Harry's

Mathematik I/II PVK

Tag 4

$$g_a(x,y) = 28 - x(ax+3) - (y-a)^2$$

4.MC3 Für die Funktion g_a aus Aufgabenteil **4.MC2** sei nun a=6: Für welchen Wert von b beschreibt der Graph der Funktion $l: \mathbb{R}^2 \to \mathbb{R}$ mit

$$l(x,y) = 23 + bx + 2y$$

die Tangentialebene von g_6 an der Stelle $(x_0, y_0) = (1, 5)$?

- (A) b = 12
- (B) b = 2
- (C) b = -15
- (D) b = -5

4.MC2 Seien $a \in \mathbb{R}$ und die Funktion $g_a : \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $g_a(x,y) = 28 - x(ax+3) - (y-a)^2$. Für welches a ist $(x_0, y_0) = \left(-\frac{1}{8}, 12\right)$ ein kritischer Punkt von g_a ?

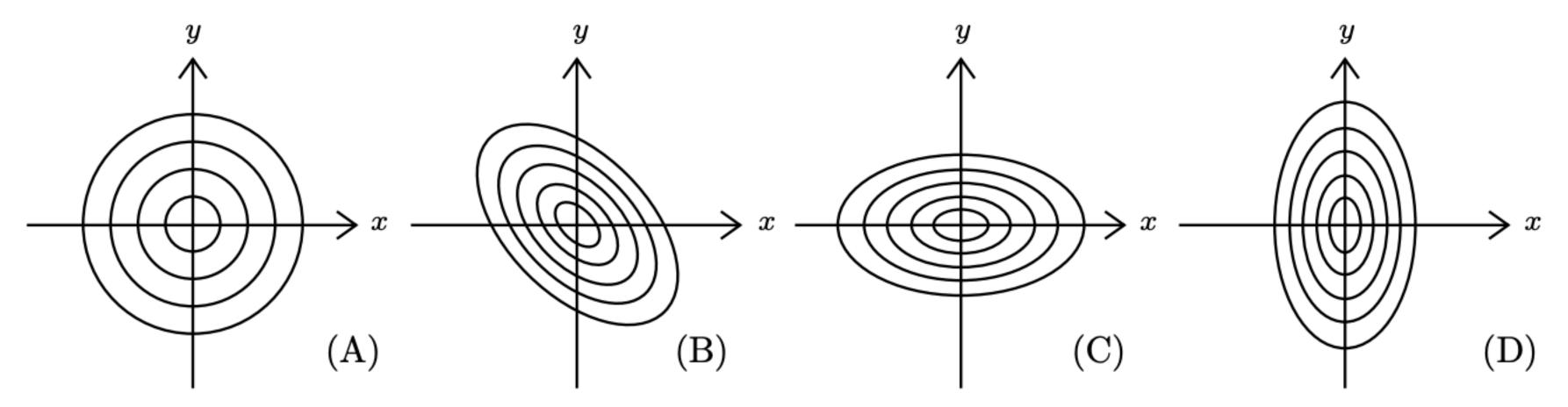
(A)
$$a = \frac{1}{8}$$

(B)
$$a = 12$$

(C)
$$a = 3$$

(D)
$$a = 8$$

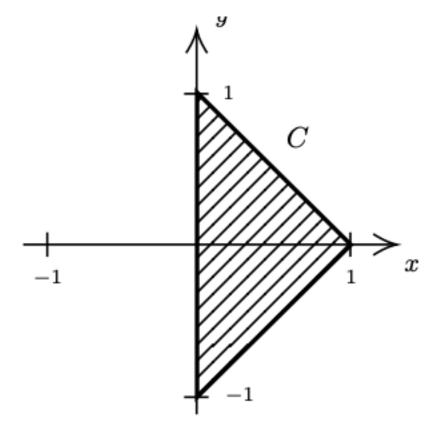
4.MC1 Wir betrachten die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = x^2 + 2y^2$. Welches der folgenden Bilder zeigt Niveaulinien (oder Höhenlinien) der Funktion f?



$$h(x,y) = x^2 - 3xy + y^3$$

- **4.MC6** Sei h die Funktion aus Aufgabenteil **4.MC5**. Sei γ die Niveaukurve von h in der (x, y)-Ebene, auf der P = (1, 0) liegt. Welche Steigung hat die Tangente an γ in P?
 - (A) $-\frac{2}{3}$
 - (B) $-\frac{3}{2}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{3}{2}$

4.MC7 Gegeben sei das Gebiet C:



Welcher Integralausdruck berechnet den Flächeninhalt von C?

