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Preface

This document is not meant to replace a lecture or the official lecture notes. Its purpose is
more to provide engineering students supplementary material for the course. Since I am not
a mathematician, I cannot garantee that everything is formulated mathematically correct.
Most of the content shall be seen as summary and application guide where I tried to simplify
and explain the most important concepts when a bit more depth is required in my opinion.
If you spot any mistakes, please contact me in the tutorial session or via email. I’d generally
really appreciate feedback (huwylerf@ethz.ch).

Thanks for reading and hopefully it helps one or the other student.
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1 Laplace Transform

The Laplace transform transforms a function of time from the time domain to the frequecy
domain. Hence, the variable changes from t to s, where s is a complex frequency.

L (f(t))(s) =

∫ ∞

0

e−stf(t) · dt (1.1)

Example:

f(t) = 1 L (1) =

∫ ∞

0

e−st1 · dt =

[
− 1

s
e−st

]t=∞

t=0

=
1

s
(1.2)

Some important transformations are given in the following table:

Table 1: Common Laplace Transforms

Time Domain Frequency Domain
δ(t) 1
δ(t− a) e−as

u(t) 1
s

u(t− a) 1
s
e−as

u(t) · t 1
s2

u(t) · tn n!
sn+1

u(t) · eat 1
s−a

u(t) · tn · eat n!
(s−a)n+1

u(t) · sin(ωt) ω
s2+ω2

u(t) · cos(ωt) s
s2+ω2

u(t) · cosh(at) s
s2−a2

u(t) · sinh(at) a
s2−a2

Be careful, some transformations require a differentiation between different cases.

1
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Example:

f(t) = eat L (f(t)) =

∫ ∞

0

e−steat · dt =

∫ ∞

0

e(a−s)t · dt =

[
1

a− se
(a−s)t

]∞

0

(1.3)




a ≥ s : ∞
a ≤ s : − 1

a−s

(1.4)

1.1 Heaviside Function

The heaviside function is very common in complex analysis and is defined as follows:

u(t) =





1 t > 0

0 t ≤ 0
(1.5)

t

f(t)

1

0

Figure 1: Heaviside function

1.2 Dirac Measure

The diract measure or impulse is very common in control theory and is a theoretical construct
for which ε becomes zero. One can look at the function in the following way: It is infinity
for t = 0 and zero everywhere else.

For lim ε→0

δ(t) =





1
ε

0 ≤ t ≤ ε

0 else
(1.6)

2
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t

f(t)

1
ε

ε
0

Figure 2: Diract measure

t

f(t)

∞

0

Figure 3: Diract measure in practice

There are the following properties of the Dirac measure:

•
δ(0) =

d

dt
u(0) (1.7)

•
δ(ε) ≥ 0 (1.8)

• ∫ ∞

−∞
δ(t) · dt = 1 (1.9)

•
lim
ε→0

δ(t) = 0 ∀ t 6= 0 (1.10)

• For an arbitrary function f(t), the following holds:

lim
ε→0

∫ ∞

0

f(t) · δ(t− a) · dt = f(a) (1.11)

f(t)

a

= f(a)
t

Figure 4: Property of the Dirac Measure

3
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1.3 Properties

1.3.1 Derivative of Transform

The derivatie of a Laplace transform can be derived as follows:

d

ds
L (f(t))(s) =

d

ds

[ ∫ ∞

0

e−stf(t) · dt
]

= −
∫ ∞

0

te−stf(t) · dt = −L (t · f(t))(s) (1.12)

d

ds
L (f(t))(s) = −L (t · f(t))(s) (1.13)

Example:
Find the inverse transform of L (f(t))

L (f(t))(s) =
s

(s2 − 16)2
(1.14)

In this case, the transform looks like a derivative of the transformation of another function
g(t).

L (f(t)) = L ′(g(t)) =
d

ds
L (g(t)) (1.15)

Integrating the transformation gives L (g(t)).

L (g(t)) =

∫
L ′(g(t)) · ds =

∫
s

(s2 − 16)2
· ds = −1

2

(
1

s2 − 16

)
(1.16)

Rearranging the transformation makes an easy inverse transform possible.

g(t) = L −1

(
− 1

8

(
4

s2 − 16

))
= −1

8
sinh(4t) (1.17)

From equation (1.13), we know that the following holds:

L (f(t)) = L ′(g(t)) = −L (t · g(t)) (1.18)

Hence, we have

f(t) = −tg(t) =
1

8
t sinh(4t) (1.19)

4
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1.3.2 Linearity

From basic properties of the linearity of integrals follows that the Laplace transform is linear
as well.

L (αf(t)) + βg(t))(s) = αL (f(t))(s) + βL (g(t))(s) (1.20)

Example:

L (3t2 + 5t− 1) = 3L (t2) + 5L (t)−L (1) (1.21)

= 3
2

s3
+ 5

1

s2
− 1

s
(1.22)

1.3.3 Shifting Theorem

L (eatf(t))(s) = L (f(t))(s− a) (1.23)

Example:

L (5e−
√
2
4
t) = 5

1

s+
√

2
4

=
20

4s+
√

2
(1.24)

1.3.4 2nd Shifting Theorem

L

(
u(t− a)f(t− a)

)
(s) = e−asL (f(t))(s) (1.25)

L

(
f(t) · u(t− a)

)
(s) = e−as ·L (f(t+ a))(s) (1.26)

5
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Similarily, the following holds for the inverse.

L −1

(
e−asL (f(t))

)
(t) = u(t− a)f(t− a) =




f(t− a) if t > a

0 if t ≤ a
(1.27)

t

f(t)

a

u(t− a)

f(t− a)

Figure 5: Shifted function and heaviside
function

t

f(t)

a

f(t− a)

Figure 6: Multiplied: u(t− a)f(t− a)

Example:

L −1(2e−s
1

s+ 1
) (1.28)

One can account for the e−s with the shifting theorem and hence ignore it for now. The
back transform of the main function is then:

1

s+ 1
→ e−t (1.29)

Together with the factor two and the shifting theorem one gets:

f(t) = 2u(t− 1)e−(t−1) (1.30)

1.3.5 Combined Shifting Theorem

Sometimes, it is convenient to use both shifting theorems for a transformation. The general
combined form is written below:

L

(
ea(t−b)f(t− b)u(t− b)

)
(s) = e−bsL (f(t))(s− a) (1.31)

6
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1.3.6 Transform of Derivatives

For the nth derivative of a function f (n) = dnf
dxn

, the following holds:

L (f (n)(t))(s) = snL (f(t))(s)−
n−1∑

j=0

sn−1−jf (j)(0) (1.32)

L (f ′(t))(s) = sL (f(t))(s)− f(0) (1.33)

L (f ′′(t))(s) = s2L (f(t))(s)− sf(0)− f ′(0) (1.34)

Example:
Derivation of L (sin(ωt))

f(t) = sin(ωt) f ′(t) = ω cos(ωt) f ′′(t) = −ω2 sin(ωt) = −ω2f(t) (1.35)

L (f ′′(t)) = s2L (f(t))− s f(0)︸︷︷︸
0

− f ′(0)︸ ︷︷ ︸
ω

(1.36)

f(t) = − 1

ω2
f ′′(t) ⇒ L (f(t)) = − 1

ω2
L (f ′′(t)) (1.37)

L (f(t)) = − 1

ω2
(s2L (f(t))− ω)︸ ︷︷ ︸

L (f ′′(t))

(1.38)

⇒ L (sin(ωt))(s) =
ω

ω2 + s2
(1.39)

1.3.7 Laplace Transform of Integrals

L

(∫ t

0

f(x) · dx
)

(s) =
1

s
L (f(t))(s) (1.40)

7
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1.3.8 Convolution

Apart from basic operations like addition and multiplication, there are other operations
which are a bit more complex. One of them is the so-called convolution which is defined by
an integral. The convolution of two functions is usually written with a star ∗.

f(t) ∗ g(t) =

∫ t

0

f(r)g(t− r) · dr t ≥ 0 (1.41)

The convolution has the following properties:

•
f(t) ∗ g(t) = g(t) ∗ f(t) (1.42)

•
f(t) ∗ (g(t) + h(t)) = f(t) ∗ g(t) + f(t) ∗ h(t) (1.43)

•
f(t) ∗ (g(t) ∗ h(t)) = (f(t) ∗ g(t)) ∗ h(t) (1.44)

•
(αf(t)) ∗ g(t) = α(f(t) ∗ g(t)) (1.45)

•
f(t) ∗ 0 = 0 (1.46)

•
f(t) ∗ 1 =

∫ t

0

f(r) · dr (1.47)

•
L (f(t) ∗ g(t)) = L (f(t)) ·L (g(t)) (1.48)

f(t) ∗ g(t) = L −1

(
L (f(t)) ·L (g(t))

)
(1.49)

Note: Generally f(t) ∗ f(t) � 0

8
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1.4 Solving Ordinary Differential Equations

One can transform an ordinary differential equation to the frequency domain, where the
equation becomes algebraic. It is hence simple to simplify the equation. Once the function
can be written in an explicit form, one can transform the function back to the time domain.
With the derivatives of section 1.3.6, one can easily transform an equation. For simplicity,
we call L (y(t)) = Y (s).

Example:

y′′(t)− y(t) = t y(0) = 1 y′(0) = 1 (1.50)

This equation is now transformed to the frequency domain:

s2Y (s)− s− 1− Y (s) =
1

s2
(1.51)

This is an algebraic equation and can easily be simplified.

Y (s) =
1
s2

+ s+ 1

s2 − 1
=

1

s2 − 1
+

1

s2(s+ 1)(s− 1)
+

s

(s+ 1)(s− 1)
(1.52)

=
1/2

s− 1
− 1/2

s+ 1
− 1

s2
− 1/2

s+ 1
+

1/2

s− 1
+

1/2

s+ 1
+

1/2

s− 1
(1.53)

=
3/2

s− 1
− 1/2

s+ 1
− 1

s2
(1.54)

Back transform of this function of s yields the function in the time domain:

y(t) = u(t) ·
(

3

2
et − 1

2
e−t − t

)
(1.55)

Example:
Solve:

y′′(t) + 3y′(t) + 2y(t) = r(t) (1.56)

y(0) = y′(0) = 0 (1.57)

r(t) = u(t−1)−u(t−2) =





1 1 ≤ t ≤ 2

0 else
(1.58)

t

r(t)

9
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Transforming the equation yields:

s2Y (s) + 3sY (s) + 2Y (s) = L (r(t)) = e−s
1

s
− e−2s1

s
(1.59)

(s2 + 3s+ 2)Y (s) =
1

s
(e−s − e−2s) (1.60)

Y (s) =
1

s(s+ 1)(s+ 3)
(e−s − e−2s) (1.61)

For now, one only looks at the fraction and ignores the exponential functions because one
can account for them later with a shifting theorem. Partial fraction decomposition yields:

1

s(s+ 1)(s+ 3)
=

1

2s
− 1

s+ 1
+

1

2(s+ 2)
(1.62)

The inverse Laplace transform of this is:

L −1

(
1

s(s+ 1)(s+ 3)

)
=

1

2
− e−t +

1

2
e−2t (1.63)

Using the 2nd shifting theorem from section 1.3.4 to account for the exponential functions
yields:

y(t) =u(t− 1)
1

2
− u(t− 1)e−(t−1) + u(t− 1)

1

2
e−2(t−1) − u(t− 2)

1

2
+ u(t− 2)e−(t−2)

− u(t− 2)
1

2
e−2(t−2)

(1.64)

This is already the solution. Usually, one is required to write the function in an even nicer
way with cases so that one could easily plot it. In order to do that, it is helpful to look at the
heaviside functions first. In this case, we have two heaviside functions around 1 and 2. This
means that there are three intervals: from zero to 1, from 1 to 2 and from 2 to ∞. Writing
down the cases is then quite easy. One has to pay attention though, otherwise mistakes are
easily made.

y(t) =





0 t < 1

1
2
− e−t+1 + 1

2
e−2t+2 1 ≤ t ≤ 2

−e−t+1 + 1
2
e−2t+2 + e−t+2 − 1

2
e−2t+4 t > 2

(1.65)

10
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Example:
Solve:

y(t)−
∫ t

0

y(r) sin(t− r) · dr
︸ ︷︷ ︸

y(t)∗sin(t)

= t (1.66)

Transformation of the equation yields:

Y (s)− Y (s) L (sin(t))︸ ︷︷ ︸
1

s2+1

=
1

s2
(1.67)

Simplifying gives:

Y (s) =
1

s2
· 1

1− 1
s2+1

=
s2 + 1

s4
=

1

s2
+

1

s4
(1.68)

The solution is then:
y(t) = t+

1

6
t3 (1.69)

2 Fourier Series

The whole idea of Fourier Series is very simple. One tries to express a function as a sum of
different sine and cosine functions. One of the advantages of that is that the function then
can be easily integrated because the integral of sine an cosine functions is known. A function
is called P-Periodic if f(x) = f(x+ p) holds.

