
Exercise Session — Computer Science — 06
References, std::vector, Multidimensional vectors



Overview

Today’s Plan

References
std::vector<T>
Multidimensional Vectors
Repetition: Normalized Floating
Point Numbers

1



1. Feedback regarding code expert

2



General things regarding code expert

3



Any questions regarding code expert on your part?

4



2. References

5



Example of Program Tracing I

int a = 3;
int& b = a;

b = 7;

std::cout << a;

Output:

7

6



Example of Program Tracing I

int a = 3;
int& b = a;

b = 7;

std::cout << a;

Output: 7

6



Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output:

4 . . . but why?

References (type&) are used as
type of function parameters
(inputs) or return types (returns)

If the parameters are not
referenced, we say passed to the
function by value. (This is how
we did it for all previous
functions); this always makes a
copy of the input to the function

7



Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 4 . . . but why?

References (type&) are used as
type of function parameters
(inputs) or return types (returns)

If the parameters are not
referenced, we say passed to the
function by value. (This is how
we did it for all previous
functions); this always makes a
copy of the input to the function

7



Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 4 . . . but why?

References (type&) are used as
type of function parameters
(inputs) or return types (returns)

If the parameters are not
referenced, we say passed to the
function by value. (This is how
we did it for all previous
functions); this always makes a
copy of the input to the function

7



Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output:

5

When a function parameter is a
reference type (type&), we say
"passed (the argument) by
reference"

8



Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 5

When a function parameter is a
reference type (type&), we say
"passed (the argument) by
reference"

8



Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 5

When a function parameter is a
reference type (type&), we say
"passed (the argument) by
reference"

8



References

Why all this?

you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

9



References

Why all this?
you can influence several results/variables and don’t have to rely on
the return

you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

9



References

Why all this?
you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.

sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

9



References

Why all this?
you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

9



References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why? Because of the reference in the return type!

10



References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output:

5, but why? Because of the reference in the return type!

10



References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why?

Because of the reference in the return type!

10



References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why? Because of the reference in the return type!
10



Questions?

11



Reference or Copy? I

int foo(int& a, int b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 2 4 8 16

12



Reference or Copy? I

int foo(int& a, int b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 2 4 8 16

12



Reference or Copy? II

int foo(int a, int b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 1 1 1 1

13



Reference or Copy? II

int foo(int a, int b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1

13



Reference or Copy? III

int foo(int a, int& b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 1 1 1 1

14



Reference or Copy? III

int foo(int a, int& b){
a += b;
return a;

}

int main(){
int a = 0;
int b = 1;
for(int i = 0; i < 5; ++i){

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1

14



Questions?

15



3. std::vector<T>

16



How to std::vector

#include <vector>

Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
There are many ways to initialize/define a vector. Look in the lecture
material or search online
myvector[n-1]
to get the nth value of the vector
myvector.push_back(x)
to append the value x

17



How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type

You can treat vectors something like a new type
There are many ways to initialize/define a vector. Look in the lecture
material or search online
myvector[n-1]
to get the nth value of the vector
myvector.push_back(x)
to append the value x

17



How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type

There are many ways to initialize/define a vector. Look in the lecture
material or search online
myvector[n-1]
to get the nth value of the vector
myvector.push_back(x)
to append the value x

17



How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
There are many ways to initialize/define a vector. Look in the lecture
material or search online

myvector[n-1]
to get the nth value of the vector
myvector.push_back(x)
to append the value x

17



How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
There are many ways to initialize/define a vector. Look in the lecture
material or search online
myvector[n-1]
to get the nth value of the vector

myvector.push_back(x)
to append the value x

17



How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
There are many ways to initialize/define a vector. Look in the lecture
material or search online
myvector[n-1]
to get the nth value of the vector
myvector.push_back(x)
to append the value x

17



Questions?

