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Lecture 8: IMC and State Feedback

1 Internal Model Control (IMC)

1.1 Recap Q Parametrization

Recalling the standard control Loop repicted in Figure 1, one can write
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Figure 1: Standard feedback control system structure.
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In order for the system to be internally stable, Tp(s), So(s)P(s),Sr(s)C(s) and Ty(s)
must be stable. Ideally, we would like to translate this properties on direct consequences
for C(s). However, relations are not linear and it is not obvious how to find direct
translations. One defined

Q(s) = C(s)(I+ P(s)C(s))~". (1.2)

Then, one can write

I+ P(5)C(s)) ™' = (T + P(s)C(s) — P(s)C(s)) (I + P(s)C(s))""
= I+ P(s)C(s))(I+ P(s)C(s)) ' — P(s)C(s)(I+ P(s)C(s))™" (1.3)
—1- P(s)Qls
and
I+ C(s)P(s)) ' = (I+C(s)P(s) — C(s)P(s)) (I + C(s)P(s))""
= [+ C(s)P(s)) I+ C(s)P(s)) ™t = C(s)P(s)I+ C(s)P(s)) ™" (1.4)
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It follows

(1.5)

Theorem 1. Q internal stability: Let P(s) be a stable plant of a negative feedback
system, then the closed loop system is internally stable if and only if Q(s) is stable.

This makes the tuning of the controller extremely easier: the sensitivity functions depend
linearly on (). Moreover, it holds:

e Supposing that the plant is stable: Q(s) can be any transfer matrix that satisfies
the definition.

If only proper controllers are taken into account, then ()(s) must be proper.

Finding a Q(s) is equivalent to finding the controller C(s).

As long as Q(s) is stable, it can vary freely and internal stability will be guaranteed.
Even if Q(s) maps to an unstable controller C(s).

Starting from the formula for Q(s), one can write

C(s) = (- Q(s)P(s)7'Q(s) = Q(s)(I - P(s)Q(s)) . (1.6)

1.2 Principle

Principle: Accurate control can be achieved only if the control system encapsulates some
representation of the controlled process.

Approach: We feedback only the mismatch between the model prediction and the actual
measured output, i.e. the uncertainty in the control loop.

1.2.1 Connection with Q Parametrization

The control system structure for IMC is depicted in Figure 2. P(s) denotes the plant of the
system and Fy(s) the plant model. The measurement y(¢) is corrupted by a measurement
noise n(t). The signal yo(t) represents the predicted output. The signal ¢ represents the
signal mismatch between the measured and the predicted outputs. The controller Q(s)
(please refer to the previous section for its form) produces the input u(t). Relating this
structure with the classic one, one can write:

C(s) = Q(s) (I(s) — Po(s)Q(s)) " - (1.7)

Remark. Note that the controller C'(s) can be defined with the orange region in Figure 2.
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1.2.2 Analysis

By trying to relate the output signal y(¢) to the other signals available in the loop, one
can write

Y(s) = N(s) +n(s)
= N(s) + P(s)V(s)
= N(s)+ P(s) (D(s) + U(s))
= N(s)+ P(s)D(s) + P(s)Q(s)E(s)
= N(s) + P(s)D(s) + P(s)Q(s) (R(s) — I(s))
= N(s) + P(s)D(s) + P(s)Q(s)R(s) — P(s)Q(s) (Y(s) — Yo(s))
= N(s) + P(s)D(s) + P(s)Q(s)R(s) — P(s)Q(s)Y (s) + P(s)Q(s) Po(s)U ()
= N(s) + P(s)D(s) + P(s)Q(s)R(s) — P(s)Q(s) (N(s) + P(s)V(s)) + P(s)Q(s) Fo(s)U (s)
:QI—PQlN+f(]I—QPZD+£’@R+PQ(P—PO)U,
So(s) PS;(s) To(s)

(1.8)

where in the last line we dropped the s dependency for simplicity reasons. In the case
where P(s) = Py(s) and Q(s) = P7'(s), one gets

Y(s) = R(s). (1.9)

Figure 2: Internal Model Control System Structure.

1.3 Example: Predictive Control
1.3.1 Why predictive control

If a SISO system has substantial delays, it is very difficult to control it with a normal PID
controller. The I part of the controller causes impatience, that is, integrates over time.
As a practical example think of taking a shower in the morning: one let the water flow
and of course this hasn’t the desired temperature. For this reason one chooses warmer
water by turning the temperature controller; the water becomes too hot and so one turns
it on the other side to have colder water and so on, resulting in a non optimal strategy.
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Moreover, the D part of the controller is practically useless'. What does the expression
substantial delays mean? As indicative range one can say that it is worth using predictive
control if

T o3 (1.10)
T+ o '
where T is the delay and 7 is the time constant of the system. Other prerequisites are
e The plant must be asymptotically stable.

e A good model of the plant should be available.

