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Lecture 7: MIMO Control Fundamentals

1 Decentralized Control

1.1 Idea and Definitions

As we have introduced in previous lectures, the generalization from SISO to MIMO sys-
tems adds crosscouplings and complexities to the control problem. In general, one can
divide the control strategies into two philosophies:

1. Avoid the MIMO complexity by trying to use SISO controllers. How?

• Decentralized control: every input signal is determined only by a feedback from
one output.

• Pairing problem: choose use of input-output paris for feedback.

• Decoupled control: change of variables to facilitate input-output pairing.

2. Centralized multivariable control, optimizing some cost function, e.g.

• Linear Quadratic Regulator (LQR, next episode).

• H-infinity control

The first philosophy results in suboptimal solutions and requires less modeling effort.
The second philosophy results in optimal results, but the modeling effort increases. Let’s
address the problem more spefifically:

Definition 1. Decentralized control: when the control systems consists of independent
feedback controllers which interconnect a subset of the output measurements with a subset
of manipulated inputs. These subsets should not be used by any other controller.

This represents a good strategy if the the MIMO system shows a low degree of inter-
action between inputs and outputs. How can we evaluate this property? Let’s have a
look at a generic 2× 2 MIMO system with full rank and same number of inputs ui(t) and
outputs ui(t). For the coupled system one can write(

Y1(s)
Y2(s)

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)(
U1(s)
U2(s)

)
=

(∑
i P1i(s)Ui(s)∑
i P2i(s)Ui(s)

)
, (1.1)

i.e. each input affects each output. For a decoupled system, one can e.g. write(
Y1(s)
Y2(s)

)
=

(
P11(s) 0

0 P22(s)

)(
U1(s)
U2(s)

)
=

(
P11(s)U1(s)
P22(s)U2(s)

)
, (1.2)

i.e. the system behaves like a union of non interacting SISO systems. Furthermore, if
one assumes a non-square system, for a general system P (s) ∈ Rl×n, one can meet the
following two cases:

1. Tall system(l > m): we have more outputs than inputs, i.e. not all outputs are
affected by an input. Which outputs are best controlled with which inputs?
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2. Fat system(l < m): we have more inputs than outputs. How to distribute control
action over the inputs?

In the next section, we will introduce a systematic way to address this kind of problems.

1.2 Relative-Gain Array (RGA)

As introduced in the previous section, if a system has a specific decoupled form, one can
avoid complex control strategies and use independent SISO controllers. In some cases,
this reasoning is actually the good one, but how can one distinguish when to use this
approach?
The RGA-matrix tells us how the different subplants of a MIMO plant interact: this
matrix is a good indicator of how SISO a system is.
This matrix can be generally calculated as

RGA(s) = P (s).× P (s)−T (1.3)

where
P (s)−T = (P (s)T )−1. (1.4)

and A. × A represents the element-wise, Shur multiplication (A.*A in Matlab). If
P (s) is not invertible (recall tall, fat and non inverbile square systems), one needs to
generalize the inverse with the Moore-Penrose Inverse. Recalling P (s) ∈ Rl×m one can
define two cases:

• Tall system(l > m): if rank(P (s)) = m,

A† = (A∗A)−1A∗, A†A = Im. (1.5)

• Fat system(l < m): if rank(P (s)) = l,

A† = A∗(AA∗)−1, AA† = Il. (1.6)

In general, each element of the matrix gives us a special information:

[RGA]ab =
gain from ua to yb with all other loops open

gain from ua to yb with all other loops closed (perfect control)
. (1.7)

Remark. It’s intuitive to notice, that if

[RGA]ab ≈ 1 (1.8)

the numerator and the denominator are equal, i.e. SISO control is enough to bring ua at
yb.

Remark. The theory behind the relative-gain array goes far beyond the aim of this course
and one should be happy with the given examples. If however you are interested in this
topic, you can have a look here.

Let’s take the example of a 2× 2 plant: in order to compute the first element (1, 1) of the
RGA(s) we consider the system depicted in Figure 1. We close with a SISO controller
C22(s) the loop from y2(t) to u2(t) and try to compute the transfer function from u1(t)
to y1(t).
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Everyone has his special way to decouple a MIMO system. I’ve always used this procedure:
starting from the general equation in frequency domain(

Y1(s)
Y2(s)

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)
·
(
U1(s)
U2(s)

)
, (1.9)

one can read

Y1(s) = P11(s) · U1(s) + P12(s) · U2(s)

Y2(s) = P21(s) · U1(s) + P22(s) · U2(s).
(1.10)

Since we want to relate u1(t) and y1(t) let’s express u2(t) as something we know. Using
the controller C22(s) we see

U2(s) = −C22(s) · Y2(s)
= −C22(s) · P21(s) · U1(s)− C22(s) · P22(s) · U2(s)

⇒ U2(s) =
−C22(s) · P21(s) · U1(s)

1 + P22(s) · C22(s)
.