Examples:

• sin(x),cos(x) 2π-periodic

• tan(5x) π
5
-periodic

• x2, x3, ex not periodic

• cos(n π
L
x), sin(n π

L
x) 2L-periodic for n ∈ Z

11
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Important Integrals:

∫ L

−L
cos

(
nπ

L
x

)
cos

(
mπ

L
x

)
· dx =





0 if n 6= m

L if n = m 6= 0

2L if n = m = 0

(2.1)

∫ L

−L
sin

(
nπ

L
x

)
sin

(
mπ

L
x

)
· dx =





0 if n 6= m

L if n = m 6= 0

0 if n = m = 0

(2.2)

∫ L

−L
sin

(
nπ

L
x

)
cos

(
mπ

L
x

)
· dx = 0 (2.3)

Also good to know:

∫ π

−π
cos(Kx) · dx = 0 ∀K ∈ N \ {0} (2.4)

∫ π

−π
cos(Kx) · dx = 2π K = 0 (2.5)

2.1 Definition

f(x) = a0 +
∞∑

n=1

[
an · cos

(nπ
L
x
)

+ bn · sin
(nπ
L
x
)]

(2.6)

a0 =
1

2L
·
∫ L

−L
f(x) · dx

an =
1

L
·
∫ L

−L
f(x) · cos

(nπ
L
x
)
· dx

bn =
1

L
·
∫ L

−L
f(x) · sin

(nπ
L
x
)
· dx

(2.7)

12
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A function can be brought into the form of equation (2.6). Therefore, one needs to calculate
the Fourier coefficients first.

Derivation Coefficients
Integrate the function from −L to L and use the definition of the Fourier series.
∫ L

−L
f(x) · dx =

∫ L

−L
a0 · dx

︸ ︷︷ ︸
2La0

+
∞∑

n=1

an

∫ L

−L
cos

(
nπ

L
x

)
· dx

︸ ︷︷ ︸
0

+
∞∑

n=1

bn

∫ L

−L
sin

(
nπ

L
x

)
· dx

︸ ︷︷ ︸
0

(2.8)

→ a0 =
1

2L
·
∫ L

−L
f(x)dx (2.9)

Multiply the function with cos( π
L
x) and integrate from -L to L. (Note that we multiply with

the function with cos(nπ
L
x). Because we aim to find a1 we choose n = 1)

∫ L

−L
f(x) cos

(
π

L
x

)
· dx =a0

∫ L

−L
cos

(
π

L
x

)
· dx

︸ ︷︷ ︸
0

+a1

∫ L

−L
cos

(
π

L

)
cos

(
π

L
x

)
· dx

︸ ︷︷ ︸
L

+
∞∑

n=2

∫ L

−L
an cos

(
π

L
x

)
cos

(
nπ

L

)
· dx

︸ ︷︷ ︸
0

+
∞∑

n=1

∫ L

−L
bn cos

(
π

L
x

)
sin

(
nπ

L

)
· dx

︸ ︷︷ ︸
0

(2.10)

→ a1 =
1

L
·
∫ L

−L
f(x) · cos

(π
L
x
)
· dx (2.11)

2.2 Even and Uneven Functions

• f is called even if f(x) = f(−x) ∀x
Examples: x2, x4, cos(x)

• f is called uneven if f(x) = −f(−x) ∀x
Examples: x, x3, sin(x)

13
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For the coefficients of a Fourier series of a function f , the following holds:

• If f is even, bn = 0 ∀n

• If f is uneven, an = 0 ∀n

Often, it is asked that one extends a function and either does an even or odd extension.
First, an arbitrary function is given in the positive domain. This function then goes from
zero to L.

x

f(x)

L

As a first step, one mirrors the function so that one gets an even or odd function.

x

f(x)

−L L

Figure 7: Even Extension

x

f(x)

−L

L

Figure 8: Uneven Extension

These functions are 2L−periodic. If one wants to know how the function goes on after L,
one can just “copy” the function from −L to L and “paste” it after L. Note that depending
on the function, discontinuities can occur at L.

x

f(x)

−L

L
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Example: Calculate the Fourier series of the even extension of f(x).

f(x) =





2x 0 ≤ x ≤ 0.5

2(1− x) 0.5 ≤ x ≤ 1
(2.12)

x

f(x)

0.5 1

x

f(x)

Figure 9: Even Extension

x

f(x)

Figure 10: Uneven Extension
Because we look at the even extension of the function, we know that bn = 0 ∀n.

a0 =
1

2

∫ 1

−1

f(x) · dx =
1

2
(2.13)

Because the cosine function as well as our function f(x) are even, we can integrate from zero
to L and multiply the integral with two.

an =

∫ 1

−1

f(x) cos(nπx) · dx = 2

∫ 1

0

f(x) cos(nπx) · dx (2.14)

Because our function is defined on different intervals, we can split the integral and calculate
its value.

an = 2

∫ 1/2

0

2x cos(nπx) · dx+ 2

∫ 1

1/2

2(1− x) cos(nπx) · dx (2.15)

Integrating and plugging in the boundaries yields:

an =
8

n2π2
cos(

nπ

2
)− 4

n2π2
− 4

n2π2
cos(nπ) (2.16)

Then it is usually helpful to make a table and check the values for the first values of n. In
this case, we check for n = 1, 2, 3, 4. We get the same values for n = 5, 6, 7, 8 because the
function is 2π-periodic. It is often helpful to quickly sketch a sine or cosine function to see

15
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why this is the case. We get zero for n = 1, 3, 4 and − 16
n2π2 for n = 2. Since the function

is 2π-periodic, the values repeat for every four values of n. Hence, the integral is non-zero
for n = 2, 6, 10 . . . . The last step is now to find an explicit formulation of this sequence.
2(2j + 1) with j = 0, 1, 2, 3 . . .

=




− 16
n2π2 for n = 2(2j + 1) with j = 0, 1, 2, 3 . . .

0 else
(2.17)

Now the coefficients are known and one can write down the Fourier Series.

f(x) =
1

2
− 4

π2

∞∑

j=0

1

(2j + 1)2
cos(2(2j + 1)πx) (2.18)

Note: If f(x) is an even function, the following holds:
∫ L

−L
f(x) · dx = 2

∫ L

0

f(x) · dx (2.19)

For the multiplication of different functions, the following properties hold:

f(−x)g(−x) = f(x)g(x) even · even=even

f(−x)g(−x) = −f(x)g(x) even · odd=odd

f(−x)g(−x) = (−f(x))(−g(x)) = f(x)g(x) odd · odd=even

(2.20)

2.3 Complex Fourier Series

Just as a quick reminder, some basic formulas for complex numbers:

ı̊2 = −1
1

ı̊
= −̊ı (2.21)

eı̊ϕ = cos(ϕ) + ı̊ sin(ϕ) e−̊ıϕ = cos(ϕ)− ı̊ sin(ϕ) (2.22)

Rearranging and combining these formulas gives complex formulations of sine and cosine
functions.

cos(ϕ) =
1

2
(eı̊ϕ + e−̊ıϕ) (2.23)

sin(ϕ) =
1

2̊ı
(eı̊ϕ − e−̊ıϕ) (2.24)

16
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Similar as for the real Fourier Series, the definition of the complex one is given by:

f(x) =
∞∑

m=−∞
cme

ı̊m π
L
x (2.25)

cm =
1

2L

∫ L

−L
f(x)e−̊ım

π
L
x · dx (2.26)

Example:
f(x) = ex − π ≤ x ≤ π (2.27)

First, the coefficients for the series are calculated.

cm =
1

2π

∫ π

−π
exe−̊ımx · dx =

1

2π

∫ π

−π
ex(1−̊ım) · dx =

1

2π(1− ı̊m)
ex(1−̊ım)

∣∣∣∣
x=π

x=−π
(2.28)

=
1

2π

(
1 + ı̊m

1 +m2

)(
eπe−̊ıπm − e−πeı̊πm

)
(2.29)

Since m is an integer and we know the values for sine and cosine functions, it can be helpful
to rewrite the complex exponential function and express it with sine and cosine functions.

cm =
1

2π

(
1 + ı̊m

1 +m2

)(
eπ
(

cos(mπ)− ı̊ sin(mπ)

)
− e−π

(
cos(mπ) + ı̊ sin(mπ)

))
(2.30)

From looking at the graph of a sine and cosine function, we know that sin(mπ) = 0 and
cos(mπ) = (−1)m for integers m.

cm =
1

2π

(
1 + ı̊m

1 +m2

)(
eπ(−1)m − e−π(−1)m

)
(2.31)

f(x) =
∞∑

m=−∞

1

2π

(
1 + ı̊m

1 +m2

)(
eπ(−1)m − e−π(−1)m

)
eı̊mx (2.32)

There is a connection between the real Fourier coefficients an, bn and the complex ones cn.

• Complex → Real

a0 = c0 an = cn + c−n bn = ı̊ · (cn − c−n) (2.33)

• Real → Complex

c0 = a0 cn =
1

2
(an − ı̊ · bn) , n > 0 c−n =

1

2
(an + ı̊ · bn) (2.34)
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Florian Huwyler 3 FOURIER INTEGRAL

3 Fourier Integral

As you may have noticed in the previous section, one can only write a function as a Fourier
series if it is 2L-periodic (L has to finite). If this is not the case, one can either define a finite
interval on which the function is looked at and then make it periodic outside this interval or
use a Fourier integral instead. The Fourier integral is equivalent to the Fourier Series only
that the function is not periodic and defined from −∞ to∞. The Fourier integral is defined
as follows:

f(x) =

∫ ∞

0

(
A(ω) cos(ωx) +B(ω) sin(ωx)

)
· dω (3.1)

A(ω) =
1

π

∫ ∞

−∞
f(x) cos(ωx) · dx (3.2)

B(ω) =
1

π

∫ ∞

−∞
f(x) sin(ωx) · dx (3.3)

Note that for even functions B(ω) = 0 and that for odd functions A(ω) = 0.

