
Exercise Session — Computer Science — 04
code expert Changes, assert, PRE and POST, Functions, Headers,
Namespaces



Overview

Today’s Plan

code expert Changes
assert
PRE and POST
Functions
Exam Question
Headers and Namespaces
Stepwise Refinement
Old Exam Question

1



1. Feedback regarding code expert

2



General things regarding code expert

If someone thinks they have a good reason (e.g. military service) why a
late submission should still be counted, they should contact me
(preferably via email).
Is everyone happy with the type of feedback I am providing?
Is there something in the feedback you received that you don’t
understand?
What could I do better?

3



Information regarding Bonus Exercise 1

10 Regular Tests (71%)
4 Hidden Tests
No TA points from me (but if you want me to understand the code,
make an effort with the formatting)
Exercises from "Perpetual Calendar" onwards collect points for the
Bonus Task II

4



Any questions regarding code expert on your part?

5



2. code expert Changes

6



New Feature: Hidden Test Cases

Hidden Test Cases
Starting week 7, some code expert exercises will include hidden test
cases
Hidden test cases do not display expected output on failure to prevent
hard-coding1

Hidden test cases are common in bonus exercises and exams
Exercises with hidden test cases and persistent input are labelled with
“[hidden tests]” in code expert

1Forbidden anyway
7



New Feature: Persistent Input

Persistent Input
Feature introduced to save and reuse input (from input.txt) across
runs
Persistent input does not affect grades or XP
Usage: Enter f (without spaces) instead of the actual input in the
terminal2

2Mnemonic: f like file!
8



Questions?

9



3. assert

10



Exit codes

An exit code, also known as exit status, is an integer value that is
returned by a program upon termination - see here for more
information3

Exit codes are used by the program’s caller or user to determine
whether the program’s execution was successful.

Examples of exit codes:
0 - Successful program termination
-6 - assert(...) failed
-8 - division by 0
-9 - program was killed because it used too much memory
-11 - segmentation fault

3https://lec.inf.ethz.ch/ifmp/2024/guides/debugging/exit_codes.html
11

https://lec.inf.ethz.ch/ifmp/2024/guides/debugging/exit_codes.html


Exit codes

An exit code, also known as exit status, is an integer value that is
returned by a program upon termination - see here for more
information3

Exit codes are used by the program’s caller or user to determine
whether the program’s execution was successful.
Examples of exit codes:

0 - Successful program termination
-6 - assert(...) failed
-8 - division by 0
-9 - program was killed because it used too much memory
-11 - segmentation fault

3https://lec.inf.ethz.ch/ifmp/2024/guides/debugging/exit_codes.html
11

https://lec.inf.ethz.ch/ifmp/2024/guides/debugging/exit_codes.html


assert

Question
What do we use assert for?

Possible Answers
To find out where exactly an error occurs
To keep a better overview of long programs
To catch wrong (user) inputs immediately (this helps avoid undefined
behavior)
As a way of documenting your code

12



assert

Question
What do we use assert for?

Possible Answers
To find out where exactly an error occurs
To keep a better overview of long programs
To catch wrong (user) inputs immediately (this helps avoid undefined
behavior)
As a way of documenting your code

12



assert Demo

code expert Code Example "Debugging with Assert"

13



Questions?

14



4. PRE and POST

15



PRE and POST Conditions

// PRE: describes accepted input
// POST: describes expected output
int yourfunction(int a, int b){

...
}

16



PRE and POST Conditions

Questions: What would be sensible conditions here?

// PRE:
// POST:
double area(double height, double length){

return height*length;
}

They don’t have to be very detailed but they have to describe what the
function expects and what will be returned if the provided input matches
the expectations

17



PRE and POST Conditions

Questions: What would be sensible conditions here?

// PRE:
// POST:
double area(double height, double length){

return height*length;
}

They don’t have to be very detailed but they have to describe what the
function expects and what will be returned if the provided input matches
the expectations

17



Questions?

