T o — |
= /’ “—————'
/

/i T\

cO
o
|
Q
o
C
.
o
Vp)
—
Q
+—
-
o
=
@)
o

i

_ﬂ

r
| m_m_

Exercise Session