3.1 Discontinuities

If a function is only piecewise continuous, the locations of the discontinuities have to be
treated separately. The Fourier integral can only be calculated if the function is absolutely
integrable (

∫∞
−∞ |f(x)|dx <∞) and if a left and a right derivative exists at the discontinuity.

x

f(x)

x0

Figure 11: Piecewise continuous function

The function is then given by the Fourier integral I {f(x)} where f(x) is continuous. At the
discontinuities x0, the Fourier integral is given by:

I {f(x)}(x0) =
1

2

(
lim
x→x+0

f(x) + lim
x→x−0

f(x)

)
(3.4)
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4 Fourier Transform

A Fourier transform decomposes a function of time, which is usually a signal or data set,
into its individual frequencies. One can imagine that the time signal is composed of different
sinuidal functions with different frequencies, like in a Fourier series. The transform extracts
then the individual frequencies and gives an array of complex values for the data set. The
transformation can be calculated with the following integral:

f̂(y) = F{f}(y) :=
1√
2π

∫ ∞

−∞
f(t)e−̊ıyt · dt (4.1)

The Fourier transform hence yields a function f̂(y) and since F : R 7→ C, a complex value
corresponds to every frequency y. The absolute value of this complex number represents the
amount of that frequency present in the time signal. The argument of the number describes
the phase offset from a basic cosine function with which the signal is present. If a certain
fequency spectrum is given, one can also convert it back into a time signal. This is done
with the inverse Fourier transform which is given by:

f(t) = F−1{f̂}(t) =
1√
2π

∫ ∞

−∞
f̂(y)eı̊yt · dy (4.2)

The Fourier transform of a time signal with one single frequency yields a single peak in the
frequency plot. This peak is at the frequency of the signal. To illustrate that, the Fourier
transform of a cosine function is shown below.

t

f(t)

1
A

Figure 12: f(t) = cos(2πAt)

y[rad/s]

F{f(t)}
∞

2πA

Figure 13: F{f(t)} = 1√
2π

[δ(y−2πA)+δ(y+

2πA)]
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Since the cosine function is defined on R and R is taken as domain of the function, the
signal appears infinitely often. For this reason, the peak goes to infinity which is described
by the dirac measure. Since this dirac impulse is purely real, the argument is zero. This
means that the the time signal has no phase offset compared to a basic cosine function. For
a simple cosine function with a phase shift of B the Fourier transform has the following form:

f(t) = cos(2πAt+B) F{f(t)} =

√
π

2

[
e−̊ıBδ(y − 2πA) + eı̊Bδ(2πA+ y)

]
(4.3)

y[rad/s]

ı̊ · Im(F{f(t)})

Re(F{f(t)})

∞

2πA

B

Figure 14: Fourier transform in the complex plane, dependent on the frequency y

The Fourier transform of a sine function f(t) = sin(2πAt) is given by F{f(t)} =
ı̊√
2π

(δ(y − 2πA)− δ(y + 2πA)) which is purely imaginary. The argument is hence 90◦ which
is exactly the offset between a sine and a cosine function. If multiple frequencies are present
in a signal, the Fourier frequency spectrum shows multiple peaks at the signals’ frequencies.

t

f(t)

Figure 15: f(t) = cos(2πAt) + cos(2πBt)

y[rad/s]

F{f(t)}
∞ ∞

2πA 2πB

Figure 16: F{f(t)} = 1√
2π

[δ(y−2πA)+δ(y+

2πA) + δ(y − 2πB) + δ(y + 2πB)]

The Fourier transform can be calculated for any arbitrary function like for example an
exponential function (this works because the function can be written as a Fourier series).
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t

f(t)

Figure 17: f(t) = e−a|t|

y[rad/s]

F{f(t)}

Figure 18: F{f(t)} = 2a
a2+y2

Example:
Calculate the Fourier transform of f(x).

f(x) =





1 if |x| ≤ 1

0 else
(4.4)

f̂(ω) =
1√
2π

∫ ∞

−∞
f(x)e−̊ıωx · dx =

1√
2π

∫ 1

−1

e−̊ıωx · dx (4.5)

=
1√
2π

1

(−̊ıω)
e−̊ıωx

∣∣∣∣
x=1

x=−1

=
ı̊

ω
√

2π
(e−̊ıω − eı̊ω) (4.6)

=
ı̊

ω
√

2π
(cos(ω)− ı̊ sin(ω)− cos(ω)− ı̊ sin(ω)) =

2

ω
√

2π
sin(ω) =

√
2

π

sin(ω)

ω
(4.7)

4.1 Properties

• Linearity
f 7→ F{f(t)} is linear
F{αf(t) + βg(t)} = α ·F{f(t)}+ β ·F{g(t)}

• Derivative
F{f ′(t)}(ω) = ı̊ωF{f(t)}(ω)

F {f ′′(x)} (ω) = −ω2 ·F{f(x)}(ω)

• Convolution
F{f(t) ∗ g(t)}(ω) =

√
2πF{f(t)}F{g(t)}

F−1{f̂(ω)ĝ(ω)} = 1√
2π
f(t) ∗ g(t)
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• x-Shift
F{f(x− a)}(ω) = e−iaω ·F{f(x)}

• y-Shift
F {eiax · f(x)} (ω) = F{f(x)}(ω − a) = f̂(ω − a)

• Modulation
F−1{f̂(ω − a)}(x) = eiax · f(x)

• ω-Derivative
F (x · f(x)(ω) = ı̊ d

dω
F (f(x))(ω)

F (x2 · f(x))(ω) = − d2

dω2F (f(x))(ω)

Example:
Given is the Fourier transform of the function f(x):

F (f(x))(ω) =
1√
2π

3

(5 + ı̊ω)
(4.8)

Find now the value of the following integral:
∫ ∞

−∞
f(x) · dx =? (4.9)

First, we know the value of the transform and write that down.

1√
2π

∫ ∞

−∞
f(x)e−̊ıωx · dx =

1√
2π

3

(5 + ı̊ω)
(4.10)

This must hold for every ω. To eliminate the term with the exponential function, we choose
ω = 0.

→
∫ ∞

−∞
f(x) · dx =

3

5
(4.11)

Example:
Given is the same Fourier transform of the function f(x):

F (f(x))(ω) =
1√
2π

3

(5 + ı̊ω)
(4.12)

Find now the following integral:
∫ ∞

−∞
xf(x) · dx =? (4.13)
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By using the ω-derivative property of the Fourier transform, we know that:

F (xf(x))(ω) = ı̊
d

dω
F (f(x))(ω) =

1√
2π

∫ ∞

−∞
xf(x)e−̊ıωx ·dx = ı̊

d

dω

(
1√
2π

3

(5 + ı̊ω)

)
(4.14)

Hence, we have: ∫ ∞

−∞
xf(x)e−̊ıωx · dx =

3

(5 + ı̊ω)2
(4.15)

Again, we eliminate the exponential function by chosing ω = 0. This gives:
∫ ∞

−∞
xf(x) · dx =

3

25
(4.16)

Example: Given is the same Fourier transform of the function f(x):

F (f(x))(ω) =
1√
2π

3

(5 + ı̊ω)
(4.17)

Find now the following integral:
∫ ∞

−∞
x2f(x) · dx =? (4.18)

Like before, we write use the ω-derivative property of Fourier transform:

F (x2f(x))(ω) = − d2

dω2
F (f(x))(ω) =

1√
2π

∫ ∞

−∞
x2f(x)e−̊ıωx · dx = − d2

dω2

(
1√
2π

3

(5 + ı̊ω)

)

(4.19)
Hence we get: ∫ ∞

−∞
x2f(x)e−̊ıωx · dx =

6

(5 + ı̊ω)3
(4.20)

Finally, we chose ω = 0 agian. Therefore, the integral is given by:
∫ ∞

−∞
x2f(x) · dx =

6

125
(4.21)

4.2 Logistic Function

The logistic or sigmoidal function is very commonly used to filter the frequency specturum
of a dataset. The function is given by:

f(x) =
L

1 + e−k(x−x0)
(4.22)
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k descibes the steepness of the curve, x0 descibes the midpoint of the sigmoidal and L

descibes the height of the function.

x

f(x)

x0

L

Figure 19: Logistic / Sigmoidal Function

x

f(x)

x01 x02

1

Figure 20: To sigmoidal curves combined

f(x) =
1

1 + e−k(x−x01)
·
(

1− 1

1 + e−k(x−x02)

)
(4.23)

Equation (4.23) shows a typical bandpass filter. The function is multiplied with the Fourier
transform and only frequencies between x01 and x02 are kept.

4.3 Convolution in the Frequency Domain

One of the most useful properties of the Fourier transform is that the convolution of
two functions becomes a simple multiplication in the frequency domain. A common
application of this property is filtering a certain signal. One can use a logistic function
as descibed in section 4.2 to create a Low-Pass or High-Pass filter. If one combines
two sigmoidal functions, one can also design a filter which only lets some frequencies
through. In figure 21, we see a function that has a small high frequency noise. To filter
this noise, one can take the Fourier transform of the signal, multiply it with a logistic
function and transform it back into the time domain. This yields the signal without the noise.
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t

f(t)

Figure 21: Unfiltered Signal

y[rad/s]

F{f(t)}

x0

∞ ∞

Figure 22: Sigmoidal function multiplied
with the Fourier transform in the frequency
domain

t

f(t)

Figure 23: Filtered Signal

5 Differential Equations

5.1 Repetition Ordinary Differential Equations

As many principles of solving ordinary differential equations (ODEs) also apply to partial
differential equations, which are covered in this course, it might be helpful to quickly recall
some basics about solving ODEs. This is only a very short repetiton of some basic methods
and it is hence advised to look at the notes from Analysis II if a repetition with more depth
is required. It is essential to keep in mind that the result of a differential equation is always
a function, unlike for commonly used algebraic equations where the solution is a set of
numbers. The functions name is chosen arbitrarily. Some common choices are: f, x, u . . .
Those functions are usually functions of either time t or spacial coordinates x, y, z . . . . For
an ODE, the equation is always of the following form:

F (X, t) = G(t) (5.1)
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Here, x is the unknown function and t is the variable of the function x. The equation is
called homogeneous if G(t)=0.

Examples:

dX

dt
· t2 = sin(t) (5.2)

d2X

dt2
+ 3

dX

dt
= 0 (5.3)

dX

dt
+ sin(X) = t (5.4)

Note that only example equation (5.3) is homogeneous. The other two examples have terms
which are only dependent on the variable (t) but not on the function (X). Solving the
equations above gives functions X(t) = . . . . Often, the dependency of the function on the
variable is implied and therefore not written in equations (for example sin(X) instead of
sin(X(t)) ) The general concept of solving ODEs is always the same.

• Find a solution for the homogeneous version of the equation

• Find a particular solution for the inhomogeneous equation

– Variation of Constants

– Ansatz

– . . .

• Use boundary or initial conditions to determine constants

5.1.1 First Order Separable Differential Equation

Separable differential equations have the following general form:
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dY

dx
=

g(x)

h(Y )
(5.5)

One can separate Y and x in this case and integrate with respect to x i.e. Y afterwards.

∫
h(Y ) · dY =

∫
g(x) · dx (5.6)

Some rearanging brings the equation from above to the form Y (x) = . . . .