18



PRE and POST Conditions I

Find sensible PRE and POST conditions for this function

// PRE: ???
// POST: ???
double f(double i, double j, double k){

if(i > j){
if(i > k){return i;}
else {return k;}

} else {
if(j > k){return j;}
else {return k;}

}
}

19



PRE and POST Conditions I (Solution)

Possible Solution

// PRE: (not needed)
// POST: return value is maximum of {i, j, k}
double f(double i, double j, double k){

if(i > j){
if(i > k){return i;}
else {return k;}

} else {
if(j > k){return j;}
else {return k;}

}
}

20



PRE and POST Conditions II

Find sensible PRE and POST conditions for this function

// PRE: ???
// POST: ???
double g(int i, int j){

double r = 0.0;
for(int k = i; k <= j; k++){

r += 1.0 / k;
}
return r;

}

21



PRE and POST Conditions II (Solution)

Possible Solution

// PRE: 0 not in [i, j] and i <= j < INT_MAX
// POST: return value is the sum 1/i + 1/(i+1) + ... + 1/j
double g(int i, int j){

double r = 0.0;
for(int k = i; k <= j; k++){

r += 1.0 / k;
}
return r;

}

22



5. Functions

23



Output?

int f(int i){
return i * i;

}

int g(int i){
return i * f(i) * f(f(i));

}

int h(int i){
std::cout << g(i) << "\n";

}
// ...

// ...
int main(){

int i;
std::cin >> i;
h(i);
return 0;

}

What is the output going to be (ig-
noring possible over- and under-
flows)?

Solution: i7

24



Output?

int f(int i){
return i * i;

}

int g(int i){
return i * f(i) * f(f(i));

}

int h(int i){
std::cout << g(i) << "\n";

}
// ...

// ...
int main(){

int i;
std::cin >> i;
h(i);
return 0;

}

What is the output going to be (ig-
noring possible over- and under-
flows)? Solution: i7

24



Bug hunt

double f(double x){
return g(2.0 * x);

}

double g(double x){
return x % 2.0 == 0;

}

double h(double x){
std::cout << result;

}
// ...

// ...
int main(){

double result = f(3.0);
h();

return 0;
}

Find at least 3 mistakes in this pro-
gram.

25



Bug hunt (Solution)

1. g() is not yet known to f(), since scope of g() starts later
2. There’s no %-operator for double
3. h() does not "see" the variable result, since it is not in its scope
4. h() has no return value even though there should be one
5. h() is called without an argument

26



Number of Divisors

Write a function number_of_divisors which takes an int n as argument
and returns the number of divisors of n (including 1 and n)

// PRE: 0 < n < MAX_INT
// POST: returns number of divisors of n (incl. 1 and n)
unsigned int number_of_divisors(int n){

// ...
}

Example
6 has 4 divisors, namely 1, 2, 3, 6

27



Number of Divisors (Solution)

// PRE: 0 < n < MAX_INT
// POST: returns number of divisors of n (incl. 1 and n)
unsigned int number_of_divisors(int n){

assert(n > 0);
unsigned int counter = 0;

for (int i = 1; i <= n; ++i){
if(n % i == 0){

counter++;
}

}

return counter;
}

28



Questions?

29



6. Exam Question

30



Exam Relevant?

This is a real exam exercise from 2022
Open the exercise "[Exam 2022.02 (MAVT + ITET)] Decimal to arbitrary
base" on code expert
Discuss your approach with your neighbors

Solve the exercise

31



Exam Relevant?

This is a real exam exercise from 2022
Open the exercise "[Exam 2022.02 (MAVT + ITET)] Decimal to arbitrary
base" on code expert
Discuss your approach with your neighbors
Solve the exercise

31



Questions?

32



7. Headers and Namespaces

33



Headers and Namespaces

Live Demo Code Example "CPP Headers & Namespaces"

34



Questions?

35



8. Stepwise Refinement

36



Basic Idea

37



Stepwise Refinement

Code Example "Perfect Numbers" on code expert

Write a program that counts how many perfect numbers exist in the range
[a, b]. Please use stepwise refinement to develop a solution to this task that
is divided into meaningful functions. We provide a function is_perfect in
perfect.h that checks if a given number is perfect.

A number n ∈ N is called perfect if and only if it is equal to the sum of its
proper divisors. For example:

28 = 1 + 2 + 4 + 7 + 14 is perfect
12 ̸= 1 + 2 + 3 + 4 + 6 is not perfect

38



Stepwise Refinement

Don’t start right away
Identify the easier subproblems

What subproblems were you able to identify?

39



Stepwise Refinement

Don’t start right away
Identify the easier subproblems
What subproblems were you able to identify?

39



"Problem Tree"

How many perfect numbers are there in [a, b]?

