Graph Terminology Overview ## Algorithms & Datastructures ## 19.11.2021 | walk Weg A series of connected vertices. trail kantendisjunkter Weg A walk without repeated edges. path Pfad A walk without repeated vertices. cycle Kreis A path where $v_0 = v_{end}$ holds. circuit, tour kantendisjunkter Zyklus A trail where $v_0 = v_{end}$ holds. closed walk Zyklus A walk where $v_0 = v_{end}$ holds. incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree Grad # of edges incident to v indegree Eingangsgrad # of incoming edges incident to v outdegree Ausgangsgrad # of outgoing edges incident to v tree Baum connected graph without cycles leaf Blatt vertex with degree 1 forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected antiquation point, out vertex V Artikulation length V articulation point, and vertex V Artikulation length V articulation point V articulation length are length V and V articulation length V articulation length V articulation length V articulation length V are length V and | | | | |--|--------------------------------|-------------------------|---| | path Pfad A walk without repeated vertices. cycle\(^1\) Kreis A path where $v_0 = v_{end}$ holds.\(^2\) circuit, tour kantendisjunkter Zyklus A trail where $v_0 = v_{end}$ holds.\(^2\) closed walk Zyklus A walk where $v_0 = v_{end}$ holds. closed walk Zyklus A walk where $v_0 = v_{end}$ holds. incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G fad $\#$ of edges incident to v indegree G fand $\#$ of incoming edges incident to v outdegree G Ausgangsgrad G for outgoing edges incident to G tree G blatt G vertex with degree G forest G wald G graph where every ZHK is a tree connected component G and G in G are G and and G are and G are G and G are G and G are G and G are G and G and G are G and G and G are G and G are G and G and G are G and G and G are G and G are G and G and G are G and G and G and G are G and G and G are G and G and G and G are G and G are G and G are G and G and G are G | walk | Weg | A series of connected vertices. | | cycle 1 Kreis A path where $v_0 = v_{end}$ holds. 2 circuit, tour kantendisjunkter Zyklus A trail where $v_0 = v_{end}$ holds. closed walk Zyklus A walk where $v_0 = v_{end}$ holds. incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree Grad # of edges incident to v indegree Eingangsgrad # of incoming edges incident to v outdegree Ausgangsgrad # of outgoing edges incident to v tree Baum connected graph without cycles leaf Blatt vertex with degree 1 forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | trail | kantendisjunkter Weg | A walk without repeated edges. | | circuit, tour kantendisjunkter Zyklus A trail where $v_0 = v_{end}$ holds. closed walk Zyklus A walk where $v_0 = v_{end}$ holds. incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G azyklisch G of incoming edges incident to G indegree G and G incoming edges incident to G outdegree G ausgangsgrad G for outgoing edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incoming edges incident to G tree G and G are incident to G and G are incident to G and incident edges G and G are incident edges G and incident edges G are incident edges G and G are incident edges G and incident edges G and incident edges G are incident edges G and incident edges G are incident edges G and incident edges G are incident edges G and incident edges G are incident edges G and incident edges G and incident edges G are incident edges G and | path | Pfad | A walk without repeated vertices. | | closed walk Zyklus A walk where $v_0 = v_{end}$ holds. incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G Grad $\#$ of edges incident to v indegree G Eingangsgrad G outgoing edges incident to G outdegree G Ausgangsgrad G outgoing edges incident to G tree G Baum G connected graph without cycles leaf G Blatt G Subgraph where every ZHK is a tree connected component G Zusammenhangskomponente G parts of a graph that are connected neighborhood G Nachbarschaft subgraph of all vertices adjacent to G bridge, cut edge G Brücke G If G removed, G no longer connected | cycle ¹ | Kreis | A path where $v_0 = v_{end}$ holds. ² | | incident inzident connected (vertex & edge) adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G Grad $\#$ of edges incident to v indegree G Eingangsgrad G outgoing edges incident to G outdegree G Ausgangsgrad G outgoing edges incident to G tree G Baum G connected graph without cycles leaf G Blatt G blatt G graph where every ZHK is a tree connected component G Zusammenhangskomponente G parts of a graph that are connected neighborhood G Nachbarschaft subgraph of all vertices adjacent to G bridge, cut edge G Brücke G If G removed, G no longer connected | circuit, tour | kantendisjunkter Zyklus | A trail where $v_0 = v_{end}$ holds. | | adjacent adjazent neighboring (vertex & vertex) reachable u erreicht v \exists walk from u to v connected z usammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G azyklisch g for edges incident to g indegree g for a g for incoming edges incident to g outdegree g for a g for outgoing edges incident to g tree g for outgoing edges incident to g tree g for g for outgoing edges incident to g tree g for g for a fo | closed walk | Zyklus | A walk where $v_0 = v_{end}$ holds. | | reachable u erreicht v \exists walk from u to