(1.11)

With the general equation one can then write

Y1(s) = P11(s) · U1(s) + P12(s) · U2(s)

= P11(s) · U1(s) + P12(s) ·
−C22(s) · P21(s) · U1(s)

1 + P22(s) · C22(s)

=
P11(s) · (1 + P22(s) · C22(s))− P12(s) · C22(s) · P21(s)

1 + P22(s) · C22(s)
· U1(s).

(1.12)

We have found the general transfer function that relates u1(t) to y1(t). We now consider
two extreme cases:

• We assume open loop conditions, i.e. all other loops open: C22 ≈ 0. One gets

Y1(s) = P11(s) · U1(s). (1.13)

• We assume high controller gains, i.e. all other loops closed : P22(s) · C22(s) � 1.
One gets

lim
C22(s)→∞

P11(s) · (1 + P22(s) · C22(s))− P12(s) · C22(s) · P21(s)

1 + P22(s) · C22(s)

=
P11(s) · P22(s)− P12(s) · P21(s)

P22(s)
.

(1.14)

As stated before, the first element of the RGA is the division of these two. It holds

[RGA]11 =
P11(s)

P11(s)·P22(s)−P12(s)·P21(s)
P22(s)

=
P11(s) · P22(s)

P11(s) · P22(s)− P12(s) · P21(s)
.

(1.15)

Remark. As you can see, the definition of the element of the RGA matrix does not depend
on the chosen controller C22(s). This makes this method extremely powerful.
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By repeating the procedure one can try to find [RGA]22. In order to do that one has to
close the loop from y1(t) to u1(t): the result will be exactly the same:

[RGA]11 = [RGA]22. (1.16)

Let’s go a step further. In order to compute the element [RGA]21, one has to close the
loop from y1(t) to u2(t) and find the transfer function from u1(t) to y2(t).

Remark. This could be a nice exercise to test your understanding!

With a similar procedure one gets

[RGA]21 =
−P12(s) · P21(s)

P22(s) · P11(s)− P21(s) · P12(s)
. (1.17)

and as before
[RGA]21 = [RGA]12. (1.18)

How can we now use this matrix, to know if SISO control would be enough? As already
stated before, [RGA]ab ≈ 1 means SISO control is enough. Moreover, if the diagonal
terms differ substantially from 1, the MIMO interactions (also called cross couplings) are
too important and a SISO control is no more recommended.
If

RGA ≈ I (1.19)

evaluated at the relevant frequencies of the system, i.e. at ωc± one decade, one can
ignore the cross couplings and can control the system with SISO tools one loop at time. If
this is not the case, one has to design a MIMO controller. A bunch of observations could
be useful by calculations:

1. Rows and columns of the RGA matrix add up to 1. This means one can write the
matrix as (

[RGA]11 [RGA]12
[RGA]21 [RGA]22

)
=

(
[RGA]11 1− [RGA]11

1− [RGA]11 [RGA]11

)
. (1.20)

This allows to calculate just one element of the matrix.

2. If one looks at RGA(s = 0) and the diagonal entries of the matrix are positive, SISO
control is possible.

3. The RGA of a triangular matrix P (s) is the identity matrix.

4. The RGA is invariant to scaling, i.e. for every diagonal matrix Di it holds

[RGA](P (s)) = [RGA](D1 · P (s) ·D2). (1.21)
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P11

P21

P12

P22

u1y1

y2

−C22

u2

Figure 1: Derivation of the RGA-Matrix for the 2× 2 case.

Example 1. For a MIMO system with two inputs and two outputs just the first element
of the RGA matrix is given. This is a function of a system parameter p and is given as

[RGA(s)]11 =
1

ps2 + 2ps+ 1
. (1.22)

(a) Find the other elements of the RGA matrix.

(b) For which values of p is the system for all frequencies ω ∈ [0,∞) controllable with
two independent SISO control loops (one loop at the time)?

Now, you are given the following transfer function of another MIMO system:

P (s) =

(
1
s

s+2
s+1

1 − 1
s+1

)
. (1.23)

(c) Find the RGA matrix of this MIMO system.

