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Lecture 11: H,, Control

1 H, Control

The big disadvantage of LQR/LQG is that one cannot directly impose frequency domain
specifications to the control loop. A solution to this problem is given by the H., control
formulation.

1.1 Problem Formulation

In H., control we consider the closed-loop system representation reported in Figure 1.
By referring to Figure 1, one can define

w zZ

C(s) y

Figure 1: General system for H., control.

e ((s) is called the extended system and is real, rational and proper.
e ('(s) is the controller and is real, rational and proper.
(

o w(t) € C™*! is called ezogenous input, and contains at least the reference signal
r(t) and possibly other exogenous signals, such as a noise model n(t).

o z(t) € CP**! is called the performance output and is a virtual output signal only
used for design.

e u(t) € C™*! is the control input, computed by the controller C(s).
e jj(t) € CP2*! is the measured output, available to the controller C(s).

Remark. As a side node, exogenous means: caused or produced by factors external to a
model.

With H., control we are interested in finding the controller C'(s) that stabilizes internally
and externally the closed loop system and minimizes

[12]]2
”Tzw(s)Hoo = sup
w0 [ wl|2

= sup 7 (L. (juw)) (1.1)
w#0

‘= “Ymin,
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where T,,(s) is the transfer function which relates signals z(¢) and w(t). Intuitively, this
is equivalent to

e Minimize the energy (|| - ||2 norm) gain of the closed-loop system.
e Have a chance to incorporate constraints on regulated variables in frequency space,
e.g. the tracking error E(s).

One can hence state the aim of H., control to be:

Optimal H. Control: Find all admissible controllers C(s) such that ||7%,(jw)|/s is
minimized.

Differently to what we observed in H, control, the optimal H., controllers are not unique.
Moreover, the process of finding an optimal controller is complicated, numerically and
theoretically. This said, in practice is often not necessary to design an optimal controller:
often it is sufficient to find controllers which are close to optimality, but easier to com-
pute, i.e. suboptimal controllers.

Suboptimal H,, Control: Given v > 0, find all admissible controllers C'(s) such that
[ Tew ()0 < -

1.2 Mixed Sensitivity Approach
1.2.1 Transfer Functions Recap

By considering the standard MIMO control system structure with 0 disturbance depicted
in Figure 2 and defining the signals of interest to be E(s), U(s) and Y (s), one can derive
them as

E(s) = R(s) —Y(s)
= R(s) — N(s) — P(s)C(s)E(s) (12)
= E(s) = (I+ P(s)C(s)) " (R(s) = N(s)) '
= S5(s)(R(s) — N(s)
U(s) = C(s)E(s) (1.3)

$)(R(s) = N(s)) (1.4)

which can be rewritten in matrix form as

E(s) S(s) —S(s) R(s)
Us) | = [ C(s)S(s) —C(5)S(s) . (1.5)
Y (s) T(s)  S(s) (N(S))
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Figure 2: Standard feedback control system structure.

1.2.2 How to ensure Robustness?

As previously mentioned, H,, control approach allows to introduce specifications in the
frequency domain. In particular, we always focused ourselves in the analysis of the useful
system transfer functions S(s) (sensitivity function) and 7'(s) (complementary sensitivity
function). As a general reminder, recall that a small sensitivity S(s) corresponds to
disturbance rejection and a small complementary sensitivity function 7'(s) corresponds to
noise attenuation and robustness on modeling errors. We now recall the bound we defined
in previous classes

[Wi(Gw)SGw) | + W2 (jw) T (Gw)ll < 1, (1.6)

where Wi (s) and Wy(s) are the robust weighting functions for the sensitivity and the
complementary sensitivity, respectively. In order to ensure robustness, we would like to
minimize the left term in Equation 1.6. Since there exist no controller which is able to
solve this problem directly, one can write the two conditions separately, i.e.

lW1(s)S(8)|lc < 1 nominal performance,

1.7
|Wa(s)T'(s)||co < 1 robust stability. (1.7)

1.2.3 How to use this in H,, Control?

Once the weighting functions are designed, one needs to augment the original plant in
order to let the approach meet the H,, problem definition. In particular, the general form
of such an augmentation with a(t) = wu(t), y(t) = e(t) and w(t) = r(t) can be seen in
Figure 3. One can note that the signals resulting from the weighting are three and are
2e(t), 24(t), 2,(t). The error e(t) is fed through the weighting function We(s) (Wi(s) in
our previous considerations). Since the transfer function from the reference signal r(¢) to
the error e(t) is known to be the sensitivity function S(s) (refer to Equation 1.5), one can
write