18



Exercise: "Reversing Vectors"

Let’s code together!
Code Example "Reversing Vectors" on code expert

19



Exercise: "Reversing Vectors" – Example Solution

// POST: Prints a vector in reverse without side-effects
void efficient_reverse_print(std::vector<int>& sequence) {

for (int i = sequence.size() - 1; i >= 0; i--) {
std::cout << sequence[i] << " ";

}

std::cout << std::endl;

}

20



4. Multidimensional Vectors

21



What are Multidimensional Vectors?

Multidimensional vectors are matrices1

matrix.at(row_index) // Accessing vector<T> (entire row)
matrix.at(row_index).at(col_index) // Accessing T (single element)

1they’re actually vectors of vectors!
22



Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert

1 2
3 4
5 6


⊤

=
[
1 3 5
2 4 6

]

Think about how you would approach the problem with pen and paper
Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;
Implement a solution (optionally in groups)

23



Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert

1 2
3 4
5 6


⊤

=
[
1 3 5
2 4 6

]

Think about how you would approach the problem with pen and paper

Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;
Implement a solution (optionally in groups)

23



Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert

1 2
3 4
5 6


⊤

=
[
1 3 5
2 4 6

]

Think about how you would approach the problem with pen and paper
Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;

Implement a solution (optionally in groups)

23



Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert

1 2
3 4
5 6


⊤

=
[
1 3 5
2 4 6

]

Think about how you would approach the problem with pen and paper
Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;
Implement a solution (optionally in groups)

23



Solution to "Matrix Transpose"

imatrix transpose_matrix(const imatrix& matrix) {
int rows = get_rows(matrix);
int cols = get_cols(matrix);

// construct a matrix with zero rows
imatrix transposed_matrix = imatrix(0);
for (int col_index = 0; col_index < cols; col_index++) {

// construct a row with zero entries
irow row = irow(0);
for (int row_index = 0; row_index < rows; row_index++) {

row.push_back(matrix[row_index][col_index]);
}
transposed_matrix.push_back(row);

}
return transposed_matrix;

}

24



Solution to "Matrix Transpose"

imatrix transpose_matrix(const imatrix& matrix) {
int rows = get_rows(matrix);
int cols = get_cols(matrix);

// construct a matrix with zero rows
imatrix transposed_matrix = imatrix(0);
for (int col_index = 0; col_index < cols; col_index++) {

// construct a row with zero entries
irow row = irow(0);
for (int row_index = 0; row_index < rows; row_index++) {

row.push_back(matrix[row_index][col_index]);
}
transposed_matrix.push_back(row);

}
return transposed_matrix;

}
24



Questions?

25



5. Repetition: Normalized Floating Point
Numbers

26



Normalized Floating Point Number Systems

Task
Try to solve following tasks
Ask if anything remains unclear

27



Informatik
Exercise Session



Consider the normalized floating point number system F ∗ (β, p, emin, emax) with β = 2,
p = 3, emin = −4, emax = 4.
Compute the following expressions as the parentheses suggest, representing each
intermediate result (and the final result) in the normalized floating point system
according to the rules of computing with floating point numbers.

(10 + 0.5) + 0.5
decimal binary

10 ?????

+ 0.5 ?????

= ?????

+ 0.5 ?????

= ?? ← ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= ?????

+ 0.5 ?????

= ?? ← ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.0101 · 23

+ 0.5 ?????

= ?? ← ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= ?? ← ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= ?????

+ 10 ?????

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? ← ?????

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? ← 1011.00 · 20

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? ← 1.011 · 23

1



(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= 1.00 · 20

+ 10 1010.00 · 20

= 12 ← 1.10 · 23

1



Questions?

28



6. Outro

29



General Questions?

30



See you next time

Have a nice week!

31


	Feedback regarding codeexpertcolorcodeexpertcolorcode expert 
	References
	std::vector<T>
	Multidimensional Vectors
	Repetition: Normalized Floating Point Numbers
	Outro

