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Lecture 4: Analysis of MIMO Systems

1 Norms

The concept of norm will be extremely useful for evaluating signals and systems quan-
titatively during this course. In the following, we will present vector norms and matrix
norms.

1.1 Vector Norms

Definition 1. A norm on a linear space (V, F ) is a function ‖ · ‖ : V → R+ such that

a) ∀v1, v2 ∈ V, ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ (triangle inequality).

b) ∀v ∈ V, ∀α ∈ F, ‖αv‖ = |α| · ‖v‖.

c) ‖v‖ = 0⇔ v = 0.

Remark. Note that norms are always non-negative. This can be noticed by seeing that a
norm always maps to R+.

Considering x ∈ Cn, i.e. V = Cn, one can define the p−norm as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

, p = 1, 2, . . . (1.1)

The easiest example of such a norm is the case where p = 2, i.e. the euclidean norm
(shortest distance between two points):

‖x‖2 =

√√√√ n∑
i=1

|xi|2. (1.2)

Another important example of such a norm is the infinity norm (largest element in the
vector):

‖x‖∞ = max
i
|xi|. (1.3)

Example 1. You are given the vector

x =

−1
2
3

 . (1.4)

Compute the ‖x‖1,‖x‖2 and ‖x‖∞ norms of x.

Solution. It holds

‖x‖1 = | − 1|+ |2|+ |3|
= 6.

‖x‖2 =
√

1 + 4 + 9

=
√

14.

‖x‖∞ = max{1, 2, 3}
= 3.

(1.5)
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1.2 Matrix Norms

In addition to the defined axioms for norms, matrix norms fulfill

‖A ·B‖ ≤ ‖A‖ · ‖B‖. (1.6)

Considering the linear space (V, F ), with V = Cm×n, and assuming a matrix A ∈ Cm×n

is given, one can define the Frobenius norm (euclidean matrix norm) as:

‖A‖F = ‖A‖2 =

(
m∑
i=1

m∑
j=1

a2
ij

) 1
2

, (1.7)

where aij are the elements of A. This can also be written as

‖A‖F =
√

tr (A∗A), (1.8)

where tr is the trace (i.e. sum of eigenvalues or diagonal elements) of the matrix and A∗

is the Hermitian transpose of A (complex transpose), i.e.

A∗ = (conj(A))T . (1.9)

Example 2. Let

A =

(
1 −2− i

1 + i i

)
. (1.10)

Then it holds

A∗ = (conj(A))T

=

(
1 −2 + i

1− i −i

)T
=

(
1 1− i

−2 + i −i

)
.

(1.11)

The maximum matrix norm is the largest element of the matrix and is defined as

‖A‖∞ = max
i=1,...,m

max
j=1,...,n

|aij|. (1.12)

1.2.1 Matrix Norms as Induced Norms

Matrix norms can always be defined as induced norms.

Definition 2. Let A ∈ Cm×n. Then, the induced norm of matrix A can be written as

‖A‖p = sup
x∈Cn, x6=0

(
‖Ax‖p
‖x‖p

)
= sup

x∈Cn, x=1
(‖Ax‖p)

(1.13)

Remark. At this point, one would ask what is the difference between sup and max. A
maximum is the largest number within a set. A sup is a number that bounds a set. A
sup may or may not be part of the set itself (0 is not part of the set of negative numbers,
but it is a sup because it is the least upper bound). If the sup is part of the set, it is also
the max.
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Figure 1: Interpretation of induced norm.

The definition of induced norm is interesting because one can interpret this as in Figure
1. In fact, using the induced norm

‖G‖p = sup
y 6=0

(
‖Gu‖
‖u‖

)
, (1.14)

one can quantify the maimum gain (amplification) of an output vector for any possible
input direction at a given frequency. This turns out to be extremely useful for evaluating
system interconnections. Referring to Figure 2 and using the multiplication property for
norms, it holds

‖y‖p = ‖G2G1u‖p ≤ ‖G2‖p · ‖G1‖p · ‖u‖p.