(A)
$$\int_0^1 \int_{x-1}^{1-x} dy \, dx$$

(B)
$$\int_0^1 \int_0^{1-y} dx \, dy$$

(C)
$$\int_{-1}^{1} \int_{0}^{1} dy dx$$

(D)
$$\int_{-1}^{1} \int_{y-1}^{1-y} dx dy$$

4.A1 [4 Punkte]

(i) Sei die Menge

$$P = \bigg\{ (x,y) \in \mathbb{R}^2 \; \bigg| \; (x,y) = (r\cos(\varphi), r\sin(\varphi)), r \in \bigg[\sqrt{\ln(2)}, \sqrt{\ln(10)}\bigg], \varphi \in \bigg[\frac{1}{4}\pi, \frac{7}{4}\pi\bigg] \bigg\},$$

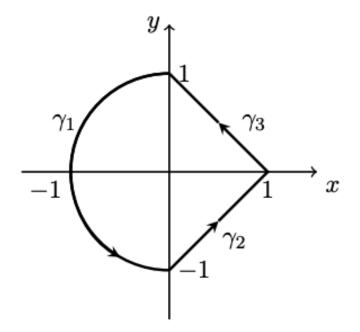
gegeben. Skizzieren Sie die Menge P in das Koordinatensystem in Ihrem Antwortheft unter Aufgabennummer 4.A1.

Hinweis: In Ihrer Skizze können Sie $\sqrt{\ln(2)} \approx 0.8$ und $\sqrt{\ln(10)} \approx 1.5$ verwenden.

(ii) Berechnen Sie $I = \iint_P e^{x^2+y^2} dA$. **Hinweis:** Rechnen Sie hier mit exakten Werten und nicht mit $\sqrt{\ln(2)} \approx 0.8$ und $\sqrt{\ln(10)} \approx 1.5!$

Sommer 2018, Aufgabe 5

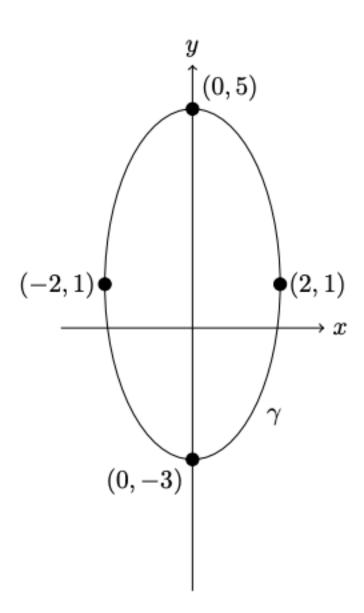
c) Betrachten Sie die folgende Abbildung.



- (i) Welche der folgenden Parametrisierungen passt zur Kurve $\gamma_2:t\mapsto \begin{pmatrix} x(t)\\y(t)\end{pmatrix}$?
 - \bigcirc (A) $\gamma_2(t) = {t-1 \choose t-1}, t \in [1,2]$
 - $\bigcirc \quad \textbf{(B)} \ \gamma_2(t) = \binom{1-t}{t}, \ t \in [0,1]$
 - $\bigcirc \quad \textbf{(C)} \ \ \gamma_2(t) = \binom{1+t}{t}, \ t \in [-1,0]$
 - $\bigcirc \quad \textbf{(D)} \ \gamma_2(t) = \begin{pmatrix} t \\ t-1 \end{pmatrix}, \ t \in [0,2]$
- (ii) Geben Sie eine Parametrisierung für die Kurve an, welche entsteht, wenn wir γ_1 in **umge-kehrter Richtung** durchlaufen.

Antwort: _____

5.MC2 Welche der folgenden Parametrisierungen $\gamma(t)$ von γ passt zu diesem Bild?