Example:

dY

dx
= − x

Y
(5.7)

∫
Y · dY = −

∫
x · dx (5.8)

1

2
Y 2 = −1

2
x2 + C1 (5.9)

Y (x) = ±
√

2C1 − x2 (5.10)

Note that if one divides while rearanging the equation, it is necessary to look at the case of
the term being zero separately.
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x

Y (x)

Figure 24: Y (x) for C1 = 1, 2

Example:

dY

dx
= aY + b a, b ∈ R a 6= 0 (5.11)

1

aY + b
· dY = 1 · dx →

∫
1

aY + b
· dY =

∫
1 · dx (5.12)

1

a
ln(|aY + b|) = x+ C1 → |aY + b| = ea(x+C1) = eaC1︸︷︷︸

C

eax (5.13)

Y (x) =
1

a
(Ceax − b) (5.14)

The case where one divides by zero during the procedure is being looked at separately. This
would be the case if:

aY + b = 0 → Y (x) = − b
a

(5.15)

In this case, this “special” solution is already included in the general one (for C = 0).
Remember that C is determined by using the boundary conditions.
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5.1.2 Substitution

It is often the case that differential equations are easier to solve, if one uses a substitution.
Finding a useful substitution is not always easy but sometimes makes an equation separable.

Example:

dY

dx
= (2x+ 3Y )2 (5.16)

Define u(x):

u(x) = 2x+ 3Y → Y =
1

3
(u(x)− 2x) (5.17)

Derivative of Y in terms of u(x)

dY

dx
=

1

3
(u′(x)− 2) → 1

3
(u′(x)− 2) = u2 (5.18)

Combine with equation (5.16) and solve for u(x)

u′(x) = 3u2 + 2 =
du

dx
→

∫
1

3u2 + 2
· du =

∫
1 · dx (5.19)

1√
6

arctan

(√
3

2
u

)
= x+ C → u =

√
3

2
tan(
√

6(x+ C)) (5.20)

Solve for Y (x)

u = 2x+ 3Y =

√
3

2
tan(
√

6(x+ C)) (5.21)

Y (x) =
1

3

[√
3

2
tan(
√

6(x+ C))− 2x

]
(5.22)

5.1.3 Particular Solution

As mentioned before, there are different possibilities of getting the particular solution to an
equation. A very common one is looking for a suitable Ansatz. It is usually a good idea
to try functions which are similar to the inhomogeneous term (polinomials, trigonometric
functions, exponential functions . . . ).
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Example:

dY

dx
=

1

x
Y + 4x2 (5.23)

First, the homogeneous version is solved:

dY

dx
=

1

x
Y → Yh(x) = C1x (5.24)

Then an Ansatz with a constant A is tried:

Yp = Ax3 (5.25)

Inserted into the equation, one gets:

3Ax2 =
1

x
Ax3 + 4x2 → a = 2 → Yp = 2x2 (5.26)

According to the superposition principle, the solution is then the sum of the homogeneous
and the particular solution.

Y (x) = C1x︸︷︷︸
Yh

+ 2x2

︸︷︷︸
Yp

(5.27)

Variation of Constants

Alternatively, one could also use the variation of constants principle. There, one
assumes that the integration constant is not an actual constant but also a function of the
variable.

An equation is given by:
y′(x) = p(x)y + q(x) (5.28)

The homogeneous solution yh(x) is found for the homogeneous equation y′(x) = p(x)y. It is
now assumed that the total solution is given by y(x) = yh(x) + yp(x) = C(x) · yh(x), where
C(x) is an unknown function.

y(x) = C(x) · yh(x) → y′(x) = C ′(x) · yh(x) + C(x) · y′h(x) (5.29)

yh(x) = Ce
∫
p(x)·dx y′h(x) = Cp(x)e

∫
p(x)·dx (5.30)
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Inserting y(x) and y′(x) into the equation gives:

C ′(x) · yh(x) + C(x) · y′h(x) = p(x)C(x) · yh(x)) + q(x) (5.31)

C ′(x) · e
∫
p(x)·dx +((((((((((

C(x) · p(x)e
∫
p(x)·dx = ((((((((((

p(x)C(x) · e
∫
p(x)·dx + q(x) (5.32)

C(x) =

∫
q(x)e−

∫
p(x)·dx · dx (5.33)

y(x) = C(x)e
∫
p(x)·dx (5.34)

Example:

dY

dx
=

1

x
Y + 4x2 (5.35)

The homogeneous solution from above is taken and it is assumed that C1 is now a function
of x.

Y (x) = C(x) · x (5.36)

The derivative of Y is then:
Y ′(x) = C ′(x) · x+ C(x) (5.37)

This can be plugged into the equation:

C ′(x) · x+ C(x) =
1

x
C(x) · x︸ ︷︷ ︸

Y

+4x2 → C ′(x) = 4x (5.38)

Integrating C ′(x) and plugging it back in the Ansatz gives the solution.

C(x) =
4

3
x3 + C1 → Y (x) = x · (2x2 + C1) = 2x2

︸︷︷︸
Yp

+ C1x︸︷︷︸
Yh

(5.39)

Variation of Constants (Second Order)

For an equation of the form f(x, y, y′, y′′) = q(x), the solutions of the homogeneous
equation f(x, y, y′, y′′) = 0 are given by y1, y2. Calculating the integrals of equation (5.42)
and (5.43) gives the functions C1(x) and C2(x). The solution is then given as:

y(x) = C1(x) · y1(x) + C2(x) · y2(x) (5.40)
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W = det

(
y1 y2

y′1 y′2

)
(5.41)

C1(x) = −
∫
q(x)y2(x)

W (x)
· dx (5.42)

C2(x) =

∫
q(x)y1(x)

W (x)
· dx (5.43)

Once the solution is found, it is usually a good idea to quickly take the derivatives and insert
them into the equation to check if the solution actually solves it.

5.1.4 Exact Differential Equations

For a function g : (x, y) 7→ g(x, y), the contour lines are given by: g(x, y) = const. Which
differential equation describes this contour curve? The derivative of g(x, y) = const. is

gx(x, y) + gy(x, y)y′ = 0 (5.44)

This can be rearanged to:

y′ = −gx(x, y)

gy(x, y)
= f(x, y) (5.45)

Example:
Derive the equation:

g(x, y) = x2 − y2 = c (5.46)

2x− 2y · y′ = 0 (5.47)
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If a differential equation comes from a function g(x, y), it has the following form:

ϕ(x, y) + ψ(x, y)y′ = 0 (5.48)

Comparing this to equation (5.44) yields gx = ϕ and gy = ψ. This is equivalent to:

∇g(x, y) =

(
ϕ

ψ

)
=

(
gx

gy

)
(5.49)

Recall Schwarz’s theorem:
f(x, y)xy = f(x, y)yx (5.50)

Hence, the following must hold:

ϕy = ψx ⇔ rot



ϕ

ψ

0


 = ~0 (5.51)

Theorem: If there exists a function g(x, y) for an equation of the form ϕ(x, y)+ψ(x, y)y′ = 0

and the domain is simply connected, the equation is called exact. The solutions are contour
lines of g.

Example:

(2x2 − y2 + y)︸ ︷︷ ︸
ϕ

+ (−2xy + x− 4y)︸ ︷︷ ︸
ψ

y′ = 0 (5.52)

First it is important to check if gxy = gyx i.e. ϕy = ψx.

ϕy = −2y + 1 = ψx (5.53)

As the domain is chosen to be R2, which is simply connected, the equation is exact. Now,
one simply needs to integrate ϕ and ψ.

gx = ϕ = 2x2 − y2 + y g =
2

3
x3 − y2x+ xy + A(y) (5.54)

gy = ψ = −2xy + x− 4y g = −xy2 + xy − 2y2 +B(x) (5.55)

Combining the two equations yields:

g(x, y) =
2

3
x3 − xy2 + xy − 2y2 + const. (5.56)
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The solutions are now contour lines of g(x, y). The constant is found with the boundary
conditions. For example it is given that y(1)=2:

− 28

3
=

2

3
x3 − xy2 + xy − 2y2 (5.57)

Solving this for y gives the result:

y(x) =
x2 ±

√
x2 + 4(x+ 2)(2

3
x3 + 28

3
)

2(x+ 2)
(5.58)

x

y(x)

Figure 25: Function plot of the solution y(x)

5.1.5 Linear Differential Equations of Higher Orders

A differential equation of nth order for a function x 7→ y(x) is of the following form:

f(x, y, y′, y′′, . . . , y(n)) = 0 (5.59)

Such an equation has exactly one solution y(x) with n parameters that satisfies n boundary
or initial conditions.

Linear Dependence

Linear dependence i.e. independence is an important property of functions. As known from
the Linear Algebra lectures, a group of vectors is linear dependent if one can form the zero
vector as a linear combination without having all coefficients equal to zero. The same also
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holds for functions. If a linear combination of functions gives zero for all x with coefficients
6= 0, the functions are linear dependent.

Theorem:
Let the set of functions fi(x) be differentiable on [a, b]. If the Wronskian is nonzero
for some x ∈ [a, b] then fi(x) are linearly independent on [a, b]. If fi(x) are linearly
dependent, the Wronskian is zero for all x ∈ [a, b]. The Wronskian is defined as:

W (f1, . . . , fn) (x) = det




f1(x) f2(x) · · · fn(x)

f ′1(x) f ′2(x) · · · f ′n(x)
...

... . . . ...
f

(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)




(5.60)

Example:

C1 sin(x) + C2 cos(x) = 0 (5.61)

W = det

(
sin(x) cos(x)

cos(x) − sin(x)

)
= − sin2(x)− cos2(x) = −(sin2(x) + cos2(x)) = −1 (5.62)

The Wronski determinante is always −1. Hence, sine and cosine functions are linearly
independent.

Example:

C1x+ C2(x2 + 3x) = 0 (5.63)

W = det

(
x x2 + 3x

1 2x+ 3

)
= 2x2 + 3x− x2 − 3x = x2 (5.64)

This is only zero for x = 0. The functions are hence linearly independent.
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Example:

C1x+ C2(x2 + 3x) + C3x
2 = 0 (5.65)

W = det



x x2 + 3x x2

1 2x+ 3 2x

0 2 2


 = x(4x+ 6− 4x)− (2x2 + 6x− 2x2) = 0 (5.66)

Since this is zero for all x, the functions are linearly dependent.

Theorem:
For a homogeneous linear differential equation, the following holds:

• Every linear combination of solutions solves the differential equation.

• If n linear independent solutions are found, the array of functions with n parameters
forms the general solution.

Theorem: The general solution of an inhomogeneous equation has the form of:

y(x) = yh(x) + yp(x) (5.67)

5.1.5.1 Homogeneous Linear Differential Equation with Constant Coefficients

The general form of such equations is:

y(n) + an−1y
(n−1) + . . .+ a1y

′
1 + a0y = 0 (5.68)

There are n linear independent solutions to this equation. The solution is found with an
Ansatz y(x) = Cie

λix. Plugged into the equation, this yields:

eλx︸︷︷︸
6=0

(λn + an−1λ
n−1 + . . . a1λ+ a0)︸ ︷︷ ︸

0

= 0 (5.69)

Hence, one has to solve the polynomial of λ to find the values of λi. This equation is also
called the characteristic equation. The general procedure to find solutions is:
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1. Replace y(n) with λn to get the characteristic equation.