⇒ ‖y‖p
‖u‖p

≤ ‖G2‖p · ‖G1‖p.
(1.15)

In words, the input-output gain of a system series is upper bounded by the product of
the induced matrix norms.

G1 G2
u w y

Figure 2: Interpretation of induced norm.

1.2.2 Properties of the Euclidean Norm

We can list a few useful properties for the Euclidean norm, intended as induced norm:

(i) If A is squared (i.e. m = n), the norm is defined as

‖A‖2 =
√
µmax

=
√

maximal eigenvalue of A∗ · A.
(1.16)

(ii) If A is orthogonal:
‖A‖2 = 1. (1.17)

Note that this is the case because orthogonal matrices always have eigenvalues with
magnitude 1.

(iii) If A is symmetric (i.e. Aᵀ = A):

‖A‖2 = max
i

(|λi|), (1.18)

where λi are the eigenvalues of A.
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(iv) If A is invertible:

‖A−1‖2 =
1

√
µmin

=
1√

minimal eigenvalue of A∗ · A
.

(1.19)

(v) If A is invertible and symmetric:

‖A−1‖2 =
1

mini(|λi|)
. (1.20)

Remark. Remember: the matrix A∗A is always a square matrix.

1.3 Signal Norms

The norms we have seen so far are space measures. Temporal norms (signal norms),
take into account the variability of signals in time/frequency. Let

e(t) =
(
e1(t) . . . en(t)

)ᵀ
, ei(t) ∈ C, i = 1, . . . , n. (1.21)

The p-norm is defined as

‖e(t)‖p =

(∫ ∞
−∞

n∑
i=1

|ei(τ)|pdτ

) 1
p

. (1.22)

A special case of this is the two-norm, also called euclidean norm, integral square error,
energy of a signal:

‖e(t)‖2 =

√√√√(∫ ∞
−∞

n∑
i=1

|ei(τ)|2dτ

)
. (1.23)

The infinity norm is defined as

‖e(t)‖∞ = sup
τ

(
max
i
|ei(τ)|

)
. (1.24)

1.4 System Norms

Considering linear, time-invariant, causal systems of the form depicted in Figure 1, one
can write the relation

y(t) = G ∗ u(t)

=

∫ ∞
−∞

G(t− τ)u(τ)dτ.
(1.25)

The two-norm for the transfer function Ĝ reads

‖Ĝ(s)‖2 =

(
1

2π

∫ ∞
−∞
|Ĝ(jω)|2dω

) 1
2

=

(
1

2π

∫ ∞
−∞

tr
(
Ĝ∗(jω)Ĝ(jω)

)
dω

) 1
2

=

(
1

2π

∫ ∞
−∞

∑
i,j=1

|gij|2dω

) 1
2

.

(1.26)
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Remark. Note that this norm is a measure of the combination of system gains in all
directions, over all frequency. This is not an induced norm, as it does not respect the
multiplicative property.

The infinity norm is
‖Ĝ(s)‖∞ = sup

ω
‖Ĝ(jω)‖2 (1.27)

Remark. This norm is a measure of the peak of the maximum singular value, i.e. the
biggest amplification the system may bring at any frequency, for any input direction
(worst case scenario). This is an induced norm and respects the multiplicative property.

2 Singular Value Decomposition (SVD)

The Singular Value Decomposition plays a central role in MIMO frequency response
analysis. Let’s recall some concepts from the course Lineare Algebra I/II :

2.1 Preliminary Definitions

The induced norm ||A|| of a matrix that describes a linear function like

y = A · u (2.1)

is defined as

‖A‖ = max
u6=0

‖y‖
‖u‖

= max
‖u‖=1

‖y‖.
(2.2)

Let’s recall Equation 1.16, and let’s notice that if A ∈ Rn×m it holds

A∗ = AT . (2.3)

In order to define the SVD we have to go a step further. Let’s consider a Matrix A and
the linear function given in Equation 2.1. It holds

‖A‖2
2 = max

||u||=1
y∗ · y

= max
||u||=1

(A · u)∗ · (A · u)

= max
||u||=1

u∗ · A∗ · A · u

= max
i
µ(A∗ · A)

= max
i
σ2
i .

