
Exercise Session — Computer Science — 07
ASCII Characters, char, Recursion

Overview

Today’s Plan

(ASCII) Characters in C++ (char)
Recursion

1

1. Feedback regarding code expert

2

General things regarding code expert

3

Any questions regarding code expert on your part?

4

2. (ASCII) Characters in C++ (char)

5

Exercise "Converting Input to UPPER CASE"

Task
1. Consider how best to approach the "Converting Input to UPPER CASE"

task on code expert

2. Implement (optionally in groups) a solution

6

Exercise "Converting Input to UPPER CASE"

Task
1. Consider how best to approach the "Converting Input to UPPER CASE"

task on code expert
2. Implement (optionally in groups) a solution

6

Exercise "Converting Input to UPPER CASE"
Task
Write a program that reads a sequence of characters, delimited by the
new-line character, as a vector of char. Then the program should output
the sequence with all lower-case letters changed to UPPER-CASE letters.
To read the sequence you can:

read a single character from standard input
insert it into a vector of chars
repeat until you find a newline character (\n)

Please put the code that converts the entire sequence to upper-case and a
single character to upper-case into separate functions (you should have at
least three functions).
Hint: variables of type char can be treated as numbers
 ASCII Table (but you don’t really need it!)

7

https://en.cppreference.com/w/cpp/language/ascii

"Converting Input to UPPER CASE" — Solution

#include <iostream>
#include <vector>
#include <ios> // not really needed, don't worry about it

8

"Converting Input to UPPER CASE" — Solution

// POST: Converts the letter to upper case.
void char_to_upper(char& letter){

int shift_distance = 'a' - 'A'; // 'a' > 'A' (if conv. to ints)
// distance between the upper
// and lower case numbers

if('a' <= letter && letter <= 'z'){
letter -= shift_distance;

}
}

// POST: Converts all letters to upper-case.
void to_upper(std::vector<char>& letters){

for(unsigned int i = 0; i < letters.size(); ++i){
char_to_upper(letters.at(i));

}
}

9

"Converting Input to UPPER CASE" — Solution

std::vector<char> letters;
char ch;

// Step 1: Read input.
do {

std::cin >> ch;
letters.push_back(ch);

} while(ch != '\n');

// Step 2: Convert to upper-case.
to_upper(letters);

// Step 3: Output.
for(unsigned int i = 0; i < letters.size(); ++i){

std::cout << letters.at(i);
}

10

Questions?

11

3. Recursion

12

Previous Exam Question

Key data
Exam: 01.2022 Computer Science (MATH/PHYS/RW)
Simple recursion task
Total Points in Exam: 85 points
Total Time for Exam: 120 minutes
Points for Task in Exam: 5 points

Estimated Time for Task: 7 minutes = 120 ∗ (5/85)

13

Previous Exam Question

Key data
Exam: 01.2022 Computer Science (MATH/PHYS/RW)
Simple recursion task
Total Points in Exam: 85 points
Total Time for Exam: 120 minutes
Points for Task in Exam: 5 points
Estimated Time for Task: 7 minutes = 120 ∗ (5/85)

13

Tiny Exam Simulation

Get into "exam mode" and prepare everything you might need

Open "[Exam 2022.01 (MATH/PHYS/RW)] Compute Series" on code
expert
Implement a (recursive) solution
Time: 7 Minutes

14

Tiny Exam Simulation

Get into "exam mode" and prepare everything you might need
Open "[Exam 2022.01 (MATH/PHYS/RW)] Compute Series" on code
expert

Implement a (recursive) solution
Time: 7 Minutes

14

Tiny Exam Simulation

Get into "exam mode" and prepare everything you might need
Open "[Exam 2022.01 (MATH/PHYS/RW)] Compute Series" on code
expert
Implement a (recursive) solution
Time: 7 Minutes

14

Previous Exam Question

We want to write a function with the following PRE and POSTs

// PRE: a positive integer n
//
// POST: returns the n-th number of a series x_n, defined as
// x_n = 2, for n = 1
// x_n = 1, for n = 2
// x_n = x_(n-1) + x_(n-2), for n > 2
//
// Example:
// * n == 1 ~~> 2
// * n == 2 ~~> 1
// * n == 3 ~~> 3

15

Previous Exam Question — Solution

// PRE: a positive integer n
//
// POST: returns the n-th number of a serie x_n, defined as
// x_n = 2, for n = 1
// x_n = 1, for n = 2
// x_n = x_(n-1) + x_(n-2), for n > 2

unsigned int compute_element(unsigned int n) {
if (n == 1) {

return 2;
} else if (n == 2) {

return 1;
} else {

return compute_element(n-1) + compute_element(n-2);
}

}

16

Previous Exam Question — Solution

// PRE: a positive integer n
//
// POST: returns the n-th number of a serie x_n, defined as
// x_n = 2, for n = 1
// x_n = 1, for n = 2
// x_n = x_(n-1) + x_(n-2), for n > 2

unsigned int compute_element(unsigned int n) {
if (n == 1) {

return 2;
} else if (n == 2) {

return 1;
} else {

return compute_element(n-1) + compute_element(n-2);
}

}
16

Questions?