1.3.2 The Smith Predictor

One can see the two equivalent structures of the Smith Predictor in Figure 3 and Figure
4.

w
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U
Figure 3: Structure of the Smith predictor.
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Figure 4: Structure of the Smith predictor.

If the system has big delays, one can assume that it is possible to write the delay element
and the nondelayed plant as a product in the frequency domain: that’s what is done in
the upper right side of Figure 3. This means that the transfer function u(t) — y(¢) can
be written as

P(s) = P.(s)-e*T. (1.11)

!Taking the derivative of a delay element doesn’t help to control it

4
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Main Idea:

As long as we have no disturbance d(t) (i.e. d(t) = 0) and our model is good enough
(this means P,(s) = P,(s), T = T)2, we can model a non delayed plant and get the non
delayed output 7,(t) (one can see this on the lower right side of Figure 3). The feedback
signal results from the sum of ,(t) and the correction signal e.

1.3.3 Analysis

The controller of the system is the transfer function e(t) — u(t) , which can be computed
as

R (1.12)
= Q)E(s) = Q) Pr(s) (1= 1) U ()
from which it follows
_U(s)
‘O = BG)
_ Q(s) (1.13)
1+ Qs)Puls) (11— =)
This means that the loop gain transfer function is
L(s) = P(s) - C(s)
B Q(s)B(s)e™*" (1.14)

14 Q(s)Pifs) (1= e T)
If one assumes as stated, that the model is good enough s.t. P.(s) = P,.(s), T =T, one
gets

L(s)
1+ L(s)

Q(s)-Pe(s)-e—=T
14Q(s)-Pe(s)-(1—e—=T)
Q(S)'Pr(s)'675'T

1 —I'_ 1+Q(s)'Pr(S)~(l—e*5'T)

Q(s) - Po(s) - e=*T (1.15)
14+ Q(s)- P(s)- (1 —e*T)+Q(s) - P(s)-e=T
QWA
15 Q0 B()
= Tt (s) - e 7.

T(s) =

2We use ... to identify the parameters of the model

bt
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Remark.

e This result is very important: we have shown that the delay cannot be completely
eliminated and that every tranfer function (here 7'(s) but also S(s)) will have the
same delay as the plant P(s).

e Advantages of the prediction are:

— Very fast.

— Same Robustness.
e Disadvantages of the prediction are:

— Very difficult to implement.
— Very difficult to analyze.

— Problems if there are model errors.

2 State Feedback

Motivation: Each control strategy we analyzed so far, was based on output feedback.
In fact, the main analysis has been based on the fact that system outputs are available
through measurements. Imagine now to have the states of the system available. Would the
control problem benefit from this new information? Intuitively, outputs are nothing else
than a linear combination of the states (one can always write this through the dynamics
of the system), hence contain less information.

2.1 Concept

The big difference to what we have seen so far, is that we are looking at a continuous
time control system, which operates in time domain and no more in frequency domain.
The basic state feedback control structure is depicted in Figure 5. The basic idea is: we

r(t) u(t) @(t) = Ax(t) + Bu(t) y(t)

kr ) ;

‘L y(t) = Ca(t) + Dul(t)
K x(t)

Figure 5: Basic State Feedback Control Structure.

have the dynamics in the loop, with the input w(t) and the output y(t). We negatively
feedback the state z(t) with a controller K and add to a reference (or a multiple of it,
k.). In words, we try to keep the state where we want it to be. Assuming for simplicity
D =0 (the same analysis can be performed), one gets

u(t) = kr(t) — Ka(t), (2.1)
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from which it follows
©(t) = Az(t) + Bu(t)
= Ax(t) + Bk,r(t) — BKx(t)
= (A — BK)x(t) + Bkr(t).
-

Acl

(2.2)

We get a new closed loop matrix Ay, i.e., state feedback affects the poles of the closed
loop transfer function.

2.2 Reachability

A key property of a control system is reachability. Which set of points in the state space
of the system can be reached through the choice of a specific control input? Reachability
plays a central role in deciding if state feedback is a good strategy for the control of a
specific dynamic system. Let’s assume that a dynamic system of the form

d
dt
is given, where z € R", u € R, A € R™*" B € R"”. We deine the reachable set as the set

of all points z; such that there exists an input u(¢) with 0 < ¢ < T that steers the system
from z(0) = x to x(T) = xs.

x(t) = Az(t) + Bu(t). (2.3)

Definition 1. A linear system is reachable if for any xg, ¢ € R", there exists a T > 0
and u(t) : [0,7] — R such that the corresponding solution satisfies (0) = x¢ and z(T") =
re € R™.