(2.4)

where σi are the singular values of matrix A. They are defined as

σi =
√
µi (2.5)

where µi are the eigenvalues of A∗ · A.
Combining Equations 2.2 and 2.5 one gets

σmin(A) ≤ ||y||
||u||

≤ σmax(A). (2.6)
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u
y = A · u

Figure 3: Illustration of the singular values.

2.2 Singular Value Decomposition

Our goal is to write a general matrix A ∈ Cp×m as product of three matrices: U , Σ and
V ∗. It holds

A = U · Σ · V ∗ with U ∈ Cp×p, Σ ∈ Rp×m, V ∈ Cm×m. (2.7)

Remark. U and V are orthogonal, Σ is a diagonal matrix.

2.2.1 Kochrezept:

Let A ∈ Cp×m be given:

(I) Compute all the eigenvalues and eigenvectors of the matrix

A∗ · A ∈ Cm×m.

and sort them as

µ1 ≥ µ2 ≥ . . . ≥ µr > µr+1 = . . . = µm = 0 (2.8)

(II) Compute an orthogonal basis from the eigenvectors vi and write it in a matrix as

V = (v1 . . . vm) ∈ Cm×m. (2.9)

(III) We have already found the singular values: they are defined as

σi =
√
µi for i = 1, . . . ,min{p,m}. (2.10)

By ordering them from the biggest to the smallest, we can then write Σ as

Σ =

σ1 0 . . . 0
. . .

...
...

σm 0 . . . 0

 ∈ Rp×m, p < m (2.11)
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Σ =



σ1

. . .

σn
0 . . . 0
...

...
0 . . . 0


∈ Rp×m, p > m. (2.12)

(IV) One finds u1, . . . , ur from

ui =
1

σi
· A · vi for all i = 1, . . . , r (for σi 6= 0) (2.13)

(V) If r < p one has to complete the basis u1, . . . , ur (with ONB from Gram-Schmid) to
obtain an orthogonal basis, with U orthogonal.

(VI) If you followed the previous steps, you can write

A = U · Σ · V ∗.

Motivation for the computation of Σ, U und V .

A∗ · A = (U · Σ · V ∗)∗ · (U · Σ · V ∗)
= V · Σ∗ · U∗ · U · Σ · V ∗

= V · Σ∗ · Σ · V ∗

= V · Σ2 · V ∗.

(2.14)

This is nothing else than the diagonalization of the matrix A∗ · A. The columns of V
are the eigenvectors of A∗ · A and the σ2

i the eigenvalues.
For U :

A · A∗ = (U · Σ · V ∗) · (U · Σ · V ∗)∗

= U · Σ · V ∗ · V · Σ · U∗

= U · Σ∗ · Σ · U∗

= U · Σ2 · U∗.

(2.15)

This is nothing else than the diagonalization of the matrix A · A∗. The columns of U
are the eigenvectors of A · A∗ and the σ2

i the eigenvalues.

Remark. In order to derive the previous two equations I used that:

• The matrix A∗ · A is symmetric, i.e.

(A∗ · A)∗ = A∗ · (A∗)∗

= A∗ · A.

• U−1 = U∗ (because U is unitary).

• V −1 = V ∗ (because V is unitary).
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Remark. Since the matrix A∗·A is always symmetric and positive semidefinite, the singular
values are always real numbers.

Remark. The Matlab command for the singular value decomposition is

[U,S,V]=svd

One can write AT as A.’=transpose(A) and A∗ as A’=conj(transpose(A)). Those two
are equivalent for real numbers.