2. Solve the characteristic equation to find the values of λi

3. Write down the solution:

• If all zeros of the characteristic equation are different and real, the solution
is:

yh(x) = C1e
λ1x + C2e

λ2x + · · ·+ Cne
λnx (5.70)

• If two zeros are the same, i.e. λ1 = λ2, the solution is:

yh(x) = C1e
λ1x + C2xe

λ1x + C3e
λ3 + . . . (5.71)

• If m zeros are the same, the solution is:

yh(x) =
(
C1 + C2x+ C3x

2 + · · ·+ Cmx
m−1
)
eλmx + · · · (5.72)

• If λi ∈ C, then λ̄i is also a zero. The solution is then for λ1,2 = α± β̊ı:

yh(x) = eαx
[
C1 sin(βx) + C2 cos(βx)

]
+ · · · (5.73)

• If multiple complex zeros are the same (λ1 = λ2 = · · · = λm = α ± β̊ı), the
solution is:

yh(x) =eαx
(
C1 sin(βx) + C2 cos(βx) + x

[
C3 sin(βx) + C4 cos(βx)

]
+ · · ·

+ xm−1

[
C2m+1 sin(βx) + C2m+2 cos(βx)

])
+ · · ·

(5.74)

5.1.5.2 Homogeneous Eulerian Differential Equation

Eulerian differential equations have the following form:
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xny(n) + an−1x
n−1y(n−1) . . . a3x

3y′′′ + a2x
2y′′ + a1xy

′ + a0y = 0 (5.75)

To find a solution, the Ansatz y = xλ is taken. Plugged into the equation, this yields:

xλ−n(λ[n] + an−1λ
[n−1] . . . a1λ

[1] + a0) = 0 (5.76)

λ[i] denotes the following:

λ[n] = λ(λ− 1)(λ− 2) . . . (λ− (n− 1)) =
n−1∏

i=0

(λ− i) (5.77)

1. Write down the index polynomial and find its zeros.

2. Write down the solution

• If all λi are different:

y(x) = C1x
λ1 + C2x

λ2 + C3x
λ3 + . . . (5.78)

• If m zeros are the same i.e. λ1 = λ2 = · · · = λm:

y(x) =C1x
λ1 + C2

[
log(x)

]
xλ1 + C3

[
log(x)

]2

xλ1 + . . .

+ Cm

[
log(x)

]m−1

xλ1 + Cm+1x
λm+1 + . . .

(5.79)
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• If m complex zeros of the form α± ı̊β are the same:

y(x) =C1x
α cos(β log(x)) + C2x

α sin(β log(x))

+ C3

[
log(x)

]
xα cos(β log(x))

+ C4

[
log(x)

]
xα sin(β log(x)) + · · ·+

+ C2m−1

[
log(x)

]m−1

xα cos(β log(x))

+ C2m

[
log(x)

]m−1

xα sin(β log(x))

(5.80)

5.1.6 Systems of Differential Equations

A system first order differential equations has the general form of:





y′1 = f1(x, y1, . . . , yn)

y′2 = f2(x, y1, . . . , yn)
...

(5.81)

The solution is a set of functions that satisfy all equations. There are boundary/initial
conditions for all equations. If the system is only dependend on y1, y2, y3 . . . but not on
terms of x, the system is called autonomous.

5.1.6.1 Higher Order Equation ⇒ First Order System

Sometimes, it is convenient to rewrite a higher order differential equation into a first order
system of equations. Therefore, one chooses y1 = y, y2 = y′, y3 = y′′ . . . For a general
equation of the form:

y(n) = a0y + a1y
′ + a2y

′′ + . . . (5.82)

One can rewrite the equation into the following system:
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y

y′

y′′

...
y(n−1)




=




y1

y2

y3

...
yn







y′1
y′2
y′3
...
y′n




=




y′

y′′

y′′′

...
y(n)




=




y2

y3

y4

...
a0y1 + a1y2 + a2y3 . . .




(5.83)




y′1
y′2
y′3
...
y′n




︸ ︷︷ ︸
~y′

=




0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 1 . . .
...

...
...

...
...

a0 a1 a2 . . . an−1




︸ ︷︷ ︸
A




y1

y2

y3

...
yn




︸ ︷︷ ︸
~y

(5.84)

5.1.6.2 First Order System ⇒ Higher Order Equation

5.1.6.3 Linear Autonomous System of Differential Equations

A very common form of systems of differential equtions is a linear autonomous system with
constant coefficients. It has the form of

~̇y = A~y +~b (5.85)

The solutions is given by

~x(t) =
∑

i

Ci~vie
λit (5.86)

where Ci are the constants given by the initial conditions, ~vi are the Eigenvectors of A and
λi are the Eigenvalues of A.
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Example:





ẏ1 = 1y1 + 3y2

ẏ2 = 2y1 + 2y2

y1(0) = 0

y2(0) = 5

A =

(
1 3

2 2

)
(5.87)

det(A−λI) = 0 yields the Eigenvalues λ1 = 4, λ2 = −1. (A−λI)~x = 0 gives the eigenvectors
~v1 = (1 1)T , ~v2 = (3 − 2)T

~y(t) = C1

(
1

1

)
e4t + C2

(
3

−2

)
e−t (5.88)

Using the initial conditions gives C1 = 3, C2 = −1.

→ ~y(t) =

(
3

3

)
e4t +

(
−3

2

)
e−t (5.89)

5.2 Partial Differential Equations

Unlike ordinary differential equations, partial differential equations are equations of functions
that are dependent on more than one variable. Hence, all derivatives are partial derivatives.
Usually, a notation with the partial deltas is used. Because this notation requires a lot of
writing, a short hand notation is commonly used. There, a subscript denotes the variable of
the partial derivative.

Example:
∂f

∂xi
= fxi

∂2f

∂x∂y
= fxy

∂2f

∂x2
= fxx (5.90)

Superposition Principle

If u1 and u2 are solutions of the homogeneous PDE, αu1 + βu2 are also solutions.

Additional Conditions
To get a unique solution, one needs boundary and initial conditions.
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5.2.1 Classification of 2D 2nd Order PDEs

For many partial differential equations, no analytical solution is known. In order to solve
a PDE, it can be helpful to look up, if any solution for an equation of a similar form is
known. To make it easier to find a solution to an equation, the equations are classified. A
two dimensional partial differential equation of 2nd order has the following general form:

Auξξ(ξ, η) + 2Buξη(ξ, η) + Cuηη(ξ, η) + Fuη(ξ, η) = 0 (5.91)

• AC −B2 < 0: Hyperbolic equation (Example: Wave equation)

• AC −B2 = 0: Parabolic equation (Example: Heat equation)

• AC −B2 > 0: Eliptic equation (Example: Laplace equation)

5.2.2 Pseudo PDEs

These partial differential equations are not actually called “Pseudo PDEs” but I just call them
like that because they are solved like ODEs. One can easily spot such equations because
they are about functions of multiple variables but only involve derivatives with respect to
one variable. In this case, the variable which does not occur in any derivative can be treated
as a normal coefficient. The following examples shall illustrate how to solve such equations.

Example:

u(x, y)yy = 4x · u(x, y)y (5.92)

This equation has no derivatives with respect to x. Hence, we can treat x as a coefficient.
First we substitute uy = v.

vy = 4xv
dv

dy
= 4xv (5.93)

1

v
· dv = 4x · dy ln(v) = 4xy + C(x) (5.94)

→ v(x, y) = C1(x)e4xy = uy =
du

dy
(5.95)

u(x, y) =

∫
C1(x)e4xy · dy =

C1(x)

4x
e4xy + C2(x) (5.96)

Example:

u(x, y)yy + 2x · u(x, y)y + u(x, y) = 0 (5.97)
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λ2 + 2xλ+ 1 = 0 (5.98)

λ1,2 =
−2x±

√
4x2 − 4

2
= −x±

√
x2 − 1 (5.99)

u(x, y) = Aeλ1y +Beλ2y = Ae(−x+
√
x2−1)y +Be(−x−

√
x2−1)y (5.100)

5.2.3 General Solution of the Wave Equation

The wave equation is given by:

u(x, t)tt = c2u(x, t)xx (5.101)

The general solution is given by:

u(x, t) = φ(x+ ct) + ψ(x− ct) (5.102)

If one wants to calculate derivatives of those functions, one must not forget to apply the
chain rule.

φt = φ′ · c φtt = φ′′ · c2 ψt = −c · ψ′ ψtt = c2 · ψ′′ uxx = φ′′ + ψ′′ (5.103)

→ utt = φtt + ψtt = c2(φ′′ + ψ′′) = c2uxx (5.104)

Examples:
u(x, t) = (x+ ct)2 +

√
x− ct (5.105)

u(x, t) = sin(x+ ct) + ex−ct (5.106)

5.2.4 1D-Wave Equation with Fourier Series

Given is the wave equation and the corresponding initial and boundary conditions.




utt = c2uxx

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

(5.107)
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Solving these kind of problems is not specifically difficult. One has to be careful to find
all solutions though, otherwise one can easily forget some. Because it is a rather long
process, it can get quite confusing midway through the calculation if one loses one’s train
of thought. For this reason I advise you to solve such equations always step by step and
write everything down nicely. This will not only secure you partial credit but will also help
to keep an overview over the solution. It is usually not advisable to skip steps or do them
in your head because writing them down does not take very long compared to looking for a
mistake once something doesn’t work out anymore. The process how I solve a problem like
that is shown with the example from above.

Step 1
First an ansatz is used. In this case, it is the separation of variables which is probably
the most commonly used ansatz for most PDEs.

Ansatz: Separation of Variables

u(x, t) = F (x)G(t) (5.108)

The required derivatives are then calculated with the Ansatz and are then plugged into the
equation.

utt = FG̈ uxx = F ′′G (5.109)

utt = c2uxx → FG̈ = c2F ′′G (5.110)

Rearanging gives
1

c2

G̈(t)

G(t)
=
F ′′(x)

F (x)
= const. = k (5.111)

Because equation (5.111) must hold ∀x, t it can only be constant.



F ′′(x) = kF (x)

G̈(t) = c2kG(t)
(5.112)

Step 2
Now the separate ordinary differential equations are solved. It is important to make a case
differentiation for the values of k. Once a solution is obtained, the boundary conditions
must be fulfilled.
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F ′′(x) = kF (x)

• k=0

F ′′(x) = 0→ F (x) = ax+ b (5.113)

Using the boundary conditions gives:

u(0, t) = F (0)G(t) = 0 ∀t ≥ 0 → F (0) = 0 (5.114)

u(L, t) = F (L)G(t) = 0 ∀t ≥ 0 → F (L) = 0 (5.115)

F (0) = F (L) = 0→ F (x) = 0 (5.116)

F (x) = 0 (5.117)

• k>0

F ′′(x)− kF (x) = 0 → λ2 − k = 0 → λ = ±
√
k (5.118)

→ F (x) = Ae
√
kx +Be−

√
kx (5.119)

Using the boundary conditions gives:

u(0, t) = F (0)G(t) = 0 ∀t ≥ 0 → F (0) = 0 (5.120)

u(L, t) = F (L)G(t) = 0 ∀t ≥ 0 → F (L) = 0 (5.121)

F (0) = 0 : A+B = 0 → B = −A (5.122)

F (L) = 0 : A︸︷︷︸
=0

(e
√
kL − e−

√
kL)︸ ︷︷ ︸

=0

= 0 (5.123)

In order to satisfy the previous equation, either A=0 (→ A=B=0) or the sum of
exponential functions is zero. In that case e2

√
kL = 0 which is only possible if k=0.

