
Exercise Session — Computer Science — 03
Expressions, Loops, Calculating Sums, Scopes



Overview

Today’s Plan

Feedback regarding code expert
Expressions
Loops
Calculating Sums
Scopes

1



1. Feedback regarding code expert

2



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.

Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.
Operator precedence decides in which order the operators are applied,
but not how they are executed.
The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.
C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.
Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.

Operator precedence decides in which order the operators are applied,
but not how they are executed.
The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.
C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.
Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.
Operator precedence decides in which order the operators are applied,
but not how they are executed.

The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.
C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.
Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.
Operator precedence decides in which order the operators are applied,
but not how they are executed.
The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.

C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.
Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.
Operator precedence decides in which order the operators are applied,
but not how they are executed.
The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.
C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Better explanation for short-circuits

Short circuit rule actually complies with the precedence ranking of
operations.
Operator precedence in C++ is primarily used to determine the
grouping of operators and operands, essentially deciding where
parentheses would be if they were added.
Operator precedence decides in which order the operators are applied,
but not how they are executed.
The C++ compiler has some freedom in deciding the order of evaluation
of subexpressions, as long as the final result remains consistent with
the grouping.
C++ will use different optimizations to speed up the execution, such as
short circuits.

3



Everything you should need about precedence

L-Values have a memory address (e.g., int a) and values can be
assigned to them
R-Values have no memory address

One more: !x = L-value
4



General things regarding code expert

It is advised to use int instead of unsigned int in this course for
safety.
Arithmetic with unsigned int can lead to silent wrapping (overflow or
underflow) when the value goes below 0 or exceeds the maximum
value.
Mixing signed (int) and unsigned (unsigned int) types in
comparisons or arithmetic can lead to confusing or incorrect results.

5



Any questions regarding code expert on your part?

6



2. Expressions

7



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}

integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}

floating point numbers: float, double {1.4, -4.3, 7.0}
Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool <

int < unsigned int < float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int <

float < double

Types always convert to the more general type in an expression

8



Types
Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do different types interact?

Generality order of types

bool < int < unsigned int < float < double

Types always convert to the more general type in an expression
8



Mental model of types

Type (literal) Approximates

bool {false, true}
unsigned int (u) N
int Z
float (f) R
double R, but double precision

9



Mental model of types

Type (literal) Approximates
bool {false, true}

unsigned int (u) N
int Z
float (f) R
double R, but double precision

9



Mental model of types

Type (literal) Approximates
bool {false, true}
unsigned int (u) N

int Z
float (f) R
double R, but double precision

9



Mental model of types

Type (literal) Approximates
bool {false, true}
unsigned int (u) N
int Z

float (f) R
double R, but double precision

9



Mental model of types

Type (literal) Approximates
bool {false, true}
unsigned int (u) N
int Z
float (f) R

double R, but double precision

9



Mental model of types

Type (literal) Approximates
bool {false, true}
unsigned int (u) N
int Z
float (f) R
double R, but double precision

9



Evaluating Types I

std::cout << 5.0/2 << std::endl;
// what type and value will this return and why?

Solution
double, 2.5, since the int 2 gets turned into a double 2.0 first in order to
calculate this expression.

10



Evaluating Types I

std::cout << 5.0/2 << std::endl;
// what type and value will this return and why?

Solution
double, 2.5, since the int 2 gets turned into a double 2.0 first in order to
calculate this expression.

10



Evaluating Types II

std::cout << (1/2)*5.0/2 << std::endl;
// what type and value will this return and why?

Solution
double, 0 because the left expression 1/2 gets evaluated first, which
evaluates to 0, since it’s an integer division. The rest is trivial, since
0*anything evaluates to 0. That 0 will be of type double.

11



Evaluating Types II

std::cout << (1/2)*5.0/2 << std::endl;
// what type and value will this return and why?

Solution
double, 0 because the left expression 1/2 gets evaluated first, which
evaluates to 0, since it’s an integer division. The rest is trivial, since
0*anything evaluates to 0. That 0 will be of type double.

11



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler "Hey, don’t treat this 2.0 as a double,
but instead as a float" you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

12



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler "Hey, don’t treat this 2.0 as a double,
but instead as a float" you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

12



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler "Hey, don’t treat this 2.0 as a double,
but instead as a float" you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

12



Evaluating Types III

std::cout << (5/2)*5.0f/2 << std::endl;
// what type and value will this return and why?