(c) Use the computed matrix to see if for frequencies in the range ω ∈ [3, 10] rad/s the
system is controllable with two separate SISO controllers.
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Solution.

(a) Using the theory we learned, it holds

[RGA(s)]11 = [RGA(s)]22 =
1

ps2 + 2ps+ 1
(1.24)

and

[RGA(s)]12 = [RGA(s)]21

= 1− [RGA(s)]11

= 1− 1

ps2 + 2ps+ 1

=
ps · (s+ 2)

ps2 + 2ps+ 1
.

(1.25)

(b) In order to use two independend SISO control loops, the diagonal elements of the
RGA matrix should be ≈ 1 and the anti diagonal elements should be ≈ 0. It’s easy
to see that this is the case for p = 0. In fact, if one sets p = 0 one gets

RGA(s) = I.

Hence, independently of the frequency one has, i.e. ω ∈ [0,∞), the control problem
can be solved with two independent SISO controllers.

(c) Using the learned theory, it holds

[RGA(s)]11 = [RGA(s)]22

=
P11(s) · P22(s)

P11(s) · P22(s)− P12(s) · P21(s)

=
− 1

s·(s+1)

− 1
s·(s+1)

− s+2
s+1

=
1

1 + s · (s+ 2)

=
1

s2 + 2s+ 1

=
1

(s+ 1)2
.

(1.26)

and

[RGA(s)]12 = [RGA(s)]21

= 1− [RGA(s)]11

= 1− 1

(s+ 1)2

=
s · (s+ 2)

(s+ 1)2
.

(1.27)
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(d) In order to evaluate the RGA matrix in this range, we have to express it with it’s
frequency dependence, i.e. s = jω. For the magnitudes it holds

|[RGA(jω)]11| = |[RGA(jω)]22|

=
1

|jω + 1|2

=
1

1 + ω2
.

(1.28)

and

|[RGA(jω)]12| = |[RGA(jω)]21|

=
1

|jω + 1|2
· |jω| · |jω + 2|

=
ω ·
√

4 + ω2

1 + ω2
.

(1.29)

We can know insert the two limit values of the given range and get

|[RGA(j · 3)]11| = |[RGA(j · 3)]22|

=
1

10
= 0.10.

|[RGA(j · 3)]12| = |[RGA(j · 3)]21|

=
3 ·
√

13

10
≈ 1.08.

(1.30)

and

|[RGA(j · 10)]11| = |[RGA(j · 10)]22|

=
1

101
= 0.01.

|[RGA(j · 10)]12| = |[RGA(j · 10)]21|

=
10 ·
√

104

101
≈ 1.01.

(1.31)

In both cases the diagonal elements are close to 0 and the antidiagonal elements are
close to 1. This means that the system is diagonal dominant and SISO control
one loop at time is permitted. We just need to pay attention to what should be
controlled: since the antidiagonal elements are close to 1, we need to use u1 for y2
and u2 for y1.
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Example 2. Figure 2 shows a 2×2 MIMO system. Sadly, we don’t know anything about
the transfer functions Pij(s) but

P12(s) = 0. (1.32)

Your boss wants you to use a one loop at the time approach as you see in the picture.

(a) Why is your boss’ suggestion correct?

(b) Just a reference ri is affecting both outputs yi, which one?

(c) Compute the transfer function ri → yj for i 6= j?

Figure 2: Structure of MIMO system.
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Solution.

(a) To check if the suggestion is correct let’s have a look at the RGA matrix: it holds

[RGA]11 = [RGA]22

=
P11(s) · P22(s)

P11(s) · P22(s)− P12(s) · P21(s)

= 1.

[RGA]12 = [RGA]21

= 1− [RGA]11

= 0.

(1.33)

since P12(s) = 0. This means that the RGA matrix is identical to the identity
matrix, resulting in a perfect diagonal dominant system, which can be controlled
with the one loop at the time approach.

(b) Let’s analyze the signals from Figure 2. Since P12(s) = 0, the output y1 is not
affected from u2. Moreover, this means that the reference signal r2, which influences
u2, cannot affect the output y1. The only reference that acts on both y1 and y2 is
r1: directly through C1(s) on y1 and with crosscouplings through P21(s) on y2.

(c) As usual we set to 0 the reference values we don’t analyze: here r2 = 0. Starting
from the general equation in frequency domain(

Y1(s)
Y2(s)

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)
·
(
U1(s)
U2(s)

)
=

(
P11(s) 0
P21(s) P22(s)

)
·
(
U1(s)
U2(s)

)
.