40



Solution "Perfect Numbers"

// PRE:
// POST:
bool is_perfect(unsigned int number) {

unsigned int sum = 0;
for (unsigned int d = 1; d < number; ++d) {

if (number % d == 0) {
sum += d;

}
}
return sum == number;

}

41



Solution "Perfect Numbers"

#include <iostream>
#include "perfect.h"

// PRE:
// POST:
unsigned int count_perfect_numbers(unsigned int a, unsigned int b) {

unsigned int count = 0;
for (unsigned int i = a; i <= b; ++i) {

if (is_perfect(i)) {
count++;

}
}
return count;

}

// ...
42



Solution "Perfect Numbers"

// ...

int main () {
// input
unsigned int a;
unsigned int b;
std::cin >> a >> b;

// computation
unsigned int count = count_perfect_numbers(a, b);

// output
std::cout << count << std::endl;

return 0;
}

43



Questions?

44



9. Old Exam Question

45



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int, 1

Solution
double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int, 1

Solution
double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution

int, 1
Solution
double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int,

1
Solution
double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int, 1

Solution

double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int, 1

Solution
double,

9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question "Type and Value"

Provide the type and value of variable c4

int a = 5;
int b = 1;
auto c = (9 * a + b) % a;

int a = 5;
double b = 1;
auto c = (9.0 * a + b) / a;

Solution
int, 1

Solution
double, 9.2

4Remark to Type and Value Questions: The keyword auto means that the type of the
expression is determined by the compiler. In the following it thus stands for the expression
type that you need to identify.

46



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?

1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"

True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"

True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)
3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"

False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question F ∗

Let F ∗ be the following normalized floating point system5

F ∗(β = 2, p = 3, emin = −1, emax = 4)

True of False?
1. "1.25 can be represented exactly in the floating point system F ∗"
True, namely 1.01 · 20

2. "There is no number Z ∈ F ∗ such that 0.0625 < Z < 0.25"
True, the smallest number that can be represented is 0.5 (i.e., 1.0 ∗ 2−1)

3. "3.25 can be represented exactly in the F ∗"
False, 3.25 = 1.101 · 21 would require precision p ≥ 4

5Reminder: the precision (number of digits) includes the leading bit.
47



Exam Question "Loop"

int sum = 17;
int i = 1;

do {
i += sum;
sum = sum / 2;

} while (i > sum && sum >= 0);

std::cout << sum;

Which statement describes the
output best?

17

8

Never terminates

18

48



Exam Question "Loop"

int sum = 17;
int i = 1;

do {
i += sum;
sum = sum / 2;

} while (i > sum && sum >= 0);

std::cout << sum;

Which statement describes the
output best?

17

8

Never terminates

18

48



Exam Question "Loop Termination"

int sum = 17;
int i = 1;

do {
i += sum;
sum = sum / 2;

} while (i > sum && sum >= 0);

std::cout << sum;

Answer:

It never terminates!
Division of two positive ints
cannot be negative
⇒ sum >= 0 is always true!
After the first execution of the
do block: i > sum.
sum is monotonically decreasing,
i is monotonically increasing.
⇒ i > sum is always true.

49



Exam Question "Loop Termination"

int sum = 17;
int i = 1;

do {
i += sum;
sum = sum / 2;

} while (i > sum && sum >= 0);

std::cout << sum;

Answer: It never terminates!

Division of two positive ints
cannot be negative
⇒ sum >= 0 is always true!
After the first execution of the
do block: i > sum.
sum is monotonically decreasing,
i is monotonically increasing.
⇒ i > sum is always true.

49



Exam Question "Loop Termination"

int sum = 17;
int i = 1;

do {
i += sum;
sum = sum / 2;

} while (i > sum && sum >= 0);

std::cout << sum;

Answer: It never terminates!
Division of two positive ints
cannot be negative
⇒ sum >= 0 is always true!
After the first execution of the
do block: i > sum.
sum is monotonically decreasing,
i is monotonically increasing.
⇒ i > sum is always true.

49



10. Outro

50



General Questions?

51



See you next time

Have a nice week!

52


	Feedback regarding codeexpertcolorcodeexpertcolorcode expert 
	codeexpertcolorcodeexpertcolorcode expert Changes
	assert
	PRE and POST
	Functions
	Exam Question
	Headers and Namespaces
	Stepwise Refinement
	Old Exam Question
	Outro

