}: S_{\lambda} = \sum_{o \in S_3} o, \quad \alpha_{\lambda} = e \implies C_{\lambda} = \sum_{o \in S_3} o$$

Laut HLF 1st dim (V) = 1. Insb. ist dawn C) em/der Basisveleter.

Da
$$p(g)C_{\lambda} = C_{\lambda}$$
 für alle $g \in S_3$
ist dies sicher die triviale Darstellung von S_3 .

$$p(g)C_{\lambda} = 8gn(g)C_{\lambda}$$

$$|S_1| = e + e_{(10)} |a_1| = e + e_{(13)}$$

$$=) C_1 = (e + e(n2))(e - e(n3))$$

= e+e(n)-e(n3)-e(n32)ther gift $dim(V_{\lambda})=2$. Als easten Basisvehter wählen wir wheder C_{λ} , aber wir branchen einen zweiten. Probleter wir $g_{\lambda}=(n2)$. Dann gift

(12) C) = e(12)+e-e(132)-e(13) = C)

(12) C) ist von C) en abhängig = verwerfen. Nächster Versuch: 92=(23)

(23) C₁ = e(23) + e(132) - e(123) - e(12) was night lih. abhängig von C₁ 1st => (23) C₁ 1st zwele Basisvelitor.

Wir wissen bereits, does dreve tred. Darstelling de Standarddarstellung von S3 sein muss. Wir können dies auf Zwei Arter überprüfen:

i) Wir überprüfer, dæss

$$(23)C_{\lambda} \longrightarrow (23)C_{\lambda} \longrightarrow (23)$$

ein Darstellungsisomorphismus ist, oder

$$X(e) = 2$$
, War.

$$= -C_{\lambda} - (23)C_{\lambda}$$

$$\Rightarrow \rho(12) = \begin{pmatrix} 1 & -1 \\ 6 & -1 \end{pmatrix} \Rightarrow \Upsilon(12) = 0$$

$$=-C_{\lambda}-(23)C_{\lambda}$$

$$(123)(23)(2) = (21)(1 - (12)(1 - (12))(1 - ($$

$$\Rightarrow p(123) = \begin{pmatrix} -11 \\ -10 \end{pmatrix} \Rightarrow \chi(1223) = -1.$$

Vergleich mit S3 tabelle:

$$(P|V_{\lambda},V_{\lambda}) \cong (Pstd.,Vstd.)$$
.