(1.34)

one can read

Y1(s) = P11(s) · U1(s)

Y2(s) = P21(s) · U1(s) + P22(s) · U2(s).
(1.35)

Since we want to relate r1 and y2 let’s express u1 as something we know.
Using Figure 2 one gets

R1(s) · C1(s) = U1(s) + P11(s) · C1(s) · U1(s)

U1 =
R1(s) · C1(s)

1 + P11(s) · C1(s)
.

(1.36)

Inserting this into the second equation one gets

Y2(s) = P21(s) ·
R1(s) · C1(s)

1 + P11(s) · C1(s)
+ P22(s) · U2(s). (1.37)

One have to find an expression for U2(s). To do that, we look at the second loop in
Figure 2 an see

R2(s)︸ ︷︷ ︸
=0

·C2(s)− Y2(s) · C2(s) = U2(s)

U2(s) = −Y2(s) · C2(s).

(1.38)
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Inserting this into the second equation one gets

Y2(s) = P21(s) ·
R1(s) · C1(s)

1 + P11(s) · C1(s)
+ P22(s) · U2(s)

= P21(s) ·
R1(s) · C1(s)

1 + P11(s) · C1(s)
+ P22(s) · (−Y2(s) · C2(s))

Y2(s) · (1 + P22(s) · C2(s)) = P21(s) ·
R1(s) · C1(s)

1 + P11(s) · C1(s)

Y2(s) =
P21(s) · C1(s)

(1 + P11(s) · C1(s)) · (1 + P22(s) · C2(s))︸ ︷︷ ︸
F (s)

·R1(s).

(1.39)

where F (s) is the transfer function we wanted.

Example 3. Figure 3 shows the structure of a MIMO system, composed of three subsys-
tems P1(s), P2(s) and P3(s). It has inputs u1 and u2 and outputs y1 and y2. The three

Figure 3: Structure of MIMO system.

subsystems are given as

P1(s) =

(
s−5
s+3

1
s+4

)
, P2(s) =

(
1

s+3
s+4
s−5
)
, P3(s) =

(
s+2
s+5

1
s+1

)
. (1.40)

Compute the transfer function of the whole system.
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Solution. One should think with matrix dimensions here. Let’s redefine the subsystem’s
matrices more generally:

P1(s) =

(
P 11
1

P 21
1

)
, P2(s) =

(
P 11
2 P 12

2

)
, P3(s) =

(
P 11
3 P 12

3

)
(1.41)

Together with the structure of the system one gets

Y1 = P 11
2 · U1 + P 12

2 · P 11
1 · U1,

Y2 = P 11
3 · P 21

1 · U1 + P 12
3 · U2.

(1.42)

This can be written in the general matrix for the transfer function:

P (s) =

(
P 11
2 + P 12

2 · P 11
1 0

P 11
3 · P 21

1 P 12
3

)
=

(
1

s+3
+ s+4

s−5 ·
s−5
s+3

0

s+2
s+5
· 1
s+4

1
s+1

)

=

(
s+5
s+3

0

s+2
(s+5)·(s+4)

1
s+1

)
.

(1.43)

Example 4. Figure 4 shows the structure of a MIMO system, composed of two subsys-
tems P1(s), P2(s). It has inputs u1 and u2 and outputs y1 and y2. The subsystem P1(s)

Figure 4: Structure of MIMO system.

is given with its state space description:

A1 =

(
−3 0
2 1

)
, B1 =

(
1 0
2 1

)
, C1 =

(
0 2
3 1

)
D1 =

(
0 1
0 0

)
. (1.44)

and the subsystem P2(s) is given as

P2(s) =
(

1
s−2

s−1
(s+4)·(s−2)

)
. (1.45)

Compute the transfer function of the whole system.
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Solution. First of all, we compute the transfer function in frequency domain of the first
subsystem P1(s). It holds

P1(s) = C1 · (s · I− A1)
−1 ·B1 +D1

=

(
0 2
3 1

)
·
(
s+ 3 0
−2 s− 1

)−1
·
(

1 0
2 1

)
+

(
0 1
0 0

)
=

(
0 2
3 1

)
· 1

(s+ 3) · (s− 1)
·
(
s− 1 0

2 s+ 3

)
·
(

1 0
2 1

)
+

(
0 1
0 0

)
=

1

(s+ 3) · (s− 1)
·
(

0 2
3 1

)
·
(
s− 1 0
2s+ 8 s+ 3

)
+

(
0 1
0 0

)
=

1

(s+ 3) · (s− 1)
·
(

4s+ 16 2s+ 6
5s+ 5 s+ 3

)
=

(
4s+16

(s+3)·(s−1)
2

s−1
5s+5

(s+3)·(s−1)
1

s−1

)
.