(A)
$$\gamma(t) = \begin{pmatrix} \frac{1}{2}\sin(t) \\ \frac{1}{4} + \cos(t) \end{pmatrix}, t \in [0, 2\pi]$$

(B)
$$\gamma(t) = \begin{pmatrix} 2\sin(t) \\ 1 + 4\cos(t) \end{pmatrix}, \ t \in [0, 2\pi]$$

(C)
$$\gamma(t) = \begin{pmatrix} 2\sin(t) \\ \cos(t) - 1 \end{pmatrix}, t \in [0, 2\pi]$$

(D)
$$\gamma(t) = \begin{pmatrix} \frac{\sin(t)}{2} \\ \frac{\cos(t)-1}{4} \end{pmatrix}, t \in [0, 2\pi]$$

5.MC2 Sei $\gamma(t) = (e^t \cos(t), e^t \sin(t))$ für $t \in \mathbb{R}$ gegeben.

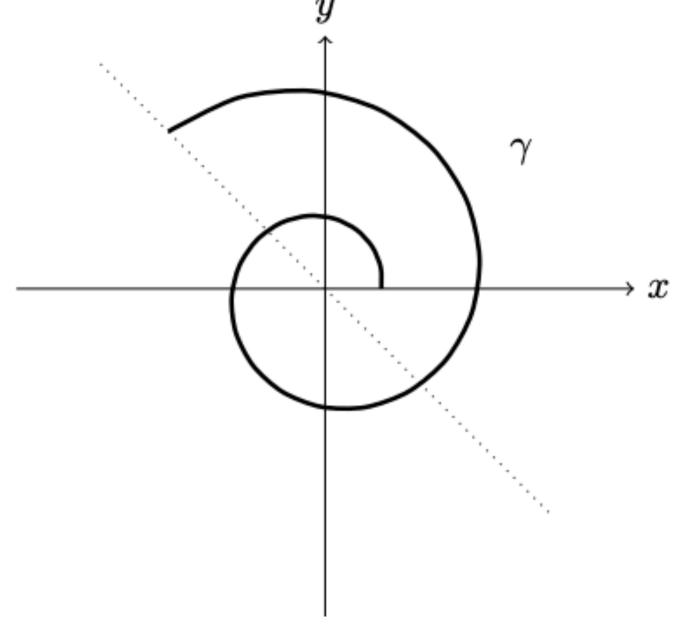
Für welches Intervall I liefert $\gamma: I \to \mathbb{R}^2, t \mapsto \gamma(t)$ die unten abgebildete Kurve? **Hinweis:** Bei der gepunkteten Linie handelt es sich um die Gerade y = -x.

$$(A) I = \left[0, \frac{7\pi}{4}\right]$$

(B)
$$I = \left[0, \frac{9\pi}{4} \right]$$

(C)
$$I = \left[0, \frac{11\pi}{4}\right]$$

$$(D) I = \left[0, \frac{13\pi}{4}\right]$$



5.MC1 Für $c \in \mathbb{R}$ und $d \in \mathbb{R}$ sei K das Vektorfeld mit $K(x,y) = \begin{pmatrix} cx + y \\ dx + 3y \end{pmatrix}$.

Das Vektorfeld K soll konservativ sein **und** die Divergenz $\operatorname{div}(K) = 2$ haben. Für welches Paar c und d ist das der Fall?