2.3 Intepretation

Considering the system depicted in Figure 1, one rewrite the system G as G = UΣV ∗. The
matrix V is orthogonal and contains the input directions of the system. The matrix
U is orthogonal as well and contains the output directions of the system (unfortunate
notation). It holds

G = UΣV ∗

GV = UΣ

Gvi = σiui, ∀i,
(2.16)

which is similar to an eigenvalue equation. This can be rewritten as

σi =
‖Gvi‖
‖ui‖

. (2.17)

For a unitary input, i.e. ‖u‖2 = 1, one has

y1 = σ1u1,

ym = σmum,
(2.18)

where σm is the last (and hence the smallest) singular value. This can be interpreted
using Figure 3 and interpreting the circle as a unit circle.

Example 3. Let u be

u =

(
cos(x)
sin(x)

)
with ||u|| = 1. The matrix M is given as

M =

(
2 0

0 1
2

)
.

We know that the product of M and u defines a linear function

y = M · u

=

(
2 0

0 1
2

)
·
(

cos(x)
sin(x)

)

=

(
2 · cos(x)

1
2
· sin(x)

)
.
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We need the maximum of ||y||. In order to avoid square roots, one can use that the x
that maximizes ||y|| should also maximize ||y||2.

‖y‖2 = 4 · cos2(x) +
1

4
· sin2(x)

has maximum

d||y||2

dx
= −8 · cos(x) · sin(x) +

1

2
· sin(x) · cos(x)

!
= 0

⇒ xmax =

{
0,
π

2
, π,

3π

2

}
.

Inserting back for the maximal ||y|| one gets:

||y||max = 2, ||y||max =
1

2
.

The singular values can be calculated with M∗ ·M :

M∗ ·M = Mᵀ ·M

=

(
4 0
0 1

4

)
⇒ λi =

{
4,

1

4

}
⇒ σi =

{
2,

1

2

}
.

As stated before, one can see that ||y|| ∈ [σmin, σmax]. The matrix U has eigenvectors of
M ·Mᵀ as coulmns and the matrix V has eigenvectors of Mᵀ ·M as columns.
In this case

M ·Mᵀ = Mᵀ ·M,

hence the two matrices are equal. Since their product is a diagonal matrix one should
recall from the theory that the eigenvectors are easy to determine: they are nothing else
than the standard basis vectors. This means

U =

[
1 0
0 1

]
, Σ =

[
2 0
0 1

2

]
, V =

[
1 0
0 1

]
.

Interpretation:

Referring to Figure 4, let’s interprete these calculations. One can see that the maximal
amplification occurs at v = V (:, 1) and has direction u = U(:, 1), i.e. the vector u
is doubled (σmax). The minimal amplification occurs at v = V (:, 2) and has direction
u = U(:, 2), i.e. the vector u is halved (σmin)
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u y = M · u

21

1

0.5

Figure 4: Illustration of the singular value decomposition.

Example 4. Let

A =

−3 0
0 3√
3 2


be given.
Question: Find the singular values of A and write down the matrix Σ.

Solution. Let’s compute ATA:

ATA =

(
−3 0

√
3

0 3 2

)
·

−3 0
0 3√
3 2

 =

(
12 2

√
3

2
√

3 13

)

One can see easily that the eigenvalues are

λ1 = 16, λ2 = 9.

The singular values are
σ1 = 4, σ2 = 3.

One writes in this case

Σ =

4 0
0 3
0 0

 .
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Example 5. A transfer function G(s) is given as(
1
s+3

s+1
s+3

s+1
s+3

1
s+3

)

Find the singular values of G(s) at ω = 1 rad
s

.

Solution. The transfer function G(s) evaluated at ω = 1 rad
s

has the form

G(j) =

(
1
j+3

j+1
j+3

j+1
j+3

1
j+3

)
In order to calculate the singular values, we have to compute the eigenvalues of H = G∗ ·G:

H = G∗ ·G

=

(
1

−j+3
−j+1
−j+3

−j+1
−j+3

1
−j+3

)
·

(
1
j+3

j+1
j+3

j+1
j+3

1
j+3

)

=

(
3
10

2
10

2
10

3
10

)

=
1

10
·
(

3 2
2 3

)
.