(1.46)

One should think with matrix dimensions here. Let’s redefine the subsystem’s matrices
more generally:

P1(s) =

(
P 11
1 P 12

1

P 21
1 P 22

1

)
, P2(s) =

(
P 11
2 P 12

2

)
. (1.47)

Together with the structure of the system one gets

Y1 = P 11
2 · U1 + P 11

1 · P 12
2 · U1 + P 12

1 · P 12
2 · U2,

Y2 = P 21
1 · U1 + P 22

1 · U2.
(1.48)

This can be written in the general matrix for the transfer function:

P (s) =

(
P 11
2 + P 11

1 · P 12
2 P 12

1 · P 12
2

P 21
1 P 22

1

)
= . . .

=

(
s+7

(s+3)·(s−2)
s+1

(s+4)(s−2)
5s+5

(s+3)·(s−1)
1

s−1

)
.

(1.49)

Example 5. The system in Figure 5 can be well controlled with two separate SISO
controllers.

� True.

� False.
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Figure 5: Structure of MIMO system.

Solution.

�3 True.

� False.

Explanation:

One can observe that the input u2 affects only the output y2. This means that the transfer
function matrix has a triangular form and hence, that the RGA matrix is identical to
the identity matrix: this means that we can reach good control with two separate SISO
controllers.

1.3 Q Parametrization

Recalling the standard control Loop repicted in Figure 6, one can write

F (s) = I C(s)

d(t)

P (s)

n(t)

r(t) e(t) u(t) v(t) η(t) y(t)

−

Figure 6: Standard feedback control system structure.

(
Y (s)
U(s)

)
=

(
(I + P (s)C(s))−1P (s)C(s) (I + P (s)C(s))−1P (s)

(I− C(s)P (s))−1C(s) −(I + C(s)P (s))−1C(s)P (s)

)(
R(s)
D(s)

)
=

(
TO(s) SO(s)P (s)

SI(s)C(s) −TI(s)

)(
R(s)
D(s)

)
.

(1.50)

In order for the system to be internally stable, TO(s), SO(s)P (s), SI(s)C(s) and TI(s)
must be stable. Ideally, we would like to translate this properties on direct consequences
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for C(s). However, relations are not linear and it is not obvious how to find direct
translations. One defined

Q(s) = C(s)(I + P (s)C(s))−1. (1.51)

Then, one can write

(I + P (s)C(s))−1 = (I + P (s)C(s)− P (s)C(s))(I + P (s)C(s))−1

= (I + P (s)C(s))(I + P (s)C(s))−1 − P (s)C(s)(I + P (s)C(s))−1

= I− P (s)Q(s),

(1.52)

and

(I + C(s)P (s))−1 = (I + C(s)P (s)− C(s)P (s))(I + C(s)P (s))−1

= (I + C(s)P (s))(I + C(s)P (s))−1 − C(s)P (s)(I + C(s)P (s))−1

= I−Q(s)P (s).

(1.53)

It follows

TO(s) = (I + P (s)C(s))−1P (s)C(s)

= P (s)C(s)(I + P (s)C(s))

= P (s)Q(s).

SO(s)P (s) = (I− P (s)Q(s))P (s)

SI(s)C(s) = Q(s)

TI(s) = Q(s)P (s).

(1.54)

Theorem 1. Q internal stability: Let P (s) be a stable plant of a negative feedback
system, then the closed loop system is internally stable if and only if Q(s) is stable.

This makes the tuning of the controller extremely easier: the sensitivity functions depend
linearly on Q. Moreover, it holds:

• Supposing that the plant is stable: Q(s) can be any transfer matrix that satisfies
the definition.

• If only proper controllers are taken into account, then Q(s) must be proper.

• Finding a Q(s) is equivalent to finding the controller C(s).

• As long as Q(s) is stable, it can vary freely and internal stability will be guaranteed.
Even if Q(s) maps to an unstable controller C(s).

• Starting from the formula for Q(s), one can write

C(s) = (I−Q(s)P (s))−1Q(s) = Q(s)(I− P (s)Q(s))−1. (1.55)
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