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Lecture 5: MIMO Stability, Performance and
Robustness

1 MIMO Stability, Controllability, Observability

1.1 External Stability

The input-output stability (also known as external stability) describes the stability
properties of a system with respect to its input-output behaviour. Let’s consider the
system interaction depicted in Figure 1.

G
u y

Figure 1: Interpretation of induced norm.

Definition 1. A MIMO system y = Gu is said to be BIBO stable (i.e. bounded input
bounded output) if there exists a finite constant k ∈ R such that

‖y‖∞ ≤ k‖u‖∞. (1.1)

Remark. A necessary and sufficient condition for BIBO stability is: the closed loop
transfer function

P (s) = C(sI− A)−1 +D (1.2)

has all poles in the open left-half of the complex plane (all poles have real part strictly
smaller than 0).

1.2 Internal Stability

Consider the linear time invariant system

ẋ(t) = A · x(t) +B · u(t), x(t) ∈ Rn, u(t) ∈ Rm

y(t) = C · x(t) +D · u(t), y(t) ∈ Rp (1.3)

where

x(t) ∈ Rn×1, u(t) ∈ Rm×1, y(t) ∈ Rp×1, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
(1.4)

Such a system is internally stable if for all initial conditions, and all bounded signals
injected at any place in the system, all states remain bounded for all future time.

Definition 2. The MIMO linear time invariant system described in Equation 1.3 is BIBO
stable if and only if C(sI − A)−1 + D has all poles on the open left-half of the complex
plane (all poles have real part strictly smaller than 0).

Remark.
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• Internal stability implies BIBO stability. The converse is not true.

• BIBO stability with controllability and observability imply internal stability.

This is a crucial concept: it is not sufficient for the input-output transfer function of
the system to be stable. In fact, internal transfer functions, related to the sensitivity
functions, must be stable as well to prevent pole/zero cancellations, which could hide
instabilities.

1.2.1 Internal Stability Check

Assume a MIMO loop as the one depiced in Figure 2. It holds

G(s)

K(s)

w1 e1

e2 w2

Figure 2: MIMO Loop.

E1(s) = W1(s) +K(s)E2(s)

= W1(s) +K(s) [G(s)E1(s) +W2(s)]

= W1(s) +K(s)G(s)E1(s) +K(s)W2(s),

(1.5)

from which it follows

(I−K(s)G(s))E1(s) = W1(s) +K(s)W2(s)

E1(s) = (I−K(s)G(s))−1W1(s) + (I−K(s)G(s))−1K(s)W2(s).
(1.6)

Similarly, one can write

E2(s) = W2(s) +G(s)E1(s)

= W2(s) +G(s) [K(s)E2(s) +W1(s)]

= W2(s) +G(s)K(s)E2(s) +G(s)W1(s),

(1.7)

from which it follows

(I−G(s)K(s))E2(s) = W2(s) +G(s)W1(s)

E2(s) = (I−G(s)K(s))−1W2(s) + (I−G(s)K(s))−1G(s)W1(s).
(1.8)

Resuming the calculations into matrix form, one gets(
E1(s)
E2(s)

)
=

(
(I−K(s)G(s))−1 (I−K(s)G(s))−1K(s)

(I−G(s)K(s))−1G(s) (I−G(s)K(s))−1

)
·
(
W1(s)
W2(s)

)
. (1.9)

The necessary and sufficient condition for internal stability is: each of the four transfer
functions in relation 1.9 must be stable. (Note: even if three of four are stable, the system
is not internally stable).
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1.3 Lyapunov Stability

The Lyapunov stability theorem analyses the behaviour of a system near to its equilibrium
points when u(t) = 0. Because of this, we don’t care if the system is MIMO or SISO. The
three cases are

• Asymptotically stable: limt→∞ ‖x(t)‖ = 0;

• Stable: ‖x(t)‖ <∞∀ t ≥ 0;

• Unstable: limt→∞ ‖x(t)‖ =∞.

