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Exercise 4 - Hydraulic Systems

4.1 Hydraulic Systems

Hydraulic systems are in general described by the Navier-Stokes equations as you learned
in Fluiddynamics. In order to simplify the modeling of such systems, it is in general
worth to use simpler formulations. In general, typical elements which build up hydraulic
systems are

• Ducts,

• compressible nodes,

• valves.

4.1.1 Hydraulic Ducts

A sketch for a water duct is depicted in Figure 1. Elements of the drawing are the height
of inclination h, the top and bottom pressures p1(t), p2(t), the length of the duct l, the
velocity of the water flowing into the duct v(t), the density of the flowing fluid ρ, and the
cross-sectional area of the duct A. In general, we are interested in modeling the velocity

Figure 1: Sketch of a water duct.

of the water, i.e.
d

dt
v(t) = f(p1(t), p2(t), v(t), h, ρ, A, l) (4.1)

Applying the Newton’s law to the given water duct along its longitudinal axis one gets

m · d~v

dt
= ~Fpressure + ~Fgravity + ~Ffric (4.2)

The force caused by a pressure can be described with

~F = (p · A) · ~elong, (4.3)
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where A represents an area. Applying this with the constant area of the duct A, the
pressure force reads

~Fpressure = (p1(t) · A− p2(t) · A) · ~elong. (4.4)

The angle of inclination of the duct follows the law

sin(α) =
dh

dl

The mass of the fluid in the duct (water in this case) is given by

ρ · V = ρ · A · l
⇒ dm = ρ · A · dl.

(4.5)

One can then use the definition of grAHitational force to compute the second term. This
reads

~Fgravity =

∫
duct

~g · dm

= g

∫
duct

(
sin(α)
− cos(α)

)
· ρ · A · dl

= ρ · g · A ·

(∫ h

0

(
sin(α)
sin(α)

− cos(α)
sin(α)

)
dl

)

= h · ρ · g · A ·
(

1
− 1

tan(α)
.

)
The friction force depends on the shape factor l

d
and reads

~Ffric,x(t) =
1

2
· ρ · v(t)2 · sign(v(t)) · λ(v(t)) · Al

d
, (4.6)

where λ is to read from the Moody-Diagram. Plugging the found results in Equation 4.2
one gets the conservation law along the longitudinal axis of the duct

m
d

dt
v(t) = ρ · l · A · d

dt
v(t) = A · (p1(t)− p2(t)) + A · ρ · g · h− Ffric,x(t). (4.7)

4.1.2 Compressibility

The compressibility is the property of a body (solid, liquid, gas,...) to deform under
the effect of an applied pressure. Mathematically, it is defined as

σ0 =
1

V0

dV

dP
, (4.8)

where V0 [m3] is nominal volume, P [Pa] is the pressure and σ0 [Pa−1] is the compressibility.
Although this is very small for liquid fluids, gas presence or elastic walls could increase
its effects. In order to take this into account we model a lumped-parameter element,
as depicted in Figure 2. The element causes a change in volume, which produces a
change in pressure of the fluid. Mathematically, we define the change in volume with the
conservation law

d

dt
V (t) =

∗
V in(t)−

∗
V out(t). (4.9)
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Figure 2: Sketch of a lumped-parameter element.

The elasticity effects can be described by defining the pressure with respect to time, i.e.

p(t) =
1

σ0
· ∆V (t)

V0
, ∆V (t) = V (t)− V0, (4.10)

where σ0 and V0 must be determined experimentally in each case.
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4.2 Example

Your SpaghETH is growing every week more and although no particular production issues
occur you are concerned about ecology. Since each tank of pasta you cook needs water
and a correct salt seasoning for it to taste that delicious, you need a lot of salt and water,
which are often wasted. For this reason, you open a research branch in your startup
which decides to design a duct-hydraulic system to counteract the waste of water and
salt. The tank where the pasta cooks has a duct, named Tunnel, connected to it. Inside
of the Tunnel there are a salt source and a hydraulic element. The hydraulic element
increases the water’s pressure by ∆p. Moreover, the water with increased pressure (and
hence velocity) is then seasoned in a second duct, called Seasoner, compensating the loss
of salt due to pasta’s absorption. Note that only compressibility effects of the Tunnel
should be taken into account. The pressure at the water’s surface p∞ is assumed to be

known. Assume a circular tunnel, whose area reads AT =
d2T·π
4

. Assume that the area of
the water tank is AW and is known. A sketch of the system with the relative parameters
is shown in Figure 3.

