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Exercise 6 - Thermodynamic Systems

6.1 Internal Energy

The variation of internal energy for a closed system is

dU = δW + δQ,

or rewritten
∆U = W +Q,

where

• U is the internal energy,

• W is the mechanical energy (work of external forces to the system),

δW = −Pext · dV.

• Q is the thermal energy exchanged with the surrounding, with

δQ = m · cv · dT, if process no change in volume, cv specific heat at constant volume

δQ = m · cp · dT, if process no change in pressure, cp specific heat at constant pressure.

We distinguish three special cases:

• Adiabatic process: no heat transfer, ∆Q = 0, ∆U = ∆W .

• Isochoric process: no volume change, ∆W = 0, ∆U = ∆Q.

• Isolated systems: ∆U = 0

For the special case of incompressible systems we have

U(T ) = m · c · T.

Remark. • These assumptions are also valid for compressible gases if temperature
variations are not too large.

• We consider U = 0 at 0 Kelvin.

6.2 Enthalpy

The enthalpy is defined as
H = U + pV.

Moreover, it holds

dH = dU + P · dV + V · dP
= δW + δQ+ P · dV + V · dP
= −P · dV +m · cp · dT + k · dP + P · dV + V · dP
= m · cp · dT + (k + V ) · dP,
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where the factor k takes into account non-isobaric processes, i.e. k = 0 for isobaric
processes. Thanks to the enthalpy we can now formulate the energy balance for a open
system:

dU

dt
=
∑

Ḣin −
∑

Ḣout + Q̇+ Ẇ ,

where

• U is the internal energy,

• Ḣ is the enthalpy-flow,

• Ẇ is the mechanical energy (power of external forces to the system),

• Q̇ is the thermal energy exchanged with the surrounding.

6.3 Ideal Gases

Recall that for an ideal gas we have

pV = nR̄T = mRT,

where R̄ is the universal gas constant and R = R̄/Mgas, where Mgas is the molar mass.
For ideal gases both the internal energy and the enthalpy are function of the temperature,
i.e.

H(T ) = m · cp · T,
U(T ) = m · cv · T,

where cv and cp are the specific heats at constant volume and pressure, respectively. They
are related by R = cp − cv.

6.4 Heat Transfer

There are three kinds of heat transfer:

Conduction: Here we use the Fourier’s law. For the one-dimensional case we have

Q̇ =
κA

l
(T1 − T2),

where κ is the thermal conductivity A is the cross-sectional area, and l is the length.

Heat Convection: Here we use the Newton’s law. The heat transfer between a solid
body with contact surface A and temperature T1 and the surrounding fluid with
temperature T2 is

Q̇ = kA(T1 − T2),
where k is the heat transfer coefficient.

Heat radiation: Here we use the Stefan-Bolzmann’s law. The heat radiation from a
body with surface A and temperature T1 to the surrounding at temperature T2 is

Q̇ = εσA(T 4
1 − T 4

2 ),

where ε ∈ [0, 1] is the emissivity and σ is the Stefan-Bolzmann constant.
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6.5 Example

In order to extend your businness and attract new customers to your SpaghETH, you
decide to recreate the typical “Ticino Experience”and produce the real Risotto1 and serve
it on the Polyterrasse. Everybody knows (or should know!) that a keypoint for a good
risotto is the so called Mantecatura2. This ancient procedure consists in mixing butter
and cheese (any kind of cheese is ok, the more the best) with the hot rice. Let’s assume
that the pot where you cook the rice is isoltated. We model the hot rice as a unique
element with density ρr. We opt for a traditional recipe, using butter and parmigiano
Reggiano. Both the butter and the parmigiano Reggiano can be modeled to have a cubic
form. The butter cubes have side length xb and mass mb, while the parmigiano cubes
have side length xp and mass mp. We assume that the butter has constant temperature
Tb and the parmigiano Tp. The hot rice with mass mr and Tr is continuously mixed with
the ingredients with a wooden spoon. While you are “mantecating”, Mr. Balerna throws

some peperonata with density ρpep and specific heat cpep into the pot at rate
∗
V pep. Since

the pot is assumed to be well isolated, the heat exchange occurs only with the air in the
environment (temperature Tair on the hot rice surface Ar). The heat exchange coefficient
αr is assumed to be known. A sketch of the system is depicted in Figure 1.
For the modeling of the system, please take into account following assumptions:

• The butter and the parmigiano remain cubic and don’t melt completely.

• The heat exchange coefficient between hot rice and the butter reads αb.

• The heat exchange coefficient between hot rice and the parmigiano reads αp.

• The melting enthalpy and the melting temperature of the butter are Lb and Ts,b.
The specific heat of the butter is cb.

• The melting enthalpy and the melting temperature of the parmigiano Reggiano are
Lp and Ts,p. The specific heat of the Parmigiano Reggiano is cp.

• The whole process occurs at ambient pressure.

1. List all the reservoirs with the corresponsing level variables of the system.

2. Find the differential equations which describe the given system, assuming that we
are throwing one cube of parmigiano Reggiano and one cube of butter.

1Note that in ticino dialect one says “Ul risott ticines”
2For the lovers of cooking, have a look at ...
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xp,mp, Tp, αp

xb,mb, Tb, αb
∗
V pep, ρpep

Figure 1: Sketch of the system.

Solution.

1. The reservoirs of the system are the butter mass mb, the parmigiano mass mp, the
hot rice mass mr, and the internal energy of the hot rice Ur (with level variable
Tr(t)).

2. The melting butter mass flow
∗
mb can be computed as

∗
mb =

αb · Ab

Lb + cb · (Ts,b − Tb)
· (Tr(t)− Tb),

where the butter surface Ab(t) depends on the remaining mass of butter and reads

Ab(t) = 6x2b = 6 ·
(
mb(t)

ρb

) 2
3

.

Analogously, it the melting parmigiano mass flow
∗
mp can be computed as

∗
mp =

αb · Ap

Lp + cp · (Ts,p − Tp)
· (Tr(t)− Tp),

where the parmigiano surface Ap(t) depends on the remaining mass of butter and
reads

Ap(t) = 6x2p = 6 ·
(
mp(t)

ρp

) 2
3

.
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The change in mass for the butter reads

d

dt
mb(t) = − ∗

mb(t).

The change in mass for the parmigiano reads

d

dt
mp(t) = − ∗

mp(t).

The change in mass for the hot rice reads

d

dt
mr(t) = ρpep ·

∗
V pep(t) +

∗
mb(t) +

∗
mp(t).

The change in internal energy of the hot rice can be computed with the first law of
thermodynamics for open system as

d

dt
Ur(t) =

∗
Q+

∑
i

∗
mi · hi

d

dt
(mr(t) · cr · Tr(t)) = αr · Ar · (Tair − Tr(t))

− (Lb + cb · (Ts,b − Tb)) · ∗
mb(t)− (Lp + cp · (Ts,p − Tp)) · ∗

mp(t)

+
∗
mb(t) · cb · Ts,b +

∗
mp(t) · cp · Ts,p + ρpep ·

∗
V pep(t) · cpep · Tpep(t).
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