As it was done for the SISO case, one can show by using x(t) = eA·t · x0 that the stability
can be related to the eigenvalues of A through:

• Asymptotcally stable: Re(λi) < 0 ∀ i;

• (Marginally) Stable: Re(λi) ≤ 0 ∀ i;

• Unstable: Re(λi) > 0 for at least one i.

1.4 Controllability and Observability

1.4.1 Controllability

Controllable: is it possible to control all the states of a system with an input u(t)?
Mathematically, a linear time invariant system is controllable if, for every state x∗(t) and
every finite time T > 0, there exists an input function u(t), 0 < t ≤ T such that the
system can be driven from the initial state x(0) = x0 to x(T ) = x∗(t).
A system of the form of the one represented in Equation 1.3 is said to be completely
controllable, if the controllability Matrix

R =
(
B A ·B A2 ·B . . . An−1 ·B

)
∈ Rn×(n·m). (1.10)

has full rank n (easy by checking row rank).

1.4.2 Observability

Observable: is it possible to reconstruct the initial conditions of all the states of a system
from the output y(t)?
A system is said to be completely observable, if the observability Matrix

O =


C

C · A
C · A2

...
C · An−1

 ∈ R(n·p)×n. (1.11)

has full rank n (easy by checking column rank).
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Example 1. The dynamics of a system are given as

ẋ(t) =

 4 1 0
−1 2 0
0 0 2

 · x(t) +

1 0
0 0
0 1

 · u(t)

y(t) =

(
1 0 0
0 1 1

)
· x(t).

(1.12)

Moreover the transfer function of the system is given as

P (s) =

(
(s−2)

s2−6s+9
0

−1
s2−6s+9

1
s−2

)
. (1.13)

(a) Is the system Lyapunov stable, asymptotically stable or unstable?

(b) Is the system completely controllable?

(c) Is the system completely observable?

(d) The poles of the system are π1 = 2 and π2,3 = 3. The zero of the system is ζ1 = 2.
Are there any zero-pole cancellations?

Solution.

(a) First of all, one identifies the matrices as:

ẋ(t) =

 4 1 0
−1 2 0
0 0 2


︸ ︷︷ ︸

A

·x(t) +

1 0
0 0
0 1


︸ ︷︷ ︸

B

·u(t)

y(t) =

(
1 0 0
0 1 1

)
︸ ︷︷ ︸

C

·x(t) +

(
0 0
0 0

)
︸ ︷︷ ︸

D

·u(t).

(1.14)

We have to compute the eingevalues of A. It holds

det(A− λ · 1) = |

4− λ 1 0
−1 2− λ 0
0 0 2− λ

 |
= (2− λ) · |

(
4− λ 1
−1 2− λ

)
|

= (2− λ) · ((4− λ) · (2− λ) + 1)

= (2− λ) · (λ2 − 6λ+ 9)

= (2− λ) · (λ− 3)2.

(1.15)

Since all the three eigenvalues are bigger than zero, the system is Lyapunov unsta-
ble.
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(b) The controllability matrix can be found with the well-known multiplications:

A ·B =

 4 1 0
−1 2 0
0 0 2

 ·
1 0

0 0
0 1


=

 4 0
−1 0
0 2

 ,

A2 ·B =

 4 1 0
−1 2 0
0 0 2

 ·
 4 0
−1 0
0 2


=

15 0
−6 0
0 4

 .

(1.16)

Hence, the controllability matrix reads

R =

1 0 4 0 15 0
0 0 −1 0 −6 0
0 1 0 2 0 4

 . (1.17)

This has full rank 3: the system ist completely controllable.

(c) The observability matrix can be found with the well-known multiplications:

C · A =

(
1 0 0
0 1 1

)
·

 4 1 0
−1 2 0
0 0 2


=

(
4 1 0
−1 2 2

)
,

C · A2 =

(
4 1 0
−1 2 2

)
·

 4 1 0
−1 2 0
0 0 2


=

(
15 6 0
−6 3 4

)
.