17

Exercise "Partial Sum"

Task
Write a function that

1. Computes the sum of all natural numbers below (and equal to) n using
recursion and returns this value

2. Outputs all the added terms in ascending order (from 0 to n to the
console in the same recursive function)

18

Exercise "Partial Sum"

Open "Partial Sum" on code expert

Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)

19

Exercise "Partial Sum"

Open "Partial Sum" on code expert
Think about how you would approach the problem with pen and paper

Implement a (recursive) solution (optionally in groups)

19

Exercise "Partial Sum"

Open "Partial Sum" on code expert
Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)

19

"Partial Sum" — Solution

unsigned int partial_sum(const unsigned int n) {
if (n == 0) {

return 0;
} else {

// print descending
// std::cout << n << std::endl;

unsigned int partial = partial_sum(n - 1);

// print ascending
std::cout << n << std::endl;

return n + partial;
}

}

20

"Partial Sum" — Solution

unsigned int partial_sum(const unsigned int n) {
if (n == 0) {

return 0;
} else {

// print descending
// std::cout << n << std::endl;

unsigned int partial = partial_sum(n - 1);

// print ascending
std::cout << n << std::endl;

return n + partial;
}

}
20

"Partial Sum" — Solution

int main() {
std::cout << "n = ";

unsigned int n;
std::cin >> n;

std::cout << partial_sum(n) << std::endl;

return 0;
}

21

Questions?

22

Exercise "Power Function"

Question
How many recursive calls does the following function need to compute x7?

unsigned int power(const unsigned int x, const unsigned int n) {

if (n == 0){
return 1;

} else if (n == 1) {
return x;

}

return x * power(x, n - 1);
}

Answer:

7

23

Exercise "Power Function"

Question
How many recursive calls does the following function need to compute x7?

unsigned int power(const unsigned int x, const unsigned int n) {

if (n == 0){
return 1;

} else if (n == 1) {
return x;

}

return x * power(x, n - 1);
}

Answer: 7
23

Exercise "Power Function"

Open "Power Function" on code expert

Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)
Hint: This task is a generalization of the task "Multiply with 29" from the
first week

24

Exercise "Power Function"

Open "Power Function" on code expert
Think about how you would approach the problem with pen and paper

Implement a (recursive) solution (optionally in groups)
Hint: This task is a generalization of the task "Multiply with 29" from the
first week

24

Exercise "Power Function"

Open "Power Function" on code expert
Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)
Hint: This task is a generalization of the task "Multiply with 29" from the
first week

24

"Power Function" — Solution

// POST: result == x^n
unsigned int power (const unsigned int x, const unsigned int n) {

if(n == 0) {
return 1;

} else if(n == 1) {
return x;

} else if(n % 2 == 0) { // case n = 2m for some m in N
int temp = power(x, n/2); // temp, to not call the function twice!
return temp * temp; // since x^n = x^(2m) = x^m * x^m

} else {
return x * power(x, n-1);

}
}

25

Questions?

26

The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It’s notoriously
difficult if one is not familiar with
recursion.

27

The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It’s notoriously
difficult if one is not familiar with
recursion.

27

Experiment: The Towers of Hanoi

left middle right

1

Experiment: The Towers of Hanoi

left middle right

1

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

Exercise Towers of Hanoi

Open "Towers of Hanoi" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

28

The Towers of Hanoi – Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")
6

The Towers of Hanoi – Code

move(n, src, aux, dst))
1 Move the top n � 1 discs from src to aux with auxiliary staple dst :

move(n � 1, src, dst, aux);

2 Move 1 disc from src to dst
move(1, src, aux, dst);

3 Move the top n � 1 discs from aux to dst with auxiliary staple src:
move(n � 1, aux, src, dst);

7

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);
move(n-1, aux, src, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (’move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n�1, src, dst, aux);
move(1, src, aux, dst);
move(n�1, aux, src, dst);

}
}
int main() {

move(4, " left " , "middle", "right");
return 0;

}
9

The Towers of Hanoi – Code Alternative
void move(int n, const string &src, const string &aux, const string &dst){

// base case
if (n == 0) return;

// recursive case
move(n�1, src, dst, aux);
std :: cout << src << " ��> " << dst << "\n";
move(n�1, aux, src, dst);

}

int main() {
move(4, " left " , "middle", "right");
return 0;

}
10

Questions?

29

4. Outro

30

General Questions?

31

See you next time

Have a nice week!

32

	Feedback regarding codeexpertcolorcodeexpertcolorcode expert
	(ASCII) Characters in C++ (char)
	Recursion
	Outro