For the eigenvalues it holds

det(H − λ · I) = det

(
3
10
− λ 2

10

2
10

3
10
− λ

)

=

(
3

10
− λ
)2

−
(
− 2

10

)2

= λ2 − 6

10
λ+

5

100

=

(
λ− 1

10

)
·
(
λ− 5

10

)
.

It follows

λ1 =
1

10

λ2 =
1

2

and so

σ1 =

√
1

10

≈ 0.3162.

σ2 =

√
1

2

≈ 0.7071.
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Example 6. Let be

A =

(
1 2
0 1

)
B =

(
j 1

)
.

Find the singular values of the two matrices.

Solution.

• Let’s begin with matrix A. It holds

H = A∗ · A

=

(
1 0
2 1

)
·
(

1 2
0 1

)
=

(
1 2
2 5

)
.

In order to find the eigenvalues of H we compute

det(H − λ · I) = det

(
1− λ 2

2 5− λ

)
= (1− λ) · (5− λ)− 4

= λ2 − 6λ+ 1.

This means that the eigenvalues are

λ1 = 3 + 2
√

2

λ2 = 3− 2
√

2.

The singular values are then

σ1 ≈ 2.4142

σ2 ≈ 0.4142.

• Let’s look at matrix B. It holds

F = B∗ ·B

=

(
−j
1

)
·
(
j 1

)
=

(
1 −j
j 1

)
.

In order to find the eigenvalues of F we compute

det(F − λ · I) = det

(
1− λ −j
j 1− λ

)
= (1− λ)2 − 1

= λ2 − 2λ

= λ · (λ− 2).
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This means that the eigenvalues are

λ1 = 0

λ2 = 2.

The singular values are then

σ1 = 0

σ2 =
√

2.

2.4 Directions of poles and zeros

2.4.1 Directions of zeros

Assume a system G(s) has a zero at s = z. Then, it must holds

G(z)uz = 0, y∗zG(z) = 0, (2.19)

where uz is the input zero direction and yz is the output zero direction. Furthermore,
it holds

‖uz‖2 = 1, ‖yz‖2 = 1. (2.20)

2.4.2 Directions of poles

Assume a system G(s) has a pole at s = p. Then, it must holds

G(p)up →∞, y∗pG(p)→∞, (2.21)

where up is the input pole direction and yp is the output pole direction. Furthermore,
it holds

‖up‖2 = 1, ‖yp‖2 = 1. (2.22)

Remark. In both cases, if the zero/pole causes an unfeasible calculation, one consider
feasible variations, i.e. z + ε, p+ ε.

2.5 Frequency Responses

As we learned for SISO systems, if one excites a system with an harmonic signal

u(t) = h(t) · cos(ω · t), (2.23)

the answer after a big amount of time is still an harmonic function with equal frequency
ω:

y∞(t) = |P (j · ω)| cos(ω · t+ ∠(P (j · ω))). (2.24)

One can generalize this and apply it to MIMO systems. With the assumption of p = m,
i.e. equal number of inputs and outputs, one excite a system with

u(t) =

 µ1 · cos(ω · t+ φ1)
...

µm · cos(ω · t+ φm)

 · h(t) (2.25)
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and get

y∞(t) =

 ν1 · cos(ω · t+ ψ1)
...

νm · cos(ω · t+ ψm)

 . (2.26)

Let’s define two diagonal matrices

Φ = diag(φ1, . . . , φm) ∈ Rm×m,

Ψ = diag(ψ1, . . . , ψm) ∈ Rm×m (2.27)

and two vectors

µ =
(
µ1 . . . µm

)T
,

ν =
(
ν1 . . . νm

)T
.