(1.18)

Hence, the observability matrix reads

O =


1 0 0
0 1 1
4 1 0
−1 2 2
15 6 0
−6 3 4

 . (1.19)

This has full rank 3: the system is completely observable.

(d) Although ζ1 = 2 and π1 = 2 have the same magnitude, they don’t cancel out.
Why? Since the system ist completely controllable and completely observable, we
have already the minimal realization of the system. This means that no more
cancellation is possible. The reason for that is that the directions of the two don’t
coincide. We will learn more about this in the next chapter.
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2 MIMO Performance

2.1 What is Performance?

A good performance means

• good disturbance rejection,

• good noise attenuation,

• good reference tracking,

at input and output.

2.2 Performance Analysis

Recalling the general MIMO loop depicted in Figure 3, we defined inner and outer loop

F (s) = I C(s)

d(t)

P (s)

n(t)

r(t) e(t) u(t) v(t) η(t) y(t)

−

Figure 3: Standard feedback control system structure.

transfer functions
LO(s) = P (s) · C(s) 6= C(s) · P (s) = LI(s), (2.1)

and the input/output sensitivity functions, i.e.

• Output sensitivity function (n→ y)

SO(s) = (I + LO(s))−1. (2.2)

• Output complementary sensitivity function (r → y)

TO(s) = (I + LO(s))−1LO(s). (2.3)

• Input sensitivity function (d→ v)

SI(s) = (I + LI(s))
−1. (2.4)

• Input complementary sensitivity function (d→ −u)

TI(s) = (I + LI(s))
−1LI(s). (2.5)
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2.2.1 Output Conditions

Referring to Figure 3, one can write

Y (s) = N(s) + η(s)

= N(s) + P (s)V (s)

= N(s) + P (s) (D(s) + U(s))

= N(s) + P (s) (D(s) + C(s)E(s))

= N(s) + P (s) (D(s) + C(s)(R(s)− Y (s))) ,

(2.6)

from which follows

(I + P (s)C(s))Y (s) = N(s) + P (s)D(s) + P (s)C(s)R(s)

Y (s) = (I + P (s)C(s))−1 (N(s) + P (s)D(s) + P (s)C(s)R(s)) .
(2.7)

Using the defined sensitivity functions, one can write

Y (s) = SO(s)N(s) + SO(s)P (s)D(s) + SO(s)LO(s)R(s). (2.8)

Disturbance Rejection

Equation 2.8 shows that the effects of the disturbance D(s) on the output can be rejected
by making the output sensitivity function SO(s) small. Since typically disturbances occurr
at low frequencies, one needs to do that only for this frequency range. How can we relate
this to what we have learned about singular values? It must hold

σ̄ (SO(jω)P (jω)) = σ̄
(
(I + P (jω)C(jω))−1P (jω)

)
push-through rule = σ̄

(
P (jω)(I + C(jω)P (jω))−1

)
= σ̄(P (jω)SI(jω))

� 1,

(2.9)

where we used the push-through rule

G1(I−G2G1)
−1 = (I−G1G2)

−1G1, (2.10)

and σ̄(H(jω) refers to the maximum singular value of H(jω).

Noise Attenuation

Similarly, Equation 2.8 shows that the effects of the noise N(s) on the output can be
attenuated by making the output sensitivity function SO(s) small. Since typically noise
occurs at high frequencies, one needs to do that only for this frequency range. It holds

σ̄ (SO(jω)) = σ̄
(
(I + P (jω)C(jω))−1

)
� 1.

