Probeprüfung 2

Aufgabe 1:

Beantworte die folgenden Kurzaufgaben

(a) [2 Punkte] Bestimme den Grenzwert der Funktion

$$\lim_{x \to 1} \frac{x - 1}{\ln(x)}.$$

(b) [2 Punkte] Berechne den Grenzwert:

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x}$$

in Abhängigkeit von a

- (c) [3 Punkte] Sei $f(x) = \sin(x^2)$ und $T_2(x) = a_0 + a_1x + a_2x^2$ das Taylorpolynom am Entwicklungspunkt $x_0 = 0$. Bestimme die Koeffizienten a_0 , a_1 und a_2 .
- (d) [3 Punkte] Berechne das Integral

$$\int \frac{\cos(x)}{\sin(x) + 5} \, dx$$

Aufgabe 2:

Es sei die folgende Differentialgleichung gegeben:

$$y'(x) = -(y(x) + 3)(y(x) - 4)$$

- (a) [2 Punkte] Bestimme die stationären Lösungen dieser Differentialgleichung.
- (b) [2 Punkte] In welchem Intervall muss der Anfangswert y(0) gewählt werden, sodass die gesamte Lösung y(x) streng monoton steigend ist?
- (c) [4 Punkte] Bestimme zwei Anfangswerte $y(0) = y_1$ und $y(0) = y_2$, sodass die gesamte Lösung y(x) genau einen Wendepunkt besitzt?

Aufgabe 3:

Es sei das Integral

$$\int \sin(x)\cos^2(x)\,dx$$

gegeben.

- (a) [3 Punkte] Bestimme die Stammfunktion dieses Integrals.
- (b) [3 Punkte] Gebe eine allgemeine Formel an für das Integral

$$\int f'(x)f^2(x)\,dx$$

für eine beliebige Funktion f(x).

Aufgabe 4:

Es sei die folgende Differentialgleichung gegeben:

$$y'(x) = -x^2 y(x) + e^{-\frac{1}{3}x^3}$$

- (a) [2 Punkte] Bestimme die homogene Lösung dieser Differentialgleichung.
- (b) [3 Punkte] Bestimme die inhomogene Lösung der Differentialgleichung.
- (c) [1 Punkt] Bestimme die fehlende Konstante mit der Anfangsbedingung y(0)=0 und gebe die gesamte Lösung an.

Aufgabe 5:

[8 Punkte] Bestimme die allgemeine Lösung der Differentialgleichung

$$\sin(y(x))y'(x) = \cos(y(x))$$

mit der Methode der Trennung der Variablen. Wir nehmen an, dass $y(x) \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

Aufgabe 6:

[4 Punkte] Welches der folgenden Richtungsfelder ist das Richtungsfeld von

$$y'(x) = \frac{\pi}{4}(y(x) - 3)(x^2 - 1)$$