(2.28)

With these one can compute the Laplace Transform of the two signals as:

U(s) = e
Φ·s
ω · µ · s

s2 + ω2
. (2.29)

and
Y (s) = e

Ψ·s
ω · ν · s

s2 + ω2
. (2.30)

With the general equation for a systems one gets

Y (s) = P (s) · U(s)

e
Ψ·s
ω · ν · s

s2 + ω2
= P (s) · e

Φ·s
ω · µ · s

s2 + ω2

e
Ψ·j·ω

ω · ν = P (s) · e
Φ·j·ω

ω · µ
eΨ·j · ν = P (s) · eΦ·j · µ.

(2.31)

We then recall that the induced norm for the matrix of a linear transformation y = A ·u
from 2.2. Here it holds

||P (j · ω)|| = max
eΦ·j ·µ6=0

||eΨ·j · ν||
||eΦ·j · µ||

= max
||eΦ·j ·µ||=1

||eΨ·j · ν||.
(2.32)

Since
||eΦ·j · µ|| = ||µ|| (2.33)

and
||eΨ·j · ν|| = ||ν||. (2.34)

One gets

||P (j · ω)|| = max
µ6=0

||ν||
||µ||

= max
||µ||=1

||ν||.
(2.35)

Here one should get the feeling of why we introduced the singular value decomposition.
From the theory we’ve learned, it is clear that

σmin(P (j · ω)) ≤ ||ν|| ≤ σmax(P (j · ω)). (2.36)
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and if ||µ|| 6= 1

σmin(P (j · ω)) ≤ ||ν||
||µ||

≤ σmax(P (j · ω)). (2.37)

with σi singular values of P (j · ω). These two are worst case ranges and is important to
notice that there is no exact formula for ν = f(µ).

2.5.1 Maximal and minimal Gain

You are given a singular value decomposition

P (j · ω) = U · Σ · V ∗. (2.38)

One can read out from this decomposition several informations: the maximal/minial gain
will be reached with an excitation in the direction of the column vectors of V . The
response of the system will then be in the direction of the coulmn vectors of U .
Let’s look at an example and try to understand how to use these informations:

Example 7. We consider a system with m = 2 inputs and p = 3 outputs. We are given
its singular value decomposition at ω = 5 rad

s
:

Σ =

0.4167 0
0 0.2631
0 0

 ,

V =

(
0.2908 0.9568

0.9443− 0.1542 · j −0.2870 + 0.0469 · j

)
,

U =

−0.0496− 0.1680 · j 0.1767− 0.6831 · j −0.6621− 0.1820 · j
0.0146− 0.9159 · j −0.1059 + 0.3510 · j −0.1624 + 0.0122 · j
0.0349− 0.3593 · j 0.1360− 0.5910 · j 0.6782 + 0.2048 · j

 .

For the singular value σmax = 0.4167 the eigenvectors are V (:, 1) and U(:, 1):

V1 =

(
0.2908

0.9443− 0.1542 · j

)
, |V1| =

(
0.2908
0.9568

)
, ∠(V1) =

(
0

−0.1618

)
,

U1 =

−0.0496− 0.1680 · j
0.0146− 0.9159 · j
0.0349− 0.3593 · j

 , |U1| =

0.1752
0.9160
0.3609

 , ∠(U1) =

−1.8581
−1.5548
−1.4741

 .

The maximal gain is then reached with

u(t) =

(
0.2908 · cos(5 · t)

0.9568 · cos(5 · t− 0.1618)

)
.

The response of the system is then

y(t) = σmax ·

0.1752 · cos(5 · t− 1.8581)
0.9160 · cos(5 · t− 1.5548)
0.3609 · cos(5 · t− 1.4741)

 = 0.4167 ·

0.1752 · cos(5 · t− 1.8581)
0.9160 · cos(5 · t− 1.5548)
0.3609 · cos(5 · t− 1.4741)

 .

Since the three signals y1(t), y2(t) and y3(t) are not in phase, the maximal gain will never
be reachen. One can show that

max
t
‖y(t)‖ ≈ 0.4160 < 0.4167 = σmax

The reason for this difference stays in the phase deviation between y1(t), y2(t) and y3(t).
The same analysis can be computed for σmin.
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Example 8. Given the MIMO system

P (s) =

(
1
s+3

1
s+1

1
s+1

3
s+1

)
.