(2.11)
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2.2.2 Input Conditions

Referring to Figure 3, one can write

V (s) = D(s) + U(s)

= D(s) + C(s)E(s)

= D(s) + C(s) (R(s)− Y (s))

= D(s) + C(s) (R(s)−N(s)− η(s))

= D(s) + C(s) (R(s)−N(s)− P (s)V (s))

= D(s) + C(s)R(s)− C(s)N(s)− C(s)P (s)V (s),

(2.12)

from which follows

(I + C(s)P (s))V (s) = D(s) + C(s)R(s)− C(s)N(s)

V (s) = (I + C(s)P (s))−1 (D(s) + C(s)R(s)− C(s)N(s))
(2.13)

Using the defined sensitivity functions, one can write

V (s) = SI(s)D(s) + SI(s)C(s)R(s)− SI(s)C(s)N(s). (2.14)

Disturbance Rejection

Equation 2.14 shows that the effects of the disturbance D(s) on the input can be rejected
by making the input sensitivity function SI(s) small. Since typically disturbances occurr
at low frequencies, one needs to do that only for this frequency range. It must hold

σ̄ (SI(jω)) = σ̄
(
(I + C(jω)P (jω))−1

)
� 1.

(2.15)

Noise Attenuation

Similarly, Equation 2.14 shows that the effects of the noise N(s) on the input can be
attenuated by making the input sensitivity function SI(s) small. Since typically noise
occurs at high frequencies, one needs to do that only for this frequency range. It holds

σ̄ (SI(jω)C(jω)) = σ̄
(
(I + C(jω)P (jω))−1C(jω)

)
� 1.

(2.16)

2.2.3 Reference Tracking

Referring to Figure 3, one can write

E(s) = R(s)− Y (s)

= R(s)−N(s)− η(s)

= R(s)−N(s)− P (s)V (s)

= R(s)−N(s)− P (s) (D(s) + U(s))

= R(s)−N(s)− P (s)D(s)− P (s)C(s)E(s),

(2.17)

from which follows

(I + P (s)C(s))E(s) = R(s)−N(s)− P (s)D(s)

E(s) = (I + P (s)C(s))−1 (R(s)−N(s)− P (s)D(s)) .
(2.18)

Using the defined sensitivity functions, one can write

E(s) = SO(s)(R(s)−N(s))− SO(s)P (s)D(s) (2.19)
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Disturbance Rejection

Equation 2.19 shows that the effects of the disturbance D(s) on the error can be rejected
by making the output sensitivity function SO(s) small. Since typically disturbances occurr
at low frequencies, one needs to do that only for this frequency range. It must hold

σ̄ (SO(jω)P (jω)) = σ̄
(
(I + P (jω)C(jω))−1P (jω)

)
push-through rule = σ̄

(
P (jω)(I + C(jω)P (jω))−1

)
= σ̄ (P (jω)SI(jω))

� 1.

(2.20)

Noise Attenuation

Similarly, Equation 2.19 shows that the effects of the noise N(s) on the error can be
attenuated by making the output sensitivity function SO(s) small. Since typically noise
occurs at high frequencies, one needs to do that for this frequency range and for reference
relevant frequencies (we have R(s) in the term). It holds

σ̄ (SO(jω)) = σ̄
(
(I + P (jω)C(jω))−1

)
� 1.

(2.21)

Remark. One can note that the reference tracking case resumes the other two cases.

2.2.4 Useful Properties

Given an invertible matrix A and a matrix B, it holds

(I) Inverse:

σ̄
(
A−1

)
=

1

σ (A)
, (2.22)

where σ(A) represents the smallest singular value of A.