Solution
float, 5.0, can be written as 5.0f.

First, the 5/2 gets evaluted which results in 2 (integer division). Then
2.0f*5.0f: The int 2 became a float because that is the more general
type (in this expression). Ditto for /2 later.

13



Evaluating Types III

std::cout << (5/2)*5.0f/2 << std::endl;
// what type and value will this return and why?

Solution
float, 5.0, can be written as 5.0f.

First, the 5/2 gets evaluted which results in 2 (integer division). Then
2.0f*5.0f: The int 2 became a float because that is the more general
type (in this expression). Ditto for /2 later.

13



Exercise I

1. Which of the following character sequences are not C++ expressions,
and why not? Here, x and y are variables of type int.

a) (y++ < 0 && y < 0) + 2.0
b) y = (x++ = 3)
c) 3.0 + 3 - 4 + 5
d) 5 % 4 * 3.0 + true * x++

2. For all of the valid expressions that you have identified above, decide
whether these are l-values or r-values and explain your decision.

3. Determine the values of the expressions and explain how these values
are obtained. Assume that initially x == 1 and y == -1.

14



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0

(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0

(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0

(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0

0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0

2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

r-Value

15



Expression Evaluation - Solutions b)

y = (x++ = 3)

Invalid

16



Expression Evaluation - Solutions b)

y = (x++ = 3)

Invalid

16



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5

((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5

(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5

(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5

2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5

2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0

7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value

17



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

r-Value
17



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))

(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))

(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))

3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))

3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)

3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)

3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1

3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0

4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value

18



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

r-Value
18



3. Loops

19



Loop Correctness
Can a user of the program observe the difference between the output
produced by these three loops? If yes, how? Assume that n is a variable of
type unsigned int whose value is given by the user.

//////////////////////////
unsigned int n;
std::cin >> n;
unsigned int i;

// loop 1 ////////////////
for (i = 1; i <= n; ++i) {

std::cout << i << "\n";
}

// loop 2 ////////////////
i = 0;
while (i < n) {

std::cout << ++i << "\n";
}
// loop 3 ////////////////
i = 1;
do {

std::cout << i++ << "\n";
} while (i <= n);

20



Loop Correctness
Can a user of the program observe the difference between the output
produced by these three loops? If yes, how? Assume that n is a variable of
type unsigned int whose value is given by the user.

//////////////////////////
unsigned int n;
std::cin >> n;
unsigned int i;

// loop 1 ////////////////
for (i = 1; i <= n; ++i) {

std::cout << i << "\n";
}

// loop 2 ////////////////
i = 0;
while (i < n) {

std::cout << ++i << "\n";
}
// loop 3 ////////////////
i = 1;
do {

std::cout << i++ << "\n";
} while (i <= n);

20



Loop Correctness - Solution

Solution
There are the following differences:

Unlike loops 1 and 2, loop 3 does output 1 for input n == 0 because the
statement in a do-loop is always executed once before the condition is
checked
If n is the largest possible integer, then the loops 1 and 3 may be infinite
because the condition i <= n is going to be true for all possible i

21



Questions?

22



for → while

// TASK: Convert the following
// for-loop into an
// equivalent while-loop:

for (int i = 0; i < n; ++i) {
// BODY

}

// SOLUTION

int i = 0;

while(i < n){
// BODY
++i;

}

23



for → while

// TASK: Convert the following
// for-loop into an
// equivalent while-loop:

for (int i = 0; i < n; ++i) {
// BODY

}

// SOLUTION

int i = 0;

while(i < n){
// BODY
++i;

}

23



while → for

// TASK: Convert the following
// while-loop into an
// equivalent for-loop:

while(condition){
// BODY

}

// SOLUTION

for(;condition;){
// BODY

}

24



while → for

// TASK: Convert the following
// while-loop into an
// equivalent for-loop:

while(condition){
// BODY

}

// SOLUTION

for(;condition;){
// BODY

}

24



do-while → for

// TASK: Convert the following
// do-while-loop into an
// equivalent for-loop:

do{
// BODY

}while(condition)

// SOLUTION

// BODY
for(;condition;){

// BODY
}

25



do-while → for

// TASK: Convert the following
// do-while-loop into an
// equivalent for-loop:

do{
// BODY

}while(condition)

// SOLUTION

// BODY
for(;condition;){

// BODY
}

25



Questions?

