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Exercise 10 - Parameter Identification

10.1 Introduction

So far, we have investigated how to come up with a mathematical model of a system. This
modeling was based on physics laws, whereby we assumed that some parameters of the
system were known. Now, these parameters are to be identified by running experiments.
The data collected experimentally may be used for the following purposes:

• To identify unknown system structures and system parameters;

• To validate the results of the system modeling and parameter identification.

It is important not to use the same data set for both purposes.

10.2 Least Squares Method

The least square is used to fit the parameters of a linear (in the parameters) and static
model. Assume you have a model of the form

y(k) = h(u(k))ᵀ · π + e(k), (10.1)

where y(k) ∈ R is the output, u(k) ∈ Rm is the input, π ∈ Rq is the vector of q parameters,
and e(k) is the error.

Example 1. The model
y(k) = au(k)2 + b+ e(k)

is linear in the parameters. Let π =
[
a b

]ᵀ
, then the system can be brought in the form

(10.1) with

y(k) =
[
u(k)2 1

]︸ ︷︷ ︸
h(u(k))ᵀ

[
a
b

]
+ e(k).

Example 2. The model
y(k) = u(k)a + au(k)

is nonlinear in the parameter.

Example 3. The model
y(k) = u(k)a

is nonlinear in the parameter. However, if we write

log(y(k)) = log(u(k)a) = a log(u(k))

the model is linear and of the form of Equation (10.1).

The least square problem consists of finding the parameter vector πLS that, given a data
set, minimizes the error

πLS = arg min
π

n∑
k=1

e(k)2 = arg min
π

n∑
k=1

(y(k)− h(u(k))ᵀπ)2
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Now let

e =

e(1)
...

e(n)

 y =

y(1)
...

y(n)

 H =

h(u(1))ᵀ

...
h(u(n))ᵀ


then

πLS = arg min
π
eᵀe = arg min

π
(y −Hπ)ᵀ(y −Hπ).

The minimum can be obtained by setting the derivative w.r.t. π to zero1

∂

∂π
(yᵀy − yᵀHπ − πᵀHᵀy + πᵀHᵀHπ) = −2Hᵀy + 2HᵀHπ

!
= 0

which gives
πLS = (HᵀH)−1Hᵀy.

Remark. • The matrix H† = (HᵀH)−1Hᵀ is also called Moore-Penrose inverse of H.

• For the derivative in π, we used ∂A·x
∂x

= Aᵀ, ∂xᵀ·A
∂x

= A.

Weighted Least Squares Method

Assume now the errors are weighted by some weigths w(k) > 0. Then,

πLS = arg min
π

n∑
k=1

w(k)e(k)2 = arg min
π

n∑
k=1

w(k)(y(k)− h(u(k))ᵀπ)2

Using the same notation as above and with W = diag(w1, . . . , wn) we obtain

πLS = arg min
π
eᵀWe = arg min

π
arg min

π
(y −Hπ)ᵀW (y −Hπ).

Setting the derivative to 0 gives

πLS = (HᵀWH)−1WHᵀy.

Remark. In a probabilistic environment, it might be reasonable to set w(k) = 1/σ(k)2,
where σ(k)2 is the standard deviation of measurement k.

10.3 Iterative Least Squares Methods

In the previous subsections, we presented a batch approach, i.e., an approach where data
is first collected, organized, and then the solution is computed. However, this approach
might be computationally demanding for real-time applications as at each time step the
whole problem has to be solved again. Thus, we look for iterative solution the estimate
is computed as function of the previous estimate and the latest measurement. That is,

πLS(r + 1) = f(πLS(r), y(r + 1))

1Stricly speaking, it should be show that πLS is a minimum. However, as the matrix of second
derivatives 2HᵀH is positive semidefinite, πLS a minimum.
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initialized with πLS(0) = E[π]. Then, it can be shown that

πLS(r + 1) = πLS(r) +
1

1 + c(r + 1)
Ω(r)h(u(r + 1))(y(r + 1)− h(u(r + 1))ᵀπLS(r))

Ω(r + 1) = Ω(r)− 1

1 + c(r + 1)
Ω(r)h(u(r + 1))h(u(r + 1))Ω(r)

c(r + 1) = h(u(r + 1))ᵀΩ(r)h(u(r + 1)).

Note that the recursion has to be initialized with some πLS(0) and some Ω(0).

Remark. There exist many extensions/variations for the recursive least squares method.
Among them, we highlight:

• The least squares with exponential forgetting, where old data is weighted with some
forgetting factor λ ∈ (0, 1). That is, at time n the measurement i < n has weight
λn−i. Then,

πLS,λ = arg min
π

n∑
k=1

λn−ke(k)2 = arg min
π

n∑
k=1

λn−k(y(k)− h(u(k))ᵀπ)2

• The Kaczmarz’s projection algorithm, which is more computationally efficient than
the regular least squares algorithm.

10.4 Identification of Parameters in Dynamic Systems

So far, we assume that the model of the system was algebraic, i.e.,

y(k) = h(u(k))ᵀu(k) + e(k).

How should we proceed for systems of the form

π0
d

dt
y(t) = h(u(t))π + e(t).