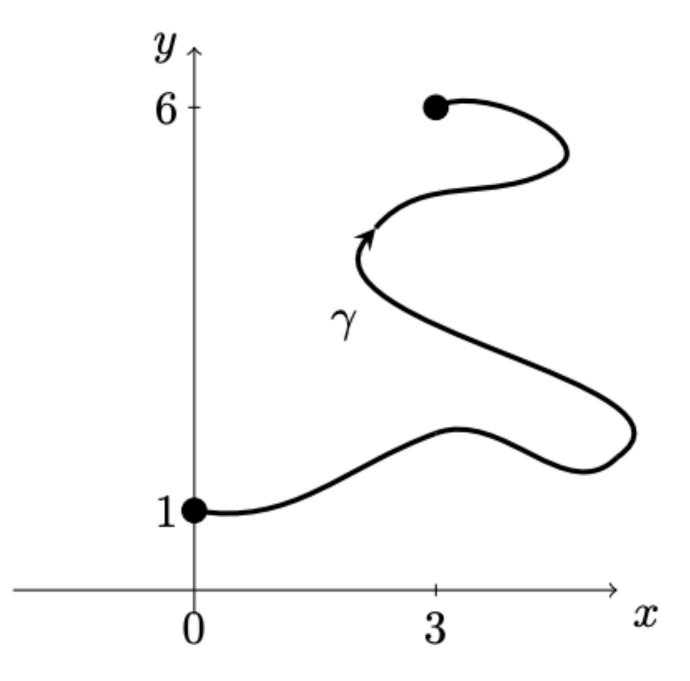
- (A) c = 3 und d = 1
- (B) c = 5 und d = 2
- (C) c = -1 und d = 1
- (D) c = 0 und d = 0

5.A1 [3 Punkte] Sei $\gamma(t) = \left(e^t \cos(t), e^t \sin(t)\right)$ für $t \in [0, \ln(2)]$ (vergleiche auch **5.MC2**) oben und das Vektorfeld K mit K(x, y) = (-y, x) gegeben. Berechnen Sie das Arbeitsintegral $\int_{\gamma} K \cdot d\gamma$. Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer **5.A1**.

Sommer 2018, Aufgabe 5

e) Sei K das Vektorfeld mit $K(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$.

Sei γ eine Kurve in der (x, y)-Ebene von (0, 1) bis (3, 6):

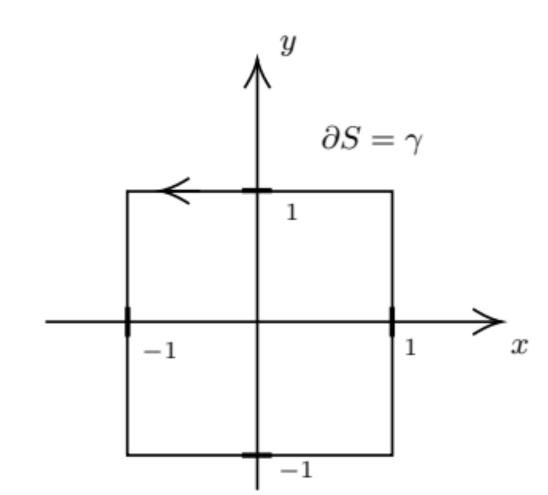


Berechnen Sie die Arbeit $\int_{\gamma} K \cdot d\gamma$.

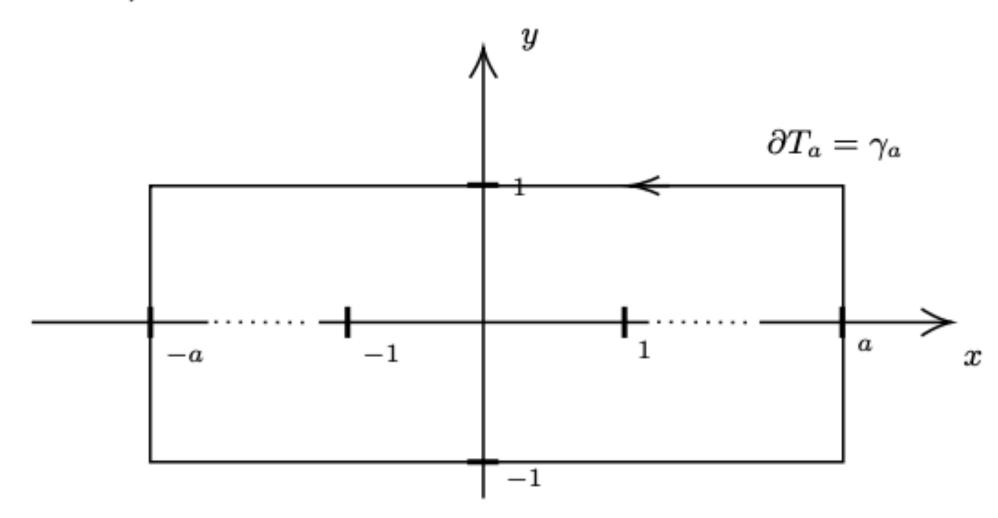
5.MC8 Das Vektorfeld $\widetilde{K}_b: \mathbb{R}^2 \to \mathbb{R}^2$ mit $\widetilde{K}_b(x,y) = \begin{pmatrix} 8x + by + 4xy^2 \\ -2(y^3 + 3y) \end{pmatrix}$ hängt von $b \in \mathbb{R}$ ab.