v connected zusammenhängend G has one connected component undirected ungerichtet all edges go both ways acyclic azyklisch no cycles in G degree G Grad # of edges incident to v indegree G Eingangsgrad # of incoming edges incident to v outdegree Ausgangsgrad # of outgoing edges incident to v tree G Baum G connected graph without cycles leaf G Blatt G Blatt G vertex with degree 1 forest G Wald G graph where every ZHK is a tree connected component G Zusammenhangskomponente G parts of a graph that are connected neighborhood G Nachbarschaft subgraph of all vertices adjacent to G bridge, cut edge G Brücke G If G removed, G no longer connected | incident | inzident | connected (vertex & edge) | | connectedzusammenhängend G has one connected componentundirectedungerichtetall edges go both waysacyclicazyklischno cycles in G degreeGrad# of edges incident to v indegreeEingangsgrad# of incoming edges incident to v outdegreeAusgangsgrad# of outgoing edges incident to v treeBaumconnected graph without cyclesleafBlattvertex with degree 1forestWaldgraph where every ZHK is a treeconnected componentZusammenhangskomponenteparts of a graph that are connectedneighborhoodNachbarschaftsubgraph of all vertices adjacent to v bridge, cut edgeBrückeIf e removed, G no longer connected | adjacent | adjazent | neighboring (vertex & vertex) | | undirectedungerichtetall edges go both waysacyclicazyklischno cycles in G degreeGrad# of edges incident to v indegreeEingangsgrad# of incoming edges incident to v outdegreeAusgangsgrad# of outgoing edges incident to v treeBaumconnected graph without cyclesleafBlattvertex with degree 1forestWaldgraph where every ZHK is a treeconnected componentZusammenhangskomponenteparts of a graph that are connectedneighborhoodNachbarschaftsubgraph of all vertices adjacent to v bridge, cut edgeBrückeIf e removed, G no longer connected | reachable | u erreicht v | \exists walk from u to v | | acyclicazyklischno cycles in G degreeGrad# of edges incident to v indegreeEingangsgrad# of incoming edges incident to v outdegreeAusgangsgrad# of outgoing edges incident to v treeBaumconnected graph without cyclesleafBlattvertex with degree 1forestWaldgraph where every ZHK is a treeconnected componentZusammenhangskomponenteparts of a graph that are connectedneighborhoodNachbarschaftsubgraph of all vertices adjacent to v bridge, cut edgeBrückeIf e removed, G no longer connected | connected | zusammenhängend | ${\cal G}$ has one connected component | | degree Grad # of edges incident to v indegree Eingangsgrad # of incoming edges incident to v outdegree Ausgangsgrad # of outgoing edges incident to v tree Baum connected graph without cycles leaf Blatt vertex with degree 1 forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | undirected | ungerichtet | all edges go both ways | | indegree Eingangsgrad # of incoming edges incident to v outdegree Ausgangsgrad # of outgoing edges incident to v tree Baum connected graph without cycles leaf Blatt vertex with degree 1 forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | acyclic | azyklisch | no cycles in G | | outdegreeAusgangsgrad# of outgoing edges incident to v treeBaumconnected graph without cyclesleafBlattvertex with degree 1forestWaldgraph where every ZHK is a treeconnected componentZusammenhangskomponenteparts of a graph that are connectedneighborhoodNachbarschaftsubgraph of all vertices adjacent to v bridge, cut edgeBrückeIf e removed, G no longer connected | degree | Grad | # of edges incident to v | | tree Baum connected graph without cycles leaf Blatt vertex with degree 1 forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | indegree | Eingangsgrad | $\#$ of incoming edges incident to \boldsymbol{v} | | leafBlattvertex with degree 1forestWaldgraph where every ZHK is a treeconnected componentZusammenhangskomponenteparts of a graph that are connectedneighborhoodNachbarschaftsubgraph of all vertices adjacent to v bridge, cut edgeBrückeIf e removed, G no longer connected | outdegree | Ausgangsgrad | $\#$ of outgoing edges incident to \boldsymbol{v} | | forest Wald graph where every ZHK is a tree connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | tree | Baum | connected graph without cycles | | connected component Zusammenhangskomponente parts of a graph that are connected neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | leaf | Blatt | vertex with degree 1 | | neighborhood Nachbarschaft subgraph of all vertices adjacent to v bridge, cut edge Brücke If e removed, G no longer connected | forest | Wald | graph where every ZHK is a tree | | bridge, cut edge Brücke If e removed, G no longer connected | connected component | Zusammenhangskomponente | parts of a graph that are connected | | | neighborhood | Nachbarschaft | subgraph of all vertices adjacent to \boldsymbol{v} | | articulation point cut vertey. Artikulationsknoten If a removed C no longer connected | bridge, cut edge | Brücke | If e removed, G no longer connected | | articulation point, cut vertex Artikulationskiloten ii v removed, G no longer connected | articulation point, cut vertex | Artikulationsknoten | If v removed, G no longer connected | $^{^1}$ In some literature a cycle is also more generally equivalent to a circuit. 2 This is not formally correct, since a path cannot have repeating vertices.