(II) Sum:

σi(A)− σ̄(B) ≤ σi(A+B)

≤ σi(A) + σ̄(B).
(2.23)

In particular, it holds

σ(A)− 1 ≤ σ(I + A)

≤ σ(A) + 1.
(2.24)

(III) Product:

σ̄(AB) ≤ σ̄(A)σ̄(B)

σ(AB) ≤ σ(A)σ(B).
(2.25)
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2.2.5 Towards Clearer Bounds

Assuming P (s) and C(s) are invertible, one can use the defined properties to write

σ(P (jω)C(jω))− 1 ≤ σ(I + P (jω)C(jω)) ≤ σ(P (jω)C(jω)) + 1

σ(C(jω)P (jω))− 1 ≤ σ(I + C(jω)P (jω)) ≤ σ(C(jω)P (jω)) + 1
(2.26)

For disturbance rejection, using Equations 2.9, 2.15, 2.20 one can write

σ̄(P (jω)SI(jω))� 1

σ̄(SI(jω))� 1.
(2.27)

For noise attenuation, using Equations 2.11, 2.16, 2.21 one can write

σ̄(SO(jω))� 1

σ̄(SI(jω)C(jω))� 1.
(2.28)

With the inverse property of singular values, we know that

σ̄(SI(jω)) = σ̄((I + C(jω)P (jω))−1)

=
1

σ(I + C(jω)P (jω))
,

σ̄(SO(jω)) = σ̄((I + P (jω)C(jω))−1)

=
1

σ(I + P (jω)C(jω))
.

(2.29)

With Equation 2.26 and σ(C(jω)P (jω)) > 1, σ(P (jω)C(jω)) > 1, one can write

1

σ(C(jω)P (jω)) + 1
≤ σ̄(SI(jω)) ≤ 1

σ(C(jω)P (jω))− 1
1

σ(P (jω)C(jω)) + 1
≤ σ̄(SO(jω)) ≤ 1

σ(P (jω)C(jω))− 1
.

(2.30)

This implies

σ̄(SI(jω))� 1⇔ σ(C(jω)P (jω))� 1

σ̄(SO(jω))� 1⇔ σ(P (jω)C(jω))� 1
(2.31)

Disturbance Rejection

Suppose that P (s) and C(s) are invertible.

• Output: It holds

σ(P (jω)C(jω))� 1⇔ σ̄(SO(jω)P (jω)) = σ̄((I + P (jω)C(jω))−1P (jω))

≈ σ̄((P (jω)C(jω))−1P (jω))

= σ̄(C(jω)−1)

=
1

σ(C(jω))
.

(2.32)

This implies:

σ̄(SO(jω)P (jω))� 1⇔ σ(C(jω))� 1, ∀ω ∈ (0, ωlow). (2.33)
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• Input: Considering Equation 2.30, one can write

σ̄(SI(jω)) ≥ 1

σ(C(jω)P (jω)) + 1
. (2.34)

This implies

σ̄(SI(jω))� 1⇔ σ(C(jω)P (jω))� 1, ∀ω ∈ (0, ωlow). (2.35)

Noise Attenuation

Suppose that P (s) and C(s) are invertible.

• Output: Using Equation 2.30, one can write

1

σ(P (jω)C(jω)) + 1
≤ σ̄(SO(jω)) (2.36)

This implies

σ̄(SO(jω))� 1⇔ σ(P (jω)C(jω))� 1, ∀ω ∈ (ωhigh,∞). (2.37)

• Input: It holds

σ(C(jω)P (jω))� 1⇔ σ̄(C(jω)SO(jω)) = σ̄(C(jω)(I + P (jω)C(jω))−1)

≈ σ̄(C(jω)(P (jω)C(jω))−1)

= σ̄(P (jω)−1)

=
1

σ(P (jω))
.

(2.38)

This implies

σ̄(C(jω)SO(jω))� 1⇔ σ(P (jω))� 1, ∀ω ∈ (ωhigh,∞). (2.39)

2.2.6 Is this the whole Story? Tradeoffs

Robust Stability

One defines robust stability to be the stability in the presence of model uncertainty.
Let ∆ be a stable uncertainty matrix, such that

Preal(s) = (I + ∆)Pnominal(s) (2.40)

The perturbed closed loop transfer function is then characterized by

det(I + P (s)C(s))→ det(I + (I + ∆)P (s)C(s)) = det(I + P (s)C(s)) det(I + ∆TO),
(2.41)

where we used

det(X + AB) = det(X) det(I +BX−1A),∀X : ∃X−1 (2.42)