Ze(s) = We(s)S(s)R(s). (1.8)

The measured output y(t) is fed through the weighting function W (s) (Wa(s) in our
previous considerations). Since the transfer function from the reference 7(t) to the output
y(t) is known to be the complementary sensitivity function 7'(s) (refer to Equation 1.5),
one can write

Zy(s) = Wy(s)T(s)R(s). (1.9)

The clever reader will notice that a third weighting function is present. The input wu(t) is
fed through the weighting function W,,(s). Since the transfer function from the reference
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Wu(s> *Z;u
Wy(s) J}y
. P(s) yi ;
C(s)

Figure 3: General extended system structure.

r(t) to the input u(t) is known to be C(s)S(s) (refer to Equation 1.5), one can write

Zu(s) = Wu(s)C(s)S(s)R(s). (1.10)
Summarizing, one can write
Ze(s) We.(s)S(s)
Zu(s) | = | Wu(s)C(s)S(s) | R(s). (1.11)
\z) \ wers )5y
Z(s) Tow(s)

1.3 Finding 7.,(s)
1.3.1 General Form

By looking at Figure 1, one can write the system into standard form, which reads

()=o)

) (GH(S) G12(3)> (W(3)> (1.12)
G21(S) GQQ(S) U(S)
Furthermore, it holds
U(s) = C(s)Y (s)
~ (1.13)
— () <G21(5)W(5) + G’gg(s)U(s)) ,

from which it follows

U(s) = (I — C(s)Gaa(5)) "  C(5)Gar(s)W (s). (1.14)
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Combining Equation 1.12 and Equation 1.14 results in

Z(s) = Gi1(s)W (s) + G12(s)U(s)
= Gi(s)W (5) + Gha(s) (T = C(s)Gas(s)) ™ C(s)Gar ()W (s)
= (G11(s) + Gia(s) (I — C(5)Gaa(s)) " C(5)Gari(s)) W(s).

N J/
-~

Tzw(s)

(1.15)

The infinity norm of 7%,,(s) is per definition

1) loe = max (maix o (Te () (1.16)
which corresponds to the maximum magnitude of its frequency response. Minimizing the
infinity means in practice, minimizing this maximum singular value, i.e. minimizing the
worst-case amplification from w(t) to z(¢) at any frequency.

1.3.2 Applying Mixed Sensitivity Approach

If the plant is augmented using the mixed sensitivity approach, it holds
We(s)S(s)
T.(s) = | Wu(s)C(s)S(s) | - (1.17)
W, (s)T'(s)

Let’s define S(s), T(s) and R(s) to be acceptable upper bounds for the sensitivity S(s),
the complementary sensitivity 7'(s) and the transfer function r — wu, C(s)S(s). By setting

We(s) = S(s)‘l
Wa(s) = R(s)™! (1.18)
W,(s) = T(S)ila

one can write the control problem as:

Suboptimal #., Control: Find C(s) such that for sufficiently small v € R it holds.

We.(s)S(s)
| { Wu(s)C(5)S(s) | lloo < - (1.19)
Wy (s)T'(s)
Remark. Note that .
d(Tw(s) =0 —a (Tzw(s)_l) == (1.20)

One can then in general define the generalized optimization problem related to this control
problem to be

min . 1.21
IITzw(S)IIooS77 ( )

One can hase essentially two cases:
e If the solution of the optimization problem results into v* < 1, then the imposed
specifications are filfilled and satisfied by C(s).
e If the solution of the optimization problem results into v* > 1, the conditions are
not satisfied and one should use relaxed weights.

What is done in practice is an iterative procedure, which solves the optimization problem
by restricting the weighting functions.
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1.4 Implementation

By fixing a 7*, one can solve the optimization problem. The augmented plant G(s) has
to be represented in state space form, i.e. we need to express the weighting functions’
dynamics. In general, one can always write

(s)=C(sl — A)'B+ D,
We(s) = Co(sT — Ao) "' Be + D,
Wa(s) = Cyu(sl — A,) ' By + Dy,
Wy(s) = Cy(sI = A,)"'B, + D,

(1.22)

1.4.1 State Space Representation

The extended system can be re-written as a dynamic system with Aey, Bext, Cext, Dext a8