Wir nehmen an, dass die Kurve γ aus **5.MC7** den Punkt (1,0) als Anfangs- und als Endpunkt hat. Für welches b ist dann das Arbeitsintegral $\oint_{\gamma} \widetilde{K}_b \cdot d\gamma = 8$?

- (A) b = 4
- (B) b = 8
- (C) b = -1
- (D) b = -2



5.A2 [3 Punkte] Das Vektorfeld $K_b = \begin{pmatrix} 5x + \frac{4}{b}y \\ \frac{2}{b}x - 7y \end{pmatrix}$ hängt von einem reellen b > 0 ab. Sei T_a das Gebiet (wie in **5.MC8** oben).



Berechnen Sie das Arbeitsintegral $\oint_{\gamma_a} K_b \cdot d\gamma$ in Abhängigkeit von a und b.

Notieren Sie Ihre Lösungen in Ihrem Antwortheft unter Aufgabennummer 5.A2.

(d) Sei das Vektorfeld $K_b: \mathbb{R}^2 \to \mathbb{R}^2$ in Abhängigkeit von $b \in \mathbb{R}$ gegeben:

$$K_b(x,y) = (8x + 2y + 4xy^2, -b(y^3 + 2y))$$

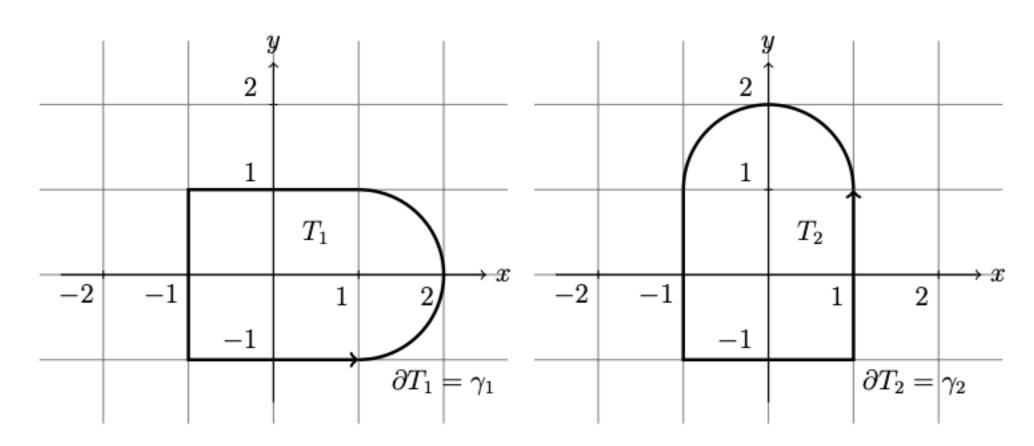
gegeben.

(i.) Berechnen Sie die Divergenz $\operatorname{div}(K_b)$ in Abhängigkeit von b:

Antwort:

$$\operatorname{div}(K_b)(x,y) = \underline{\hspace{1cm}}$$

(ii.) Betrachten Sie die zwei Gebiete T_1 und T_2 mit Randkurven $\partial T_1 = \gamma_1$ und $\partial T_2 = \gamma_2$.



Finden Sie ein $b \in \mathbb{R}$, sodass der Fluss von innen nach aussen für beide Kurven γ_1 und γ_2 gleich ist, das heisst

$$\oint_{\gamma_1} K_b \cdot n \, ds = \oint_{\gamma_2} K_b \cdot n \, ds.$$

Dabei ist n der äussere Normaleneinheitsvektor.

Hinweis: Die Gebiete T_1 und T_2 haben den gleichen Flächeninhalt.

Bearbeiten Sie die Aufgabe auf einem separaten Blatt. Zwischenschritte werden bewertet.