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1. Feedback regarding code expert
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General things regarding code expert

Avoid returning vectors in the functions you are writing

std::vector<int> read_vector(){
std::vector<int> v;
//Reading the vector

}
int main(){

std::vector<int> v = read_vector();
}

The vector is returned by value, which means it’s copied when returned
to main
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General things regarding code expert

Pass the vector by reference in the function instead

void read_vector(std::vector<int>& v){
//Reading the vector elements directly in v

}
int main(){

std::vector<int> v;
read_vector();

}
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Exercise 7: Task 1: Const and reference types

You are allowed to return a const reference to a non-const variable in
C++

const int& foo(int& i) {
return ++i;

}

But you cannot change the value of i through the pointer that is
returned by the function due to constness
For example, writing something like: foo(i) = 8; or foo(i)++ will
produce a runtime error because you should not atttempt to change
constant variables
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Important changes regarding feedback

Due to high workload, from today onwards you will only receive
feedback on request (unless I see something fundamentally wrong)
This "request" can look like this and should be placed at the very top of
the code:

// FEEDBACK PLEASE
// - especially regarding lines 12, 13 and 42
// QUESTIONS
// - [re: line 42] I was wondering if [...]

TA points are still being provided
If the XP has to be set to 0 somewhere, I will mention in the feedback
why
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Any questions regarding code expert on your part?
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2. Structs
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Example for Structs

struct strange {
int n;
bool b;
std::vector<int> a = std::vector<int>(0);

};

int main () {
strange x = {1, true, {1,2,3}};
strange y = x; // all elements are copied
std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3
return 0;

}
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Exercise "Geometry Exercise"

Open "Geometry Exercise" on code expert

Think about how you would approach the problem with pen and paper
Group Programming time!
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3. Recursion

11



3. Recursion

3.1. Exercise "Power Set"
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Exercise "Power Set"

Recap
A power set is the set of all subsets

P(S) := {X | X ⊆ S}

Example:
Given the set A = {a, b, c}
Its power set is P(A) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
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Primer on set.h

set is a self-made type! (a class)
How does it work? See for yourself in set.h!

template <typename T>
class Set {

public:
Set(const Set& other);
// Creates an empty set
Set();
// Creates a new set from a set of elements
Set(const std::set<T>& elements);
// Creates a new set from a single element
Set(T element);
// ...

};
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Exercise Power Set

Open "Power Set" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)
You can find the functionalities of the type set in the main.cpp file
Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?
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Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}

// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
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Solution to "Power Set" (Base case)

SetOfCharSets power_set(const CharSet& set) {
// base case: empty set
if (set.size() == 0) {

return SetOfCharSets(CharSet());
}
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Solution to "Power Set"

// set has at least 1 element -> split set into two sets.
CharSet first_element_subset = CharSet(set.at(0));
CharSet remaining_subset = set - first_element_subset;

// get power set for remaining subset
SetOfCharSets remaining_subset_power_set = power_set(remaining_subset);

// init result with power set of remaining subset
SetOfCharSets result = remaining_subset_power_set;

// add first element to every set in the powerset
for (unsigned int i = 0; i < remaining_subset_power_set.size(); ++i) {

result.insert(first_element_subset + remaining_subset_power_set.at(i));
}

return result;
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Questions?
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3. Recursion

3.2. Exercise "The Towers of Hanoi"
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The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It’s notoriously
difficult if one is not familiar with
recursion.
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Experiment: The Towers of Hanoi

left middle right
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Die Türme von Hanoi - So gehts!

left middle right
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The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...... then it becomes simple!

... and hop!
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We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...
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Exercise Towers of Hanoi

Open "Towers of Hanoi" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)
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The Towers of Hanoi – Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")
6



The Towers of Hanoi – Code

move(n, src, aux, dst) )
1 Move the top n � 1 discs from src to aux with auxiliary staple dst :

move(n � 1, src, dst, aux);

2 Move 1 disc from src to dst
move(1, src, aux, dst);

3 Move the top n � 1 discs from aux to dst with auxiliary staple src:
move(n � 1, aux, src, dst);
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The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case

}
}
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The Towers of Hanoi – Code Alternative
void move(int n, const string &src, const string &aux, const string &dst){

// base case
if (n == 0) return;

// recursive case
move(n�1, src, dst, aux);
std :: cout << src << " ��> " << dst << "\n";
move(n�1, aux, src, dst);

}

int main() {
move(4, " left " , "middle", "right" );
return 0;

}
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Questions?
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4. Outro
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General Questions?
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See you next time

Have a nice week!
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