Starting at t = 0, the system is excited with the following input signal:

u(t) =

(
cos(t)

µ2 cos(t+ ϕ2)

)
.

Find the parameters ϕ2 and µ2 such that for steady-state conditions the output signal(
y1(t)
y2(t)

)
has y1(t) equal to zero.

Solution. For a system excited using a harmonic input signal

u(t) =

(
µ1 cos(ωt+ ϕ1)
µ2 cos(ωt+ ϕ2)

)
the output signal y(t), after a transient phase, will also be a harmonic signal and hence
have the form

y(t) =

(
ν1 cos(ωt+ ψ1)
ν2 cos(ωt+ ψ2)

)
.

As we have learned, it holds

eΨ·j · ν = P (jω) · eΦ·j · µ.

One gets (
eψ1·j 0

0 eψ2·j

)
·
(
ν1

ν2

)
=

(
P11(jω) P12(jω)
P11(jω) P21(jω)

)
·
(
eϕ1·j 0

0 eϕ2·j

)
·
(
µ1

µ2

)
.

For the first component one gets

eψ1·j · ν1 = P11(jω) · eϕ1·j · µ1 + P12(jω) · eϕ2·j · µ2.

For y1(t) = 0 to hold we must have ν1 = 0. In the given case, some parameters can be
easily copied from the signals:

µ1 = 1

ϕ1 = 0

ω = 1.

With the given transfer functions, one gets

0 =
1

j + 3
+ µ2 ·

1

j + 1
· eϕ2·j

0 =
3− j

10
+ µ2 ·

1− j
2
· eϕ2·j

0 =
3− j

10
+ µ2 ·

1− j
2
· (cos(ϕ2) + j sin(ϕ2))

0 =
3

10
+ µ2 ·

1

2
· (cos(ϕ2) + sin(ϕ2)) + j ·

(
µ2 ·

1

2
· (sin(ϕ2)− cos(ϕ2))− 1

10

)
.
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Splitting the real to the imaginary part, one can get two equations that are easily solvable:

µ2 ·
1

2
· (cos(ϕ2) + sin(ϕ2)) +

3

10
= 0

µ2 ·
1

2
· (sin(ϕ2)− cos(ϕ2))− 1

10
= 0.

Adding and subtracting the two equations one can reach two better equations:

µ2 · sin(ϕ2) +
1

5
= 0

µ2 · cos(ϕ2) +
2

5
= 0.

One of the solutions (periodicity) reads

µ2 =
1√
5

ϕ2 = arctan

(
1

2

)
+ π.

Example 9. A 2× 2 linear time invariant MIMO system with transfer function

P (s) =

(
1
s+1

2
s+1

s2+1
s+10

1
s2+2

)
is excited with the signal

u(t) =

(
µ1 · cos(ω · t+ ϕ1)
µ2 · cos(ω · t+ ϕ2)

)
.

Because we bought a cheap signal generator, we cannot know exactly the constants µ1,2

and ϕ1,2. A friend of you just found out with some measurements, that the excitation
frequency is ω = 1 rad

s
. The cheap generator, cannot produce signals with magnitude of

µ bigger than 10, i.e.
√
µ2

1 + µ2
2 ≤ 10. This works always at maximal power, i.e. at 10.

Choose all possible responses of the system after infinite time.

� y∞(t) =

(
5 · sin(t+ 0.114)

cos(t)

)
.

� y∞(t) =

(
5 · sin(t+ 0.114)

cos(2 · t)

)
.

� y∞(t) =

(
sin(t+ 0.542)
sin(t+ 0.459)

)
.

� y∞(t) =

(
19 · cos(t+ 0.114)

cos(t+ 1.124)

)
.

� y∞(t) =

(
5 · cos(t+ 0.114)

5 · cos(t)

)
.