Reachability test: A system (A, B) is reachable if and only if rank(R) = n, where
r € R" and
R=(B AB ... A"'B). (2.4)

2.2.1 Reachable Canonical Form

Given a transfer function matrix
BO + Bls + ...+ Bn,ls”_l

P(s) = , (2.5)
~—~ ot a1S+...+a,_18" 1+ s
eRlxm
one wants to find the system matrices
(A, B,C,0), (2.6)
such that
P(s)=C(sl— A)'B. (2.7)
A possible solution is the reachable canonical form:
(1 L, Opm ... Om Om,
Om O I, ... Om Om
A= : : (I " : ., B=|: 98
Om O Op ... I, (0 (2.8)
—ao]Im —all[m —a,g]lm e —an_lllm Hm
C = (BO By ... B, Bn_1),

where 0, is the m x m zero matrix and I, is the m x m identity matrix.

7
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Remark. Note that this is the result of a possible change of coordinates. This solution is
not unique.

Theorem 2. A system in the reachable canonical form is always reachable.

Theorem 3. Let A and B be the dynamics of a reachable system. Then there exists
a transformation z(¢) = Tx(t) such that in the transformed coordinates the dynamics
matrices are in reachable canonical form and the characteristic polynomial for A is given
by

det(sl — A) = s" +a18" "+ ...+ a,_15 + a,. (2.9)
2.3 Pole Placement

The system dynamics are determined by the poles of the closed loop transfer function.
Recalling what we have seen so far, we write the plant transfer function as

P(s)=C(sl— A)™'B, (2.10)
the characteristic polynomial as
p(s) =det(sI — A), p(m) =0, (2.11)

where 7; are the poles of the system.
Problem definition: We want to find through state feedback a controller K such that
the closed loop system has a desired characteristic polynomial

pa(s) = det(sl — Aq) (2.12)
But is it always possible to find a solution for the pole placement problem?

Theorem 4. The problem of pole placement has a solution if and only if the system is
reachable.

2.3.1 Direct Method

The direct method consists in introducing a matrix K with the correct dimensions and
forcing the eigenvalues of the closed loop system matrix A — BK to be the desired ones.
2.3.2 Ackermann Formula

Placing poles by hand is tedious and tricky if the state space dimension grows. The

Ackermann’s formula provides a one step procedure for calculating the controller K. It
holds
K=(0 ... 0 1)R'p4(A) =p5(A), (2.13)

where

e R is the reachability matrix. Note that this must be invertible (hence, the system
is reachable).

e 7 is the last row of the inverse of R.

e pi(A) is the desired closed loop characteristic polynomial evaluated at s = A.

8
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Check in the Problem Set for the derivation of the Ackermann’s formula.

Example 1. Your task is to keep a space shuttle in its trajectory . The deviations from
the desired trajectory are well described by

(t) = Az(t) + bu(t)

() 0 () o

where 1(t) is the position of the space shuttle and z5(t) is its velocity. Moreover, u(t)
represents the propulsion. The position and the velocity are known for every moment and
for this reason we can use a state-feedback regulator. You want to find a state feedback
controller using pole placement. The specifications for the system are

e The system should not overshoot.

e The error of the regulator should decrease with e=3*.

a) Find the poles such that the specifications are met.
b) Find the new state feedback matrix K.

c) Use the Ackermann formula to get the same result.

Solution

a) Overshoot or in general oscillations, are due to the complex part of some poles. The
real part of these poles is given by the decrease function of the error. Since the
system must have two poles (A is 2 x 2), it holds

T = Ty = —3. (215)

b) The closed loop has feedback matrix
A-B-K. (2.16)

We have to choose K such that the eigenvalues of the state feedback matrix are
both —3. The dimensions of K must make the matrix multiplication with B and
the subtraction with A feasible. It holds K € C'*2. It holds

A-B.K— (8 (1)) _ <‘1)> (k)
DY
_ (_2{1 _1]{;2).

—ly & /K2 — Ay
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Since the two eigenvalues should have the same value, we know the the part under

the square rooth has to vanish. This means that —%2 = —3 = ky = 6. Moreover:
k2
k=2
4 (2.18)
=9.

The matrix finally reads
Ky=(9 6). (2.19)

¢) The Ackermann formula for this problem reads
K=(0 1)R 'pi(4), (2.20)

where R is the system reachability matrix and p}(A) is the desired closed loop
characteristic polynomial evaluated at s = A. For our system it holds

r-()
- (§)(0)-0
éan*:C)v.

With the given poles, it holds

—_
o

_(3 1) (31 (2.22)
0 3)\0 3
Putting everything together in Equation 2.20, one gets

k=0 (1 o) (0 o) (2.93)

=(9 6),

which confirms our previous result.

10
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