We distinguish between two cases:

• Taking measurements in steady state. That is, by considering

0 = h(u(t))π + e(t)

and doing least squares for all the available measurements. However, this does not
allow to estimate π0 as d

dt
y = 0.

• Numerically finding the optimal parameters. That is,

π0, π = arg min
π0,π

n∑
k=1

(y(k)− ŷ(k))2,

where ŷ is the output of the simulated system. In other words, we try to find the
parameters that minimize the error between the output of the simulation and the
measurements. Note that there exists no closed from equation of π0 and π; the
problem has to be tackled numerically.
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10.5 Example

Since your SpaghETH is going well, you want to optimize and control the production of
your meals depending on how satisfied your customers are. In order to analyze this, you
find a model to describe the satisfaction of your customers at any time t. This could help
you standardizing your whole production process and designing a controller which can
handle any situation.
The model is mathematically given as

dS(t)

dt
= T · qmeal +D · αmeal − S(t)

T

C
= P.

The first equation of the model relates the satisfaction S(t) of the cooked meal to several
factors. In fact, this depends on the percentage of waiting time T for the customers to
receive their meal (T = waiting time

total permanence time
), the quality of the meal qmeal, the digestibility

factor for the meal D, the factor which describes how large the portion was αmeal and the
satisfaction itself. The second equation, instead, defines the waiting time percentage T
for receiving the meal, which is a function of the number of pots needed to cook the meals
P = pots needed

standard pots need
and the fraction of customers C = customers

capability
eating. We are interested

in finding the parameters T and αmeal with the Least Squares Method, using data from
feedbacks from two different meals: pasta alla puttanesca and älpler magronen.

C D S P qmeal

Pasta alla puttanesca (P) 0.5 3 4 1 1

Älpler Magronen (A) 1
√

3 2
√

3
√

3

1. Write down the least squares problem for the steady state of the system.

2. Determine the parameters T and αmeal with the Least Squares Method.

3. By computing πLS you realize that something does not work. You find out that the
intern who should count the number of customers for älpler magronen was drunk
and the number he reported is not reliable. How can you take this into account for
the Least Squares Method? Provide a possible solution.

4. You realize that a better model for the waiting time is

β = (P · C)T .

Solve the Least Squares Problem (only for the model of the waiting time) for the
following measurements. Note that β ∈ R is a known constant.
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P C

Pasta alla puttanesca (P) 1 0.5

Älpler Magronen (A)
√

3 1

Solution.

1. We consider the system in its equilibrium state. The relations become

Si = T · qmeal,i +Di · αmeal,i

Pi =
T

Ci
,

where i ∈ {P,A}. We can write the matrices for the Least Square problem. The
parameter vector we look for reads

π =

(
T

αmeal

)
.

The weight matrix for the problem is the identity matrix, since we are not given
special weights for the parameters, i.e.

W = I4.

Furthermore,

ỹ =


SP

PP

SA

PA

 =


4
1
2√
3

 ,

and

H =


qmeal,P DP

1
CP

0

qmeal,A DA
1
CA

0

 =


1 3
2 0√
3
√

3
1 0

 .
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2. Using the learned formula, we get

πLS =
(
HT ·W ·H

)−1 ·HT ·W · ỹ

=
(
HT ·H

)−1 ·HT · ỹ

=

(1 2
√

3 1

3 0
√

3 0

)
·


1 3
2 0√
3
√

3
1 0



−1

·
(

1 2
√

3 1

3 0
√

3 0

)
·


4
1
2√
3


=

(
9 6
6 12

)−1
·
(

6 + 3
√

3

12 + 2
√

3

)
=

1

72

(
12 −6
−6 9

)
·
(

6 + 3
√

3

12 + 2
√

3

)
=

1

72
·
(

72 + 36
√

3− 72− 12
√

3

−36− 18
√

3 + 108 + 18
√

3

)
=

(√
3
3

1

)
.

3. In order to take this into account we adjust the weight matrix to not trust the
measurement for älpler magronen customers, i.e.

Wnew =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1

 .

We perform the same computation as before with the new weight matrix:

πLS,new =
(
HT ·W ·H

)−1 ·HT ·W · ỹ

=
(
HT ·H

)−1 ·HT · ỹ

=

(1 2
√

3 1

3 0
√

3 0

)
·Wnew ·


1 3
2 0√
3
√

3
1 0



−1

·
(

1 2
√

3 1

3 0
√

3 0

)
·Wnew ·


4
1
2√
3


= . . .

=

(
0.3736
1.1019

)
.

4. Since the model is not linear, we cannot directly apply the method we learned. One
possible solution is to linearize the model, e.g. by computing:

ln(β) = ln((P · C)T )

ln(β) = T · ln(P · C).
(10.2)
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Applying the formalism, we have

ỹ =

(
ln(β)
ln(β)

)
,

H =

(
ln(PP · CP )
ln(PA · CA)

)
=

(
ln(0.5)

ln(
√

3)

)
,

W = I2.

(10.3)

It holds

πLS = (HT ·W ·H)−1 ·HT ·W · ỹ

=

((
ln(0.5) ln(

√
3)
)
·
(

ln(0.5)

ln(
√

3)

))−1
·
(
ln(0.5) ln(

√
3)
)
·
(

ln(β)
ln(β)

)
.
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