T x(t)
wet)| | w(t)
l‘ugt; - Aext xugtg + Bext <U(t))
Ty (¢ Ty (¢
iyt ) 0 o
Zult . T (t w(t
20 | = L | TP <u<t>)
e(t) Ty (1)
By using Figure 3, one can write
Te(t) = Ace(t) + Beue(t)
= Acxe(l) + Be(r(t) — y(t))
= Acz(t) + Be(w(t) — Cz(t) — Du(t))
= Acwe(t) + Bow(t) — B.Cx(t) — B.Du(t), (1.24)
e( ) - ye( ) ‘
= Cewe(t) + Deue(t)
= Cee(t) + De(w(t) — Cz(t) — Du(t))
= Ceme(t) - D€C$(t) + Dew(t) - DeDu(t);
and
iy (t) = Ayzy(t) + Byuy(?)
= Ay, (1) + Byy( )
= Ayzy(t) + By(Cx(t) + Du(t))
= Ayx,(t) + B,Cx(t) + B,Du(t), (1.25)

y(t) = yy<t)
= Cywy(t) + Dyuy(t)
= Cyzy(t) + Dy(Cx(t) + Du(t))
= Cyy(t) + D,Cx(t) + DyDu(?),
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and

T, (t) = Ay, (t) + Byuy(t)
= Az, (t) + Byu(t),

2u(t) = yul(t) (1.26)
= Cyxy(t) + Dyuy(t)
= Cuwy(t) + Dyu(t).

Combining these results with Equation 1.23, one gets

A 0 0
-B.C A, O
Akt = 0 0 Au = (Bext,w Bext,u) )
B,C 0 0
-D.C C., 0
C . 0 0 Cu o Dext,zw Dext,zu
ext = DyC 0 0 N Dext7yw Dext,yu .
—C 0 O
(1.27)
Compactly, one can write
Aext ‘ Bl BQ Aext ‘ Bext,w Bext,u
Cl Dll D12 - Cext,z Dext,zw Dext,zu (128)
02 D21 D22 Cext,y Dext,yw Dext,yu

1.4.2 H, Solution

Once that one has the extended plant G(s) and the state space description of the system,
one can solve the optimization problem.

Simplified Case

Assuming

o C! Dext,zu = 07

ext,z

® BextwDixiyw = 0, i.e. process noise and sensor noise are uncorrelated,
T _
i Dext,zuDEXt,ZU - Ha

T —
b Dext,waext,yw - ]L

find a controller C'(s) such that ||T.y|/ec < v for 4 > 0. It turns out that by simplifying
the problem, the solution has similarities with the one of LQG (state feedback). The
procedure to solve this problem is:
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Kochrezept H,, Control

A controller C(s) which satisfies the objective exists if and only if the conditions contained
in the different steps are fulfilled.

I) Fix a large value for .
IT) Find the quatratic, real matrix X, > 0 which solves the algebraic Riccati equation
AT

ext

1
Xoo + XooA + ngt zCext,z + Xoo <¥Bext,wBext w Bext uBext u) Xoo (129)

and such that it is stabilizing, i.e.

1
Re ()\i (Aext + <¥Bext,w3gxt,w - Bext,ungt,u) Xoo>> <0 Vi, (1.30)

where \;(+) denotes the i—th eigenvalue.

III) Find the quadratic, real matrix Y., > 0 which solves the algebraic Riccati equation

AeXtY +Y Aext + BeXt,ngxmw + YOO ( Cext ZC xt,z Cext yO xt y) 07 (131)
and it is stabilizing, i.e.

Re ()\i(Aext + Yoo ( Cext ZCext7Z — ngwcext,y)) <0 V'l, (132)

where \;(+) denotes the i—th eigenvalue.

IV) It must holds
A = Yo Xoo > 0, (1.33)

or, equivalently,

max |A;(XooYoo)| = p(XooVao) < '727 (1.34)
where p denotes the spectral radius.
V) Reduce « until no solution is found.

VI) If the resulting minimal 4* > 1, the feasibility conditions we intoduced in the
previous chapter are no more valid. In order to make the problem feasible, one need
to relax the weights W,(s), Wy(s), W, (s). If the resulting minimal 4* < 1, the result
is acceptable. One can use the matrices X, and Y, to calclulate the H., control
dynamics. Considering the extended state

x(t)

Te(t)

zu(t) |
(t)

Tyl

z(t) = (1.35)
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one can write the controller dynamics to be

%@(t) — A i(t) — ZLy(t)

(1.36)
u(t) = F(t),
where
1
Aoo = Aext + (_QBext,ngxt w) Xoo + Bext,uF + ZLCext,y
,-y I
F= _ngt,uXOO 1.37
L = _YOOCgXt,y ( ' )

1 -1
Z = (]1 - —2YOOXOO) .
gl

Remark. In order to solve this kind of problems, a popular strategy is bisection. Let ~*
be the optimal solution. By maintaining lower and upper bounds v_ < ~* < 7, one uses
the following procedure:

1. Initialize 7~ = 0 and 7y, = «, where « is the H, norm of the H, optimal design
(LQG). Let K be the optimal LQG controller.