Because we look at the case where k>0, this is not possible. Hence the only solution
for this case is A=B=0.

F (x) = 0 (5.124)

• k<0

F ′′(x)− kF (x) = 0 → λ2 − k = 0 → λ = ±
√
k (5.125)
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→ F (x) = A cos(
√
−kx) +B sin(

√
−kx) (5.126)

Using the boundary conditions gives:

u(0, t) = F (0)G(t) = 0 ∀t ≥ 0 → F (0) = 0 (5.127)

u(L, t) = F (L)G(t) = 0 ∀t ≥ 0 → F (L) = 0 (5.128)

F (0) = A = 0 F (L) = B sin(
√
−kL) = 0 (5.129)

The second boundary condition is satisfied if B=0 or if sin(
√
−kL) = 0. The later one

is the case if
√
−kL = nπ. Rewritten:

√
−k = nπ

L

F (x) = 0 F (x) = B sin

(
nπ

L
x

)
(5.130)

G̈(t) = c2kG(t)

• k=0
Because F (x) = 0, G(t) is not relevant as u(x, t) = F (x)G(t)

• k>0
Because F (x) = 0, G(t) is not relevant as u(x, t) = F (x)G(t)

• k<0

G̈(t)− kc2G(t) = 0 → λ2 − kc2 = 0 → λ = ±c
√
k = ±̊ıc

√
−k (5.131)

G(t) = C cos(c
√
−kt) +D sin(c

√
−kt) (5.132)

Before, we defined that
√
−k = nπ

L
. This can be plugged into our function G(t) which

then gives:

G(t) = C cos

(
c
nπ

L
t

)
+D sin

(
c
nπ

L
t

)
(5.133)

Step 3:
Combine the individual solutions.

u(x, t) = F (x)G(t) = B sin

(
nπ

L
x

)(
C cos

(
c
nπ

L
t

)
+D sin

(
c
nπ

L
t

))
(5.134)

The function above solves the equation for every n. Since linear combinations of solutions
are solutions as well, we have to sum over all n to get the most general form of the solution.
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Note that all other cases (k = 0, k > 0) had the solution u(x, t) = 0 which is included in the
solution above already.

u(x, t) = F (x)G(t) =
∞∑

n=1

Bn sin

(
nπ

L
x

)(
Cn cos

(
c
nπ

L
t

)
+Dn sin

(
c
nπ

L
t

))
(5.135)

Step 4:
Now, the initial conditions are used to find a unique solution.

u(x, 0) = f(x) ut(x, 0) = g(x) (5.136)

Plugging the first initial condition into the combined solution gives:

u(x, 0) = f(x) =
∞∑

n=1

Bn sin

(
nπ

L
x

)(
Cn cos

(
c
nπ

L
t

)

︸ ︷︷ ︸
=1

+Dn sin

(
c
nπ

L
t

)

︸ ︷︷ ︸
=0

)
(5.137)

To make everything simpler, we can summarise the constants BnCn = C1n, BnDn = C2n.
This gives:

f(x) =
∞∑

n=1

C1n sin

(
nπ

L
x

)
(5.138)

This looks like a Fourier series of the function f(x) where an = 0. Hence the function is
uneven. From equation (2.7), we know how to get the coefficients C1n.

C1n =
1

L

∫ L

−L
f(x) sin

(
nπ

L
x

)
· dx (5.139)

Because the function is uneven, we can integrate from zero to L and multiply the integral
with 2 instead of integrating from -L to L. The same procedure is now done with the second
initial condition.

ut(x, t) =
∞∑

n=1

sin

(
nπ

L
x

)(
− cnπ

L
C1n sin

(
cnπ

L
t

)
+
cnπ

L
C2n cos

(
cnπ

L
t

))
(5.140)

ut(x, 0) = g(x) =
∞∑

n=1

C2n
cnπ

L︸ ︷︷ ︸
Bn

sin

(
nπ

L
x

)
(5.141)

We can summarise the term in front of the sine function as Bn because it’s just a term
dependent on n. The equation then looks again like a Fourier Series of an uneven function.
The coefficients C2n can be found by solving the following integral.

Bn =
1

L

∫ L

−L
g(x) sin

(
nπ

L
x

)
· dx = C2n

cnπ

L
(5.142)
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C2n =
1

cnπ

∫ L

−L
g(x) sin

(
nπ

L
x

)
· dx (5.143)

Once C1n, C2n are known, the solution can be written down.

u(x, t) =
∞∑

n=1

sin

(
nπ

L
x

)(
C1n cos

(
c
nπ

L
t

)
+ C2n sin

(
c
nπ

L
t

))
(5.144)

Note:

If the function f(x) of the initial condition is already a sine function, there is no
need to calculate the Fourier coefficients with the integrals. The coefficients can be taken
directely from the function.

Example:
The initial condition is given by:




u(x, 0) = f(x) = k sin(πx)− 1

2
sin(2πx)

ut(x, 0) = g(x) = 0
(5.145)

f(x) =
∞∑

n=1

C1n sin

(
nπ

L
x

)
= C11 sin(πx) + C12 sin(2πx) + C13 sin(3πx) + . . . (5.146)

Comparing the coefficients gives:

→ C11 = k, C12 = −1

2
, C1n = 0 for n = 3, 4, 5, . . . (5.147)

For the second initial condition, see that the integral (5.143) is zero if g(x) = 0. The solution
can hence just be written down.

u(x, t) = k cos(πt) sin(πx)− 1

2
cos(2πt) sin(2πx) (5.148)
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5.2.5 Heat Equation on a Finite Bar

The equation is given with the following boundary and initial conditions:





ut = c2uxx

u(x, 0) = f(x)

u(0, t) = u(L, t) = 0

(5.149)

Step 1:
First an Ansatz is chosen. In this case, the Ansatz is again the separation of variables.

u(x, t) = F (x)G(t) (5.150)

ut = F (x)Ġ(t) uxx = F ′′(x)G(t) (5.151)

Inserting this into the equation gives:

F (x)Ġ(t) = c2F ′′(x)G(t) (5.152)

→ Ġ(t)

c2G(t)
=
F ′′(x)

F (x)
= const. = −k2 (5.153)

Because the equation above must hold for every t and x, it can only be constant. We choose
this constant to be −k2. This choice is arbitrary but is turns out to be convenient later on.

Step 2:
First the F-equation is solved. F ′′(x) + k2F (x) = 0

• k=0
F ′′(x) = 0 F (x) = ax+ b (5.154)

Using the boundary conditions gives:

u(0, t) = F (0)G(t) = 0 ∀t ≥ 0 → F (0) = 0 (5.155)

u(L, t) = F (L)G(t) = 0 ∀t ≥ 0 → F (L) = 0 (5.156)

F (0) = a = 0 F (L) = a︸︷︷︸
0

L+ b = 0 a = b = 0 (5.157)

F (x) = 0 (5.158)
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• k 6=0

F ′′(x) + k2F (x) = 0 (5.159)

λ2 + k2 = 0 λ = ±̊ık (5.160)

F (x) = A cos(kx) +B sin(kx) (5.161)

Using the boundary conditions gives:

u(0, t) = F (0)G(t) = 0 ∀t ≥ 0 → F (0) = 0 (5.162)

u(L, t) = F (L)G(t) = 0 ∀t ≥ 0 → F (L) = 0 (5.163)

F (0) = A cos(0)︸ ︷︷ ︸
=1

+B sin(0)︸ ︷︷ ︸
=0

= 0 → A = 0 (5.164)

F (L) = B sin(kL) = 0 → B = 0 or sin(kL) = 0 (5.165)

If sin(kL) = 0, the values of kL are equal to kL = nπ. This gives k = nπ
L
.

F (x) = B sin

(
nπ

L
x

)
(5.166)

Note that here, we do not differenciate between k < 0 and k > 0 because the constant
is k2 either way.

Step 3: Now we solve the G-Equation. Ġ(t) + k2c2G(t) = 0

• k=0
In this case, F(x) is zero. Hence the function G(t) is not relevant.

• k 6=0
Ġ(t) + k2c2G(t) = 0 λ+ k2c2 = 0 → λ = −k2c2 (5.167)

G(t) = Ae−k
2c2t (5.168)

Using the definition of k from the F-equation gives:

G(t) = Ae−
n2π2

L2 c2t (5.169)
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Step 4:
In the next step, both solutions are combined.

u(x, t) = F (x)G(t) = Ae−
n2π2

L2 c2t sin

(
nπ

L
x

)
(5.170)

Don’t forget that we are looking for the complete general solution. That is why we have to
include all possible solutions as a linear combination. Therefore, we sum up over all n.

u(x, t) =
∞∑

n=1

Ane
−n2π2

L2 c2t sin

(
nπ

L
x

)
(5.171)

Step 5: Now, the initial conditions are used to determine a unique solution.

u(x, 0) = f(x) (5.172)

u(x, 0) =
∞∑

n=1

An sin

(
nπ

L
x

)
= f(x) (5.173)

This again looks like a Fourier series of an uneven function. The coefficients An can be found
by solving the following integral:

An =
2

L

∫ L

0

f(x) sin

(
nπ

L
x

)
· dx (5.174)

The solution is:

u(x, t) =
∞∑

n=1

Ane
−n2π2

L2 c2t sin

(
nπ

L
x

)
(5.175)

5.2.6 Laplace Equation on a Rectangle




uxx + uyy = 0

u(0, y) = u(a, y) = u(x, 0) = 0

u(x, b) = f(x)

(5.176)

x

y

b

a

u = 0 u = 0

u = 0

u = f(x)
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Figure 26: Boundary conditions
Step 1:
Again, the separation of variables Ansatz is used to solve the equation.

u(x, y) = F (x)G(y) (5.177)

uxx = F ′′(x)G(y) uyy = F (x)G′′(y) (5.178)

Inserted into the equation, this gives:

F ′′(x)G(y) = −F (x)G′′(y)
F ′′(x)

F (x)
= −G

′′(y)

G(y)
= −k2 (5.179)

Step 2:
F-Equation

• k=0

F ′′(x) = 0 F (x) = Ax+B (5.180)

Using the boundary conditions gives:

u(0, y) = F (0)G(y) = 0 ∀y ≥ 0 → F (0) = 0 (5.181)

u(a, y) = F (a)G(y) = 0 ∀y ≥ 0 → F (a) = 0 (5.182)

F (0) = B = 0 F (a) = Aa = 0 A = B = 0 (5.183)

F (x) = 0 (5.184)

• k 6=0

F ′′(x) + k2F (x) = 0 λ2 + k2 = 0 λ = ±̊ık (5.185)

F (x) = A cos(kx) +B sin(kx) (5.186)

Using the boundary conditions gives:

u(0, y) = F (0)G(y) = 0 ∀y ≥ 0 → F (0) = 0 (5.187)

u(a, y) = F (a)G(y) = 0 ∀y ≥ 0 → F (a) = 0 (5.188)
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F (0) = A cos(kx)︸ ︷︷ ︸
=1

+B sin(kx)︸ ︷︷ ︸
=0

= 0 → A = 0

F (a) = B sin(ka) = 0 → B = 0 or ka = nπ

(5.189)

F (x) = B sin

(
nπ

a
x

)
(5.190)

Step 3:
G-Equation

• k=0
Since F (x) = 0 in this case, we don’t need to look for the solution of G(y).