� y∞(t) =

(
10 · sin(t+ 2.114)
11 · sin(t+ 1.234)

)
.

17
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Solution.

�3 y∞(t) =

(
5 · sin(t+ 0.114)

cos(t)

)
.

� y∞(t) =

(
5 · sin(t+ 0.114)

cos(2 · t)

)
.

� y∞(t) =

(
sin(t+ 0.542)
sin(t+ 0.459)

)
.

� y∞(t) =

(
19 · cos(t+ 0.114)

cos(t+ 1.124)

)
.

�3 y∞(t) =

(
5 · cos(t+ 0.114)

5 · cos(t)

)
.

�3 y∞(t) =

(
10 · sin(t+ 2.114)
11 · sin(t+ 1.234)

)
.

Explanation

We have to compute the singular values of the matrix P (j · 1). These are

σmax = 1.8305

σmin = 0.3863.

With what we have learned it follows

10 · σmin = 3.863 ≤ ||ν|| ≤ 18.305 = 10 · σmax.

The first response has ||ν|| =
√

26 that is in this range. The second response also has
||ν|| =

√
26 but the frequency in its second element changes and that isn’t possible for

linear systems. The third response has ||ν|| =
√

2 that is too small to be in the range.
The fourth response has ||ν|| =

√
362 that is too big to be in the range. The fifth response

has ||ν|| =
√

50 that is in the range. The sixth response has ||ν|| =
√

221 that is in the
range.
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Example 10. A 3× 2 linear time invariant MIMO system is excited with the input

u(t) =

(
3 · sin(30 · t)
4 · cos(30 · t)

)
.

You have forgot your PC and you don’t know the transfer function of the system. Before
coming to school, however, you have saved the Matlab plot of the singular values of the
system on your phone (see Figure 5. Choose all the possible responses of the system.

Figure 5: Singular values behaviour.

� y∞(t) =

0.5 · sin(30 · t+ 0.314)
0.5 · cos(30 · t)

0.5 · cos(30 · t+ 1)

.

� y∞(t) =

4 · sin(30 · t+ 0.314)
3 · cos(30 · t)

2 · cos(30 · t+ 1)

.

� y∞(t) =

0.1 · sin(30 · t+ 0.314)
0.1 · cos(30 · t)

0.1 · cos(30 · t+ 1)

.

� y∞(t) =

 0
4 · cos(30 · t)

2 · cos(30 · t+ 1)

.

� y∞(t) =

2 · cos(30 · t+ 0.243)
2 · cos(30 · t+ 0.142)
2 · cos(30 · t+ 0.252)

.
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Solution.

�3 y∞(t) =

0.5 · sin(30 · t+ 0.314)
0.5 · cos(30 · t)

0.5 · cos(30 · t+ 1)

.

� y∞(t) =

4 · sin(30 · t+ 0.314)
3 · cos(30 · t)

2 · cos(30 · t+ 1)

.

� y∞(t) =

0.1 · sin(30 · t+ 0.314)
0.1 · cos(30 · t)

0.1 · cos(30 · t+ 1)

.

�3 y∞(t) =

 0
4 · cos(30 · t)

2 · cos(30 · t+ 1)

.

�3 y∞(t) =

2 · cos(30 · t+ 0.243)
2 · cos(30 · t+ 0.142)
2 · cos(30 · t+ 0.252)

.

Explanation

From the given input one can read

||µ|| =
√

32 + 42 = 5.

From the plot one can read at ω = 30 rad
s
σmin = 0.1 and σmax = 1. It follows

5 · σmin = 0.5 ≤ ||ν|| ≤ 5 = 5 · σmax.

The first response has ||ν|| =
√

0.75 that is in the range. The second response has
||ν|| =

√
29 that is too big to be in the range. The third response has ||ν|| =

√
0.03 that

is to small to be in the range. The fourth response has ||ν|| =
√

20 that is in the range.
The fifth response has ||ν|| =

√
12 that is in the range.
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