26



4. Calculating Sums

27



From Series to Loop

Mathematical sums can be turned into loops
n∑

i=0
f(i)

Becomes

int n = 0;
int sum = 0;

for(int i = 0; i <= n; i++){
sum += f(i);

}

28



From Series to Loop

Mathematical sums can be turned into loops
n∑

i=0
f(i)

Becomes

int n = 0;
int sum = 0;

for(int i = 0; i <= n; i++){
sum += f(i);

}

28



Warmup Exercise

Consider the formula

1
n!

= 1
1 · 1

2 · · · · · 1
n

How could one implement this as a
("multiplicative") series?

1
n! =

n∏
i=1

1
i

How do we turn this piece of math
into a piece of C++ code?

int main(){

int n; // user input
double result; // main output

std::cout << result
<< std::endl;

return 0;
}

29



Warmup Exercise

Consider the formula

1
n! = 1

1 · 1
2 · · · · · 1

n

How could one implement this as a
("multiplicative") series?

1
n! =

n∏
i=1

1
i

How do we turn this piece of math
into a piece of C++ code?

int main(){

int n; // user input
double result; // main output

std::cout << result
<< std::endl;

return 0;
}

29



Warmup Exercise

Consider the formula

1
n! = 1

1 · 1
2 · · · · · 1

n

How could one implement this as a
("multiplicative") series?

1
n!

=
n∏

i=1

1
i

How do we turn this piece of math
into a piece of C++ code?

int main(){

int n; // user input
double result; // main output

std::cout << result
<< std::endl;

return 0;
}

29



Warmup Exercise

Consider the formula

1
n! = 1

1 · 1
2 · · · · · 1

n

How could one implement this as a
("multiplicative") series?

1
n! =

n∏
i=1

1
i

How do we turn this piece of math
into a piece of C++ code?

int main(){

int n; // user input
double result; // main output

std::cout << result
<< std::endl;

return 0;
}

29



Warmup Exercise

Consider the formula

1
n! = 1

1 · 1
2 · · · · · 1

n

How could one implement this as a
("multiplicative") series?

1
n! =

n∏
i=1

1
i

How do we turn this piece of math
into a piece of C++ code?

int main(){

int n; // user input
double result; // main output

std::cout << result
<< std::endl;

return 0;
}

29



Warmup Exercise - Example Solution

int main(){
int n;
double result = 1;
int i = 1;

std::cin >> n;

while(i <= n){
result = result/i;
i++;

}

std::cout << result << std::endl;

return 0;
}

30



From Series to Loop

Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: Use the MacLaurin Series. Hint: How would you compute (n + 1)-th
term when you have the n-th term?
Hint: What loop should be used here?
Hint: Try to solve the exercise without considering the precision at first.

sin x =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper
Try implementing it together with person next to you in code expert

31



From Series to Loop

Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: Use the MacLaurin Series. Hint: How would you compute (n + 1)-th
term when you have the n-th term?
Hint: What loop should be used here?
Hint: Try to solve the exercise without considering the precision at first.

sin x =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper

Try implementing it together with person next to you in code expert

31



From Series to Loop

Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: Use the MacLaurin Series. Hint: How would you compute (n + 1)-th
term when you have the n-th term?
Hint: What loop should be used here?
Hint: Try to solve the exercise without considering the precision at first.

sin x =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper
Try implementing it together with person next to you in code expert

31



From Series to Loop - Solution

#include <iostream>

int main () {

double x;
std::cin >> x;

double numtor = x;
double denomtor = 1;

double sum = x;
double term;
double term_abs;
int n = 1;

do {
numtor *= -(x * x);
denomtor *= (2 * n) * (2 * n + 1);
term = numtor / denomtor;
sum += term;
if (term < 0) {

term_abs = -term;
} else {

term_abs = term;
}
++n;

} while (term_abs > 0.000001);

std::cout << sum << std::endl;
return 0;

}

32



From Series to Loop - Solution

#include <iostream>

int main () {

double x;
std::cin >> x;

double numtor = x;
double denomtor = 1;

double sum = x;
double term;
double term_abs;
int n = 1;

do {
numtor *= -(x * x);
denomtor *= (2 * n) * (2 * n + 1);
term = numtor / denomtor;
sum += term;
if (term < 0) {

term_abs = -term;
} else {

term_abs = term;
}
++n;

} while (term_abs > 0.000001);

std::cout << sum << std::endl;
return 0;

} 32



Questions?