• k 6=0

G′′(y)− k2G(y) = 0 (5.191)

λ2 − k2 = 0 λ = ±k (5.192)

G(y) = Aeky +B−ky (5.193)

Sometimes it is convenient to rewrite exponential functions into hyperbolic functions.
The procedure of solving the equation is the same and the result will also stay the
same.

Aeky +Be−ky =

(
C1

2
+
C2

2

)
eky +

(
− C1

2
+
C2

2

)
e−ky

= C1
eky − e−ky

2
+ C2

eky + e−ky

2
= C1 sinh(ky) + C2 cosh(ky)

(5.194)

Using the 3rd boundary condition gives:

u(x, 0) = F (x)G(0) = 0 ∀x ≥ 0 → G(0) = 0 (5.195)

G(0) = C1 sinh(0)︸ ︷︷ ︸
0

+C2 cosh(0)︸ ︷︷ ︸
=1

= 0 C2 = 0 (5.196)

G(y) = C1 sinh

(
nπ

a
y

)
(5.197)
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Step 4:
Now the separate solutions are combined. Again, keep in mind that we want all solutions
and hence sum over all n. The constants C1 and B are summarised as Cn.

u(x, y) =
∞∑

n=1

Cn sinh

(
nπ

a
y

)
sin

(
nπ

a
x

)
(5.198)

Step 5:
Using the last boundary condition will give us a unique solution.

u(x, b) = f(x) (5.199)

u(x, b) =
∞∑

n=1

Cn sinh

(
nπ

a
b

)
sin

(
nπ

a
x

)
= f(x) (5.200)

This looks like a Fourier series again. The coefficients Cn can hence be found by solving the
following integral:

Cn =
1

sinh
(
nπ
a
b
) 2

a

∫ a

0

f(x) sin

(
nπ

a
x

)
· dx (5.201)

The solution is then:

u(x, y) =
∞∑

n=1

Cn sinh

(
nπ

a
y

)
sin

(
nπ

a
x

)
(5.202)

Remark:
How to get from equation (5.200) to equation (5.201)? For an uneven function, the definition
of the Fourier series and its coefficients was:

f(x) =
∞∑

n=1

bn sin

(
nπ

L
x

)
bn =

1

L
·
∫ L

−L
f(x) · sin

(nπ
L
x
)
· dx (5.203)

Cn sinh
(
nπ
a
b
)
is a number dependent on n. We can summarise it as bn. We then have:

u(x, b) =
∞∑

n=1

bn sin

(
nπ

a
x

)
= f(x) (5.204)

According to the definition in equation (5.203) we get:

bn =
2

a

∫ a

0

f(x) sin

(
nπ

a
x

)
· dx = Cn sinh

(
nπ

a
b

)
(5.205)

Rearranging the equation above gives equation (5.201).

54



Florian Huwyler 5 DIFFERENTIAL EQUATIONS

5.2.7 D’Alembert Solution of the Wave Equation

The D’Alembert solution is used if no boundary conditions are given. It is based on the idea
of a substitution with the varibales v = x+ ct and w = x− ct. Using those variables in the
wave equations gives

uvw = 0 (5.206)

Integrating gives:

u(v, w) = ϕ(v) + ψ(w) = u(x, t) = ϕ(x+ ct) + ψ(x− ct) (5.207)

Now the following initial conditions are given:



u(x, 0) = f(x)

ut(x, 0) = g(x)
(5.208)

The solution is then:

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(s) · ds (5.209)

Example: 



utt = c2uxx

u(x, 0) = sin(x)

ut(x, 0) = ex

(5.210)

u(x, t) =
1

2

(
sin(x+ ct) + sin(x− ct)

)
+

1

2c

∫ x+ct

x−ct
es · ds (5.211)

u(x, t) =
1

2

(
sin(x+ ct) + sin(x− ct)

)
+

1

2c

(
ex+ct − ex−ct

)
(5.212)

Remark: The D’Alembert solution is based on the method of characteristics which will be
discussed in the next section.

5.2.8 Method of Characteristics

The method of characteristics can be used for equations that can be brought into the following
form:

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) (5.213)
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To solve such equations, one has to simply follow the steps described below:

Step 1:
Bring the equation into the following form:

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) (5.214)

Step 2:
Determine the type of the equation:

AC −B2 = 0 Parabolic

AC −B2 < 0 Hyperbolic

AC −B2 > 0 Elliptic

(5.215)

Step 3:
Write down the characteristic equation:

A(y′)2 − 2B(y′) + C = 0 (5.216)

y′ =
B ±

√
B2 − AC
A

= λ1,2 (5.217)

Set
y = λ1x+ C1 y = λ2x+ C2 (5.218)

Step 4:
Determine C as a function of x,y.

C1 = y − λ1x → Φ(x, y) = C1 = y − λ1x

C2 = y − λ2x → Ψ(x, y) = C2 = y − λ2x
(5.219)

Step 5:
Choose new variables depending on the type of the equation:

Hyperbolic: v = Φ w = Ψ

Parabolic: v = x w = Φ = Ψ

Elliptic: v =
1

2
(Φ + Ψ) w =

1

2
(Φ−Ψ)

(5.220)

Step 6:
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Calculate the derivatives:

ux = vxuv + wxuw

uy = vyuv + wyuw

uxx = v2
xuvv + vxxuv + w2

xuww + wxxuw + 2vxwxuvw

uyy = v2
yuvv + vyyuv + w2

yuww + wyyuw + 2vywyuvw

uxy = vxvyuvv + vxyuv + wxwyuww + wxyuw + uvw(vywx + vxwy)

(5.221)

Step 7:
Substitute the newly found derivatives into the equation. This will give something of the
following form:

uvw = f(v, w) (5.222)

This can be simply integrated to find u(v,w).

u(v, w) =

∫ ∫
f(v, w) · dvdw + ϕ(v) + ψ(w) (5.223)

Step 8:
In the last step, v and w are substituted back with x and y.

Example:
Solve

uxx + uxy = x (5.224)

We can directly determine A = 1, B = 1/2, C = 0. Hence, the equation is hyperbolic. We
then determine the lambda values.

λ1,2 =
1/2±

√
1/4

1
= 1, 0 (5.225)

y = x+ C1 y = C2 (5.226)

C is then expressed as a function of x and y.

C1 = y − x = Φ C2 = y = Ψ (5.227)

The new variables v,w are chosen.

v = Φ = y − x w = Ψ = y (5.228)
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The derivatives are calculated with respect to the new coordinates.

uxx = uvv uxy = −uvv − uvw (5.229)

The old variables x and y are expressed by using the new variables.

x = y − v = w − v y = w (5.230)

uxx + uxy = uvv − uvv − uvw = −uvw = x = w − v (5.231)

→ uvw = v − w (5.232)

We then integrate twice

uv = −1

2
w2 + vw + χ(v) (5.233)

u = −1

2
w2v +

1

2
v2w +X(v) + ξ(w) (5.234)

In a last step, we substitute the variables back to the old ones.

u(x, y) = −1

2
y2(y − x) +

1

2
(y − x)2y +X(v) + ξ(w)

u(x, y) =
1

2
(x2y − y2x) +X(y − x) + ξ(y)

(5.235)

To check if this solution solves the equation one can simply take the derivatives and check

ux =
1

2
(2xy − y2)−X ′(y − x)

uxx = y +X ′′(y − x)

uxy = −y + x−X ′′(y − x)

(5.236)

uxx + uxy = y +X ′′(y − x) +−y + x−X ′′(y − x) = x (5.237)

Hence, the equation is solved.
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5.2.9 Wave Equation with different Boundary Conditions

Given is the wave equation, this time with different boundary conditions. This may be
confusing at first, but the way to solve it is exactly the same.





utt = c2uxx

ux(0, t) = ux(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

(5.238)

Step 1 of the solution procedure can be done like in section 5.2.4. In step 2, where the
boundary conditions are used the case differentiation is done again. The boundary conditions
imply in this case the following:

ux(0, t) = F ′(0)G(t) = 0 ∀t → F ′(0) = 0

ux(L, t) = F ′(L)G(t) = 0 ∀t → F ′(L) = 0
(5.239)

Step 2:
F-Equation

• k=0

F (x) = ax+ b F ′(x) = a F ′(0) = F ′(L) = 0→ a = 0 (5.240)

The function is following equal to a constant.

F (x) = A (5.241)

• k>0

F (x) = Ae
√
kx +Be−

√
kx F ′(x) = A

√
ke
√
kx −B

√
ke−

√
kx (5.242)

F ′(0) = 0 0 = A
√
k −B

√
k → A = B

F ′(L) = 0 0 = A
√
ke
√
kL − A

√
ke−

√
kL → A = 0

(5.243)

F (x) = 0 (5.244)
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• k<0

F (x) = A cos(
√
−kx)+B sin(

√
−kx) F ′(x) = −

√
−kA sin(

√
−kx)+

√
−kB cos(

√
−kx)

(5.245)
F ′(0) = 0

√
−kB = 0→ B = 0

F ′(L) = 0 −
√
−kA sin(

√
−kL) = 0

(5.246)

Hence, either A = 0 or
√
−kL = nπ

F (x) = 0 F (x) = A cos
(nπ
L
x
)

(5.247)

Now the G-Equation is solved:

• k=0

G̈ = 0 → G(t) = At+B (5.248)

• k>0
Because F (x) = 0, G(t) is not relevant as u(x, t) = F (x)G(t)

• k<0

G(t) = C cos(c
√
−kt) +D sin(c

√
−kt) (5.249)

Step 3:
Combining the solutions to get the general solution. Remeber to sum over all n to get all
solutions. Unlike in section 5.2.4, here the cases for k = 0 has to be included in the solution
as well as it is non-zero. Hence we multiply the F and G solution and add it to the solution
for k < 0.

u(x, t) = C1t+ C2 +
∞∑

n=1

cos

(
nπ

L
x

)(
An cos

(
cnπ

L
t

)
+Bn sin

(
cnπ

L
t

))
(5.250)

The following steps with the initial conditions can be done like in section 5.2.4.
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5.2.10 2D Wave Equation




utt = c2(uxx + uyy)

u(∂R) = 0

u(x, y, 0) = f(x, y)

ut(x, y, 0) = g(x, y)

(5.251)

x

y

b

a

u = 0 u = 0

u = 0

u = 0

R

Figure 27: Boundary conditions
Step 1:
A separation of variables Ansatz is made:

u(x, y, t) = F (x, y)G(t) (5.252)

Inserted into the equation, this gives:

G̈(t)F (x, y) = c2(Fxx(x, y) + Fyy(x, y))G(t) (5.253)

→ G̈(t)

c2G(t)
=
Fxx(x, y) + Fyy(x, y)

F (x, y)
= −k2 (5.254)

Step 2:
Solving both equations separately:
F-Equation

Fxx + Fyy = −k2F (5.255)

Sub-Ansatz:
F (x, y) = H(x)Q(y) (5.256)

→ H ′′(x)Q(y) +H(x)Q′′(y) = −k2H(x)Q(y) (5.257)

H ′′(x)

H(x)
+
Q′′(y)

Q(y)
= −k2 (5.258)
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In order that equation (5.258) holds ∀x, y, both fractions have to be constant as well.
Q-Equation

Q′′(y)

Q(y)
= −p2 (5.259)

• k=0

Q′′(y) = 0 Q(y) = Ay +B (5.260)

Using the boundary condition gives:

u(x, 0, t) = H(x)Q(0)G(t) = 0 ∀x, t → Q(0) = 0

u(x, b, t) = H(x)Q(b)G(t) = 0 ∀x, t → Q(b) = 0
(5.261)

→ Q(y) = 0 (5.262)

• k 6=0
Q(y) = A cos(py) +B sin(py) (5.263)

Q(0) = 0 → A = 0

Q(b) = 0 → p =
nπ

b

(5.264)

Q(y) = A sin

(
nπ

b
y

)
(5.265)

H-Equation

H ′′(x)

H(x)
= −k2 + p2 = −h2 (5.266)

• k=0
Is not relevant as Q(y)=0 and hence u(x,y,t)=0.