Since
det(I + ∆TO) ≈ 1, (2.43)

it holds
‖∆TO‖ � 1. (2.44)

This implies

σ̄(TO(jω))� 1⇒ σ̄(LO(jω))� 1, ∀ω ∈ (ωhigh,∞). (2.45)

Remark. Note that typically ∆ becomes important at high frequencies.
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Actuator Saturation

Using Figure 3, one can derive

U(s) = C(s)SO(s)R(s)− TI(s)D(s)− C(s)SO(s)N(s). (2.46)

With the defined conditions, it holds

U(s) ≈ C(s) (R(s)−N(s)) . (2.47)

In order to avoid the actuator saturation, the controller gain cannot be chosen too big,
i.e.

σ̄(C(jω)) ≤M, ∀ω ∈ (ωhigh,∞). (2.48)

2.2.7 Zämefassig

The specifications we derived are resumed in Figure 4. Mathematically, we have found:

Figure 4: Desired Loop Gain

Disturbance Rejection

At frequency ω ∈ (0, ωlow) holds

σ(C(jω))� 1,

σ(C(jω)P (jω)� 1,

σ(P (jω)C(jω))� 1.

(2.49)

Noise Attenuation

At frequency ω ∈ (ωhigh,∞) holds

σ̄(C(jω))�M,

σ̄(C(jω)P (jω)� 1,

σ̄(P (jω)C(jω))� 1.

(2.50)
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3 MIMO Robustness

All models are wrong, but some are useful. (3.1)

A model maps inputs into outputs and we consider good a model which predicts the
outputs accurately. The difference between a model prediction and reality (which is never
0) is referred to as model uncertainty.

3.1 Modeling Uncertainty

Let P (s), C(s) be the nominal MIMO plant and an internally stabilizing controller, re-
spectively. Let’s define ∆(s), W1(s), W2(s) to be stable, rational and proper transfer
matrices. We call W1(s) and W2(s) weighting functions. ∆(s) is the modeling error. We
represent uncertainty as

W1(s)∆(s)W2(s). (3.2)

Let’s define Π(s) to be the set of perturbed plants such that P (s) ∈ Π(s).

3.1.1 Unstructured Uncertainty

F (s) = I C(s)

d(t)

Π(s)

n(t)

r(t) e(t) u(t) v(t) η(t) y(t)

−

Figure 5: Standard feedback control system structure.

Using Figure 5 and the Equations for internal stability, one can write(
E1(s)
E2(s)

)
=

(
(I− C(s)Π(s))−1 (I− C(s)Π(s))−1C(s)

(I− Π(s)C(s))−1 Π(s) (I− Π(s)C(s))−1

)
·
(
W1(s)
W2(s)

)
. (3.3)

For unstructured uncertainty, nothing more can be said without writing the relation
between the uncertainty and the plant.

3.1.2 Additive Uncertainty

Theorem 1. (robust stability under additive uncertainty). Let

Π(s) = {P +W1(s)∆(s)W2(s) : ∆ rational, proper and stable} (3.4)

and let C(s) be a stabilizing controller for the nominal plant P (s). Then, the closed loop
system is well-posed (i.e., realizable) and internally stable for all ‖∆‖∞ < 1 if and only if
‖W2(s)C(s)SO(s)W1(s)‖∞ ≤ 1.
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3.1.3 Multiplicative Uncertainty

Theorem 2. (robust stability under multiplicative uncertainty). Let

Π(s) = {P +W1(s)∆(s)W2(s) : ∆ rational, proper and stable} (3.5)

and let C(s) be a stabilizing controller for the nominal plant P (s). Then, the closed loop
system is well-posed (i.e., realizable) and internally stable for all ‖∆‖∞ < 1 if and only if
‖W2(s)TOW1(s)‖∞ ≤ 1.
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