Serie 4 - Tipps

Empfehlungen. Aufgrund ihrer Bedeutung für das Verständnis, ihres Lernwerts und ihrer Relevanz für die Prüfung empfehle ich, die folgenden Aufgaben in dieser Priorität zu bearbeiten:

$$1 = 2 = 5 > 3 > 4$$

Aufgabe 3 an sich schon sehr wichtig, aber eher erst im Kontext von Kapitel 5. Die Schwierigkeit der Aufgaben wird jeweils durch die Kreise angegeben.

Aufgabe 1 ••000

- a) Genau wie in der Übungsstunde mit der Darstellung von D_3 ; benutze die Charaktertafel von S_3 im Abschnitt 3.6 im Skript.
- b) Etwas mühsam. Um die Unterräume zu finden, gibt es 2 Varianten:
 - Ihr benutzt die Projektionen (3.4) vom Skript und schmeisst alle Basisvektoren rein, um das gewünschte W zu erhalten (wieso klappt dies?).
 - Alle Vektoren von diesem Unterraum W erfüllen ja (per Definition) $\rho(g)|_W v = \rho_s(g)v = \operatorname{sgn}(g)v$ für alle $g \in G$. D.h. ihr könnt auch einfach die Schnitte der dazugehörigen Eigenräume berechnen.

Aufgabe 2 •••00

- a) Mit Bahnformel |T| bestimmen und zeigen, dass $T \to S_4$ injektiv ist.
- b) Sei $g_{p_i} \in G$ das Element, das p_1 auf p_i abbildet. Benutze dann, dass du alle $g \in G$ aufspalten kannst in

$$g = g_{g \cdot p_1} \left(\underbrace{g_{g \cdot p_1}^{-1} g}_{\in \operatorname{Stab}_{p_1}} \right)$$

Somit musst du nur $\operatorname{Stab}_{p_1}$ bestimmen und die g_{p_i} 's und diese dann miteinander multiplizieren, um alle möglichen g's zu erhalten.

c) Wir werden ein Beispiel sicher in der Übungsstunde vom 19. März betrachten. Aber grundsätzliche Heransgehensweise: Konjugationsklassen bestimmen (→ Anzahl irreps.), Dimensionen bestimmen. Dann anhand der Eigenschaften für die Gruppenelemente (Darstellungseigenschaft) und Orthogonalitätsrelationen die eindimensionalen Darstellungen bestimmen. Schliesslich noch Orthogonalität der Spalten anwenden, um die zweidimensionale Darstellung zu erhalten.

Aufgabe 3 ●●●○○

Ich würde euch empfehlen diese Aufgabe erst bei Kapitel 5 zu lösen, da euch noch einige Ideen fehlen. Falls du es jetzt schon probieren möchtest: Betracht zunächst nicht ρ , sondern ρ' definiert durch $\rho'(g)(v) = gv$. Wähle als Basis von \mathbb{C}^3 die drei Ecken p_1, p_2, p_3 (wobei dann gilt, dass $p_4 = -p_1 - p_2 - p_3$). Berechne nun ρ' auf den Konjugationsklassen zum χ' zu bestimmen. Um dann χ zu berechnen, nutze die Fixpunktformel (Kapitel 5)

$$\chi(g) = N_g \chi'(g)$$

wobei N_g die Anzahl Fixpunkte der g entsprechenden Permutation ist. Den Rest solltest du schaffen.

Aufgabe 4 •0000

-

Aufgabe 5 $\bullet \bullet \bullet \circ \circ$

- a) Welche Zahlen können $\sum d_i^2 = |O^+|$ erfüllen? Welche Darstellung muss sicher schon mal drin sein?
- b) Durch die Ordnung der Gruppenelemente in den Konjugationsklassen (Erinnerung: |g|=n wenn $g^n=e, n$ so klein wie möglich ist die Ordnung von g) gibt die ersten paar Restrictions (zusammen mit dem Hinweis, dass die Werte von χ in $\mathbb R$ sein müssen) und die Orthogonalitätsrelationen der Chartaktere gibt nochmals ein paar restrictions. Dies zusammen bestimmt χ_- eindeutig.
- c) Während der ganzen Aufgabe wirst du brauchen, dass $\chi_{\rho\otimes\rho'}=\chi_{\rho}\chi_{\rho'}$. Zeige zuerst mit dem Skalarprodukt, dass $\rho_2\otimes\rho_-$ in der Tat irreduzibel ist. Mit der Äquivalenz $\rho_2\otimes\rho_-\sim\rho_2$, der Ordnung und der Orthogonalität kann man nun alle $\chi_2(K_i), i\in\{1,2,3,4,5\}$ bestimmen.
- d) Schreibe die Charaktertabelle mal hin mit allen Einträgen die du kennst. $\chi_3(K_1)$ und $\chi_3'(K_1)$ sind auch klar. Für χ_3 schreibe $a,b,c,d\in\mathbb{C}$ für die restlichen Einträge und eruiere, was du mit $\rho_3'=\rho_3\otimes\rho_-$ sofort bei χ_3' in Abhängigkeit von a,b,c,d hinschreiben kannst. Danach einfach Orthogonalität benutzen wieder.