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Exercise 7 - Fluiddynamic Systems

7.1 Valves

Flows of fluids between reservoirs are characterized by valves. The inputs of these ele-
ments are the pressure of the upstreams/downstreams. We consider the upstream pressure
pin and the downstream pressure pout. The two modeling approaches are:

• Incompressible fluids;

• Compressible fluids.

7.1.1 Valves with Incompressible Fluids

First, some assumptions should be made:

• The friction effects in the flow is modeled accounting it with experimentally deter-
mined correction factors.

• Inertial effects in the flow are neglected. Note that the mass of fluid around the
valve is very small if compared to the mass stored in the receiving reservoirs.

• We consider an insulated system.

• All flow-phenomena are zero dimensional, i.e., spatial effects are neglected.

Incompressible fluids (constant density) are, e.g., liquids and fluids at low Mach numbers,
where the Mach number is defined as

M =
u

c
,

with u local flow velocity and c speed of sound the medium.

Remark. As a rule of thumb, we can consider a fluid to be incompressible if M < 0.3 and
the flow is quasi-steady and isothermal.

The fluid mass flow
∗
m can be then modeled using Bernoull’s law. This reads

∗
m(t) = cd · A ·

√
2ρ ·

√
pin(t)− pout(t),

where cd is the discharge coefficient (factor which takes into account flow restrictions,
friction and other losses), A is the open area of the valve, ρ is the density of the fluid, pin
and pout are the upstream and downstream pressures of the valve.
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7.1.2 Valves with Compressible Fluids

The key concept to model compressible fluids through valves is the Isenthalpic throttle.

Isenthalpic Process

A fluid circulates in a tube with

• No moving wall (no work exerted by pressure forces).

• No heat exchange.

• → dH = 0, no enthalpy variation in the system.

By referring to Figure 1, one can divide the model in two distinct regions. The first part is

Figure 1: Two regions for the model.

the acceleration part, i.e. pressure decrease, up to the narrowest point. The flow remains
laminar during this phase. All the potential energy stored in the flow (using the flow
pressure as level variable) is converted isentropically (with no losses) into kinetic energy.
The second part is the deceleration part, where the flow becomes turbulent. In this phase
the kinetic energy is dissipated into thermal energy and no pressure recuperation occurs.
With this modeling approach we can conclude that

• The pressure in the narrowest part of the valve is ≈ to the downstream pressure.

• The temperature of the flow before and after the valve is ≈ the same.

Using the first law of thermodynamics and the properties of isentropic expansions for a
perfect gas, the equation for the fluid mass flow reads

∗
m(t) = cd · A(t) · pin(t)√

R · ϑin

·Ψ(pin(t), pout(t)),

where

Ψ(pin(t), pout(t)) =


√
κ ·
(

2
κ+1

)κ+1
κ−1 for pout(t) < pcr(t),(

pout(t)
pin(t)

) 1
κ ·

√
2κ
κ−1 ·

[
1−

(
pout(t)
pin(t)

)κ−1
κ

]
for pout(t) ≥ pcr(t),
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and

pcr =

(
2

κ+ 1

) κ
κ−1

· pin(t).

At critic pressure pcr, the flow reaches in its narrowest part sonic conditions. For air and
similar gases a simplification can be taken into account. This reads

Ψ(pin(t), pout(t)) =


1√
2

for pout < 0.5pin,√
2pout
pin
·
[
1− pout

pin

]
for pout ≥ 0.5pin.
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7.2 Example

As SpaghETH is rapidly growing, you decide to buy a building where pasta, risotto,
and sauces can be easily stored. Due to the large orders, your chief technical manager
suggests to study a way to efficiently move around the heavy boxes. You opt for a spring-
fluiddynamic system, consisting of a chamber, two valves, a piston, and a box, as depicted
in Figure 2.
The chamber, modeled as a cylinder of diameter D, is connected to a reservoir of air with
constant pressure pr = 10 bar and constant temperature ϑr through a valve of opening area
A1(t) and discharge coefficient cd,1. Moreover, the chamber is connected to the ambient,
where the pressure and temperature are p∞ = 1 bar and ϑ∞, through second valve with
opening A2(t) and discharge coefficient cd,2. Experiments have shown that the pressure
in the chamber changes dynamically and is (on average) approximately 1.5 bar. To model
the valves you may assume constant κ = 1.4 and constant specific heats cv and cp. You
use simplified models. The walls of the chamber have the constant temperature ϑ∞ and
the heat transfer coefficient for the internal wall is α. No heat is transferred to the piston.
The piston and the box have mass mp and mass mb, respectively. They move frictionless
on a flat surface. The spring has the constant k and is unstretched for x = 0.

SpaghETH

pr, ϑr

p∞, ϑ∞

k

cd,2, A2(t)

cd,1, A1(t)

x(t)

D

p(t), ϑ(t),m(t)

Figure 2: Sketch of the system.

1. What are the input(s) and output(s) to the system.

2. List the reservoirs with the level variables.

3. Draw a causality diagram of the system.

4. In what conditions will the valves operate?

5. Formulate the relations describing each block.

4



Nicolas Lanzetti & Gioele Zardini System Modeling HS 2017

Solution.

1. The inputs are the opening surfaces of the two valves. The output is the position
of the piston (or of the box).

2. The reservoirs of the system are:

• Mass of air in the chamber with level variable m(t);

• Internal energy in the chamber with level variable ϑ(t);

• Kinetic energy of the piston and of the box with level variable ẋ(t);

• Potential energy in the spring with level variable x(t).

3. The causality diagram is sketched in Figure 3.

Mass balance

Energy balance

Ideal gases

Kinetic/Potential energy

Valve inValve out

Heat losses Power

m(t)

ϑ(t)

p(t)

A1(t)A2(t)

ṁin(t)ṁout(t)

x(t)

Q̇loss Ẇ

Figure 3: Causality diagram of the system.
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4. For the first valve we have

pcr =

(
2

κ+ 1

) κ
κ−1

· 10 bar ≈ 5.3 bar > pout(t).

Hence, the valve operates in “sonic conditions”. For the second valve we have

pcr =

(
2

κ+ 1

) κ
κ−1

· 1.5 bar ≈ 0.8 bar < pout(t).

Hence, the valve operates in “normal conditions”.

5. The relations for the valves are

ṁin(t) = cd,1 · A1(t) ·
pr√
R · ϑr

·

√
κ ·
(

2

κ+ 1

)κ+1
κ−1

ṁout(t) = cd,2 · A2(t) ·
p(t)√
R · ϑ(t)

·
(
p∞
p(t)

) 1
κ

·

√√√√ 2κ

κ− 1
·

[
1−

(
p∞
p(t)

)κ−1
κ

]

The mass balance yields then

d

dt
m(t) = ṁin − ṁout.

The energy balance reads

d

dt
(cv ·m(t) · ϑ(t)) = ṁin(t) · cp · ϑr − ṁout(t) · cp · ϑ(t)− Ẇ − Q̇loss,

where

Q̇loss = α · (S + πD · x(t)) · (ϑ(t)− ϑ∞),

Ẇ = (p(t)− p∞) · S · ẋ(t).

Note that the pressure can then be computed by using the ideal gas relation

p(t) =
1

V
·m(t) ·R · ϑ(t).

where V (t) = S · x(t). The position of the piston obeys to

(mp +mb) · d2

dt2
x(t) = (p(t)− p∞) · S − k · x(t).
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