2. Let

-+
5

Check if a controller exists such that || T, || < 7. If yes, set v = v and K to the

controller just designed. If not, set v_ < ~.

v~ (1.38)

3. Repear from step 2. until
T+ — V- <g, (139)
where ¢ is a user-defined threshold.

4. Return K.

1.4.3 Feasibility Conditions
Conditions for the feasibility of the problem are

(a) The controllability of the extended plant G(s) must be verified: if there are non
controllable states, one needs to make sure that these states remain bounded. The
pair (Aex, B2) must be stabilizable.

(b) The extended plant G(s) must be fully observable: if there are not observable
states, one needs to make sure that these are stable. The pair (Cexty, Aext) must be
detectable.

(¢) The four matrices

Acxt - ’VW]I Bext,u ont - ’YWH Boxt,w
Dext7zu7 Dext7yw7 ( Oext,z Dext,zu )

must have full rank Vw.

(d) 0(Dext, ) < -

) (1.40)

C1ext Y D ext,yw
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Example 1. Given an extended system of a SISO plant with performance output

Z(8) We.(s)S(s)
Zuy(s) | = | Wu(s)C(s)S(s) | R(s) (1.41)
20 \ W10

where
o W.(s), W,(s) and W,(s) are weights for the corresponding sensitivities,
e S(s) is the sensitivity and T'(s) is the complementary sensitivity,
e R(s) is the reference signal to the feedback loop.

The state space representation of the extended system is given as

9'c(t) = Az(t) + Byw(t) + Byi(t)
(t) = CQI(T,) + D21w<t) + DQQﬂ(t)

Note: The system matrix A and state vector x(t) correspond to the extended system state
and not only to the plant’s one.

Assume that an ‘H.-controller C'(s) was found so that

)

)S(s) <1 (1.43)
) 00

holds.

10
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1. Which of the following magnitude plots are possible for the given extended system?

a)
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2. Let W.(s) = S(s)~! where S(s) is a designer defined upper boundary for S(s).
Which magnitude plot of S(s) and S(s) could correspond to the the given system?
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Given that all matrices in (1.42) are the same as the one derived in the lecture. One
can show that the eigenvalues of A are the eigenvalues of all separately considered
subsystems. Assume for the next two subtasks that the not considered conditions
(summarized on slide 18, lecture 11) for well-posedness of the H.-problem hold.

3. Given stabilizability to the extended system. There exists a solution to the problem
if all eigenvalues of the weight system matrices have negative real part.

1 True.
O False.

4. Assume for the given extended system that ¢(Dq1) = 1.15. There exists a solution.

O True.
O False.

Solution.

. o a)
O b)
o c)
O d)
From the lecture we know that if
We(s)S(s)
W (s)C(s)S(s) <1 (1.44)
W, (s)T'(s) o
holds, then each individual inequality holds as well. Therefore the Bode magnitude
plots of W,(s)S(s), Wu(s)C(s)S(s) and W, (s)T(s) must not exceed the 0dB-line.
We see that only the plots of a) and c) satisfy this condition.
2. @ a)
O b)

Since ”3(3)*15”(3)“ < 1, the magnitude plot of S(s) has to be always below

the one of S (s). This means, that the H..-controller is exact the solution of the
minimization problem which leads to a S(s) satisfying the above condition.

3. M True.
O False.

From the lecture we know that a sufficient condition for well-posedness of the prob-
lem is [A, By stabilizable and [A, Cs] detectable. Since Cy = (—C’S 00 0), where
(s corresponds to the plant’s LTI-representation, only the states of the plant can
be observed. However, the states of the plant are not influenced by the remaining
one. In other words, there is no possibility to observe the weight’s states. Therefore
the poles of the weights has to be stable in order to have well-posedness.

14
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4. O True.
M False.

From the lecture we know that a sufficient condition for well-posedness of the prob-
lem is 6(D11) = 7y, where in our case v = 1. Therefore the problem is not well-posed.

15
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