33



5. Scopes

34



Scopes
Question
In this week’s lecture, a new concept was introduced called "variable
scopes". Does anyone remember what variable scopes are and why do we
need them?

Answer
Scopes define the code segments of our program in which a variable
(l-value) exists. The scope of a variable starts at the point of its definition
and ends at the end of the block where it was defined. For example:

if (x < 7){
int a = 8; // <-- a's variable scope BEGINS here!
std::cout << a; // Fine, prints 8.

} // <-- a's variable scope ENDS here!
std::cout << a; // Compiler error, a does not exist.

35



Scopes
Question
In this week’s lecture, a new concept was introduced called "variable
scopes". Does anyone remember what variable scopes are and why do we
need them?

Answer
Scopes define the code segments of our program in which a variable
(l-value) exists. The scope of a variable starts at the point of its definition
and ends at the end of the block where it was defined. For example:

if (x < 7){
int a = 8; // <-- a's variable scope BEGINS here!
std::cout << a; // Fine, prints 8.

} // <-- a's variable scope ENDS here!
std::cout << a; // Compiler error, a does not exist.

35



Bug?

A way to supposedly fix the
compilation error would be this:

int a = 2;

if (x < 7) {
int a = 8;
std::cout << a;

}

std::cout << a;

Question
What this program is going to print if
x==2?

Answer
It’s going to print 82.
Why? See � Program Tracing Guide

36

https://lec.inf.ethz.ch/ifmp/2024/guides/tracing/scopes.html


Bug?

A way to supposedly fix the
compilation error would be this:

int a = 2;

if (x < 7) {
int a = 8;
std::cout << a;

}

std::cout << a;

Question
What this program is going to print if
x==2?

Answer
It’s going to print 82.

Why? See � Program Tracing Guide

36

https://lec.inf.ethz.ch/ifmp/2024/guides/tracing/scopes.html


Bug?

A way to supposedly fix the
compilation error would be this:

int a = 2;

if (x < 7) {
int a = 8;
std::cout << a;

}

std::cout << a;

Question
What this program is going to print if
x==2?

Answer
It’s going to print 82.
Why? See � Program Tracing Guide

36

https://lec.inf.ethz.ch/ifmp/2024/guides/tracing/scopes.html


Bug?

Question
What is the scopes of sum, i, and a in
the following example?

int sum = 0;

for (int i = 0; i < 5; ++i) {
int a;
std::cin >> a;
sum += a;

}

Answer

sum (At least) the entire snippet
i The entire for-loop
a One loop iteration. In other

words, at the beginning of the
loop body a is not guaranteed to
have the value it had at the end
of the loop body in the previous
loop iteration.

37



Bug?

Question
What is the scopes of sum, i, and a in
the following example?

int sum = 0;

for (int i = 0; i < 5; ++i) {
int a;
std::cin >> a;
sum += a;

}

Answer
sum (At least) the entire snippet

i The entire for-loop
a One loop iteration. In other

words, at the beginning of the
loop body a is not guaranteed to
have the value it had at the end
of the loop body in the previous
loop iteration.

37



Bug?

Question
What is the scopes of sum, i, and a in
the following example?

int sum = 0;

for (int i = 0; i < 5; ++i) {
int a;
std::cin >> a;
sum += a;

}

Answer
sum (At least) the entire snippet

i The entire for-loop

a One loop iteration. In other
words, at the beginning of the
loop body a is not guaranteed to
have the value it had at the end
of the loop body in the previous
loop iteration.

37



Bug?

Question
What is the scopes of sum, i, and a in
the following example?

int sum = 0;

for (int i = 0; i < 5; ++i) {
int a;
std::cin >> a;
sum += a;

}

Answer
sum (At least) the entire snippet

i The entire for-loop
a One loop iteration. In other

words, at the beginning of the
loop body a is not guaranteed to
have the value it had at the end
of the loop body in the previous
loop iteration.

37



Questions?

38



6. Outro

39



General Questions?

40



See you next time

Have a nice week!

41


	Feedback regarding codeexpertcolorcodeexpertcolorcode expert 
	Expressions
	Loops
	Calculating Sums
	Scopes
	Outro