• k 6=0
We can combine p and k in ways so that h = 0 or that h 6= 0. For this reason we
differenciate between different cases for h.

– h=0 (p=k)

H(x) = Ax+B H(0) = H(a) = 0→ A = B = 0 (5.267)

H(x) = 0 (5.268)
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– h6= 0

H(x) = A sin(hx) +B cos(hx) (5.269)

H(0) = H(a) = 0 → A = 0, h =
mπ

a
(5.270)

H(x) = B sin

(
mπ

a
x

)
(5.271)

G-Equation

G̈(t) = −c2k2G(t) (5.272)

• k=0
Is not relevant as Q(y) = 0 for that case.

• k 6=0

G(t) = A cos(ckt) +B sin(ckt) (5.273)

Step 3:
Combining the Q and H solution to the F solution gives:

F (x, y) = H(x)Q(y) = C1 sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
(5.274)

Now, the F-solution is combined with the G-solution. Again, we sum over all m,n to get
the complete solution.

u(x, y, t) =
∞∑

n=1

∞∑

m=1

sin

(
nπ

b
y

)
sin

(
mπ

a
x

)(
Anm cos(cknmt) +Bnm sin(cknmt)

)
(5.275)

Step 4:
Now the initial conditions are used:

u(x, y, 0) = f(x, y) =
∞∑

n=1

∞∑

m=1

Anm sin

(
nπ

b
y

)
sin

(
mπ

a
x

)
(5.276)

Rearranging this equation gives:

f(x, y) =
∞∑

m=1

sin

(
mπ

a
x

) ∞∑

n=1

Anm sin

(
nπ

b
y

)

︸ ︷︷ ︸
Kn(y)

(5.277)
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f(x, y) =
∞∑

m=1

Kn(y) sin

(
mπ

a
x

)
→ Kn(y) =

2

a

∫ a

0

f(x, y) sin

(
mπ

a
x

)
· dx (5.278)

This gives Kn(y). Now we want to get back to Anm.

Kn(y) =
∞∑

n=1

Anm sin

(
nπ

b
y

)
→ Anm =

2

b

∫ b

0

Kn(y) sin

(
nπ

b
y

)
· dy (5.279)

Hence the coefficients are found by calculating the following two dimensional integral:

Anm =
4

ab

∫ b

0

∫ a

0

f(x, y) sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
· dxdy (5.280)

The coefficients Bnm are found by using the second boundary condition. Remember that
k2
nm = h2 + p2 =

(
mπ
a

)2
+
(
nπ
b

)2 and hence k is also dependent on n and m.

ut(x, y, 0) =
∞∑

n=1

∞∑

m=1

cknmBnm sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
= g(x, y) (5.281)

Analogously like before, one can rearrange the equation and eventually gets:

Bnm =
4

abckn,m

∫ b

0

∫ a

0

g(x, y) sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
· dxdy (5.282)

Once the coefficients are calculated, one can write the solution down (see equation 5.275).

5.2.11 Heat Equation on an Infinite Bar

Given is the heat equation with the following initial condition:



ut = c2uxx

u(x, 0) = f(x)
(5.283)

This time no boundary conditions are given. The solution is done with a Fourier transfor-
mation.

F (uxx) = −ω2F (u) (5.284)

F (ut) =
1√
2π

∫ ∞

−∞
ute
−̊ıωx · dx =

1√
2π

∂

∂t

∫ ∞

−∞
ue−̊ıωx · dx =

∂F (u)

∂t
(5.285)
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Transforming the equation gives:

F (ut) = F (c2uxx) (5.286)

∂û

∂t
= −ω2c2û (5.287)

→ ût = −ω2c2û (5.288)

This equation can easily be solved.

→ û(ω, t) = C1(ω)e−c
2ω2t (5.289)

Keep in mind that the integration constant can be a function of ω since we integrate with
respect to time. In a next step, the initial condition is transformed.

F (u(x, 0)) = F (f(x)) û(x, 0) = f̂(ω) = C1(ω)e0 = C1(ω) (5.290)

û(ω, t) = f̂(ω)e−c
2ω2t (5.291)

A simple inverse Fourier transform yields the function in the regular spatial domain.

u(x, t) =
1√
2π

∫ ∞

−∞
f̂(ω)e−c

2ω2teı̊ωx · dω (5.292)

5.2.12 Dirichlet Problem

For a space with d spatial dimensions, a Laplace differential operator is defined as follows:

Laplace Operator

∇2u(x) = ∆u(x) =
d∑

i=1

∂2u

∂x2
i

(5.293)

Example:

d = 3 ∆u(x) = uxx + uyy + uzz (5.294)
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Dirichlet Problem





∆u(x) = 0 ∀x ∈ Ω

u(x) = f(x) ∀x ∈ ∂Ω
(5.295)

In this case, x is a general set of d coordinates (x1, x2, x3, . . . i.e. x, y, z, . . . ) and Ω is the
d-dimensional region on which the equation is solved. This region could be a circle in 2D, a
sphere in 3D etc. The boundary of this region is depicted with ∂Ω. Such problems have only
analytical solutions if Ω has symmetries (for example a rectangle or sphere). An exception
is a circle for a 2 dimensional space for which no analytical solution exists.

We now look at a problem in polar coordinates:

r =
√
x2 + y2 θ = tan−1

(
y

x

)
dxdy → rdrdθ (5.296)

The Laplace operator is now expressed in terms of r, θ. Remember that the partial derivative
of a function with transformed coordinates is given by:

∂Φ(Y )

∂xj
=
∑

i

∂Φ(Y )

∂yi

∂yi
xj

(5.297)

Here, X is the old coordinate system and Y is the new coordinate system.

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
(5.298)

x

u(x, y)

y
r
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ux = (urrx) + (uθθx)

uxx = (urrx)x + (uθθx)x

= urrr
2
x + urθθxrx + urrxx + uθrrxθx + uθθθ

2
x + uθθxx

= urrr
2
x + 2urθrxθx + uθθθ

2
x + urrxx + uθθxx

(5.299)

After a quite elaborate calculation, one gets:

∆u = urr +
1

r2
uθθ +

1

r
ur (5.300)

The equation to solve is then:




urr + 1

r2
uθθ + 1

r
ur = 0 ∀r ∈ (0, R)

u(R, θ) = f(θ) θ ∈ (0, 2π)
(5.301)

Step 1:
Separation of variables

u(r, θ) = F (r)G(θ) (5.302)

∆u = F ′′(r)G(θ) +
1

r2
F (r)G′′(θ) +

1

r
F ′(r)G(θ) = 0 (5.303)

This equation is then multiplied with r2

F (r)G(θ)

r2F
′′(r)

F (r)
+ r

F ′(r)

F (r)
= −G

′′(θ)

G(θ)
= k (5.304)

Step 2:
G-Equation

G′′(θ) + kG(θ) = 0 (5.305)

Our boundary condition is that G(0) = G(2π) and that G′(0) = G′(2π) because the function
must be 2π-periodic.

• k=0

G′′(θ) = 0 G(θ) = Aθ +B (5.306)

G(0) = B = G(2π) = 2πA+B → A = 0

G′(0) = A = G′(2π) = A
(5.307)
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G(θ) = B (5.308)

• k<0

G(θ) = Ae
√
kθ +Be−

√
kθ (5.309)

G(0) = A+B = G(2π) = Ae
√
k2π +Be−

√
k2π (5.310)

G(θ) = 0 (5.311)

• k>0

G(θ) = A cos(
√
kθ) +B sin(

√
kθ) (5.312)

G(0) = A = G(2π) = A cos(2
√
kπ) +B sin(2

√
kπ)︸ ︷︷ ︸

=0

(5.313)

To make the sine term zero, the term
√
k = n has to be a natural number.

G(θ) = A cos(nθ) +B sin(nθ) (5.314)

F-Equation

r2F ′′(r) + rF ′(r)− kF (r) = 0 (5.315)

• k=0

r2F ′′(r) + rF ′(r) = 0 F (r) = A ln(r) +B (5.316)

F (r) must be bounded so that F (0) is finite. Hence, A can only be zero. The solution
in this case is then only a constant u(θ, r) = A. Because there will be a constant in
the solution for k > 0 as well, we dont need to mind about this case.

• k<0
Not important as G(θ) = 0.

• k>0

r2F ′′(r) + rF ′(r)− n2F (r) = 0 (5.317)

This is an eulerian differential equation with λ = ±n. The solution is hence:

F (r) = Arn +Br−n (5.318)
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The function must be finite when r goes to zero. Hence, B must be zero.

F (r) = Arn (5.319)

Step 3:
Connecting the solutions gives:

u(r, θ) =
∞∑

n=0

rn(An cos(nθ) +Bn sin(nθ)) (5.320)

Step 4:
Boundary conditions:

u(R, θ) =
∞∑

n=0

Rn(An cos(nθ) +Bn sin(nθ)) = f(θ) (5.321)

Rewriting this as a Fourier series yields:

A0 =
1

2π

∫ 2π

0

f(θ) · dθ

An =
1

Rnπ

∫ 2π

0

f(θ) cos(nθ) · dθ

Bn =
1

Rnπ

∫ 2π

0

f(θ) sin(nθ) · dθ

(5.322)

Remark
Why is the integral from 0 to 2π ? Originally, the integral is from −π to +π. Commonly,
the integral is multiplied by 2 and is evaluated from 0 to π. In the case described above,
the function f(θ) has to be 2π-perdiodic (If you go 360◦ around, you get the same function
value). Since sine, cosine and the function f are 2π-periodic one can integrate from 0 to 2π

instead.

Florian Huwyler 5 DIFFERENTIAL EQUATIONS

The function must be finite when r goes to zero. Hence, B must be zero.

F (r) = Arn (5.319)

Step 3:
Connecting the solutions gives:

u(r, θ) =
∞∑

n=0

rn(An cos(nθ) + Bn sin(nθ)) (5.320)

Step 4:
Boundary conditions:

u(R, θ) =
∞∑

n=0

Rn(An cos(nθ) + Bn sin(nθ)) = f(θ) (5.321)

Rewriting this as a Fourier series yields:

A0 =
1

2π

∫ 2π

0

f(θ) · dθ

An =
1

Rnπ

∫ 2π

0

f(θ) cos(nθ) · dθ

Bn =
1

Rnπ

∫ 2π

0

f(θ) sin(nθ) · dθ

(5.322)

Remark
Why is the integral from 0to 2π ? Originally, the integral is from −π to +π. Commonly,
the integral is multiplied by 2 and is evaluated from 0 to π. In the case described above,
the function f(θ) has to be 2π-perdiodic (If you go 360◦ around, you get the same function
value). Since sine, cosine and the function f are 2π-periodic one can integrate from 0to 2π

instead.

t

f(t)

Figure 28: Filtered Signal

t

f(t)

Figure 29: Filtered Signal
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Figure 28: Integral from 0 to 2π is the same as from −π to π
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