Hydraulic
Element

SALT

dT

hT

lT

lD

h(t)
hV

λBH, ρ, vBH(t), σ

λAH, ρ, vAH(t)

Figure 3: Sketch of the system.

1. List all the reservoirs and the relative state variables.

2. Find the pressure p1(t) at the beginning of the Tunnel as a function of the velocity
in the Tunnel vBH(t).

3. Formulate the differential equation for vBH(t) as function of the pressure right before
the hydraulic element p2(t).

4. Exploiting the compressibility of the Tunnel, find the pressure p2(t) explicitly.

5. Formulate the differential equation for vAH(t).

6. Formulate the differential equation for h(t).
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Solution.

1. The reservoirs of the system and their relative state variables are:

• The Tunnel kinetic energy. The state variable of this reservoir is the velocity
of the water in the Tunnel vBH(t).

• The Seasoner kinetic energy. The state variable of this reservoir is the velocity
of the water in the Tunnel vAH(t).

• The water mass in the tank. The state variable of this reservoir is the water’s
height h(t).

• The compressibility of the Tunnel. The state variable of this reservoir is the
water volume V (t).

2. Bernoulli:
First, we need to use Bernoulli’s law from the water’s surface to the beginning of
the Tunnel, in order to find the local pressure. This reads

02 +
p∞
ρ

+ g · h(t) =
vBH(t)2

2
+
p1(t)

ρ
+ ρ · g · hV

p1(t) = p∞ + g · ρ · (h(t)− hV)− ρ · vBH(t)2

2
.

(4.11)

3. Tunnel:
The impulse equation for the Tunnel reads

ρ · lT · AT ·
d

dt
vBH(t) = AT · (p1(t)− p2(t))− Ffric(t), (4.12)

where Ffric(t) is the friction force, which reads

Ffric(t) = AT · λBH ·
lT · ρ
2 · dT

· sign(vBH(t)) · vBH(t)2. (4.13)

The pressure p2(t) is obtained from the compressibility of the Tunnel.

4. Compressibility:
As learned in the lecture, the pressure before the valve p2(t) is computed as

p2(t) =
1

σ
· ∆V (t)

V0
+ pstat

=
1

σ
· V (t)− V0

V0
+ ρ · g · (h(t)− hV) + p∞,

(4.14)

where

V0 =
lT · π · d2T

4
. (4.15)

The volume balance reads

dV (t)

dt
= V ∗in − V ∗out
= AT · (vBH(t)− vAH(t)).

(4.16)
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5. Seasoner:
The impulse equation for the Seasoner reads

ρ·(lD+hT−hV)·AT ·
d

dt
vAH(t) = AT ·(p2(t) + ∆p− p∞)+AT ·ρ·g ·(hV−hT)−Ffric(t),

(4.17)
where Ffric(t) is the friction force, which reads

Ffric(t) = AT · λAH ·
(lD + hT − hV) · ρ

2 · dT
· sign(vAH(t)) · vAH(t)2. (4.18)

6. Water Tank:
The water tank stores water’s mass. Its state variable is the height of the water
tank h(t). The mass balance reads

d

dt
m(t) = ρ · AW ·

dh(t)

dt

=
∗
min −

∗
mout

= ρ · AT · (vAH(t)− vBH(t)).

(4.19)

This leads to a relation for the change of the water height

d

dt
h(t) =

AT

AW

· (vAH(t)− vBH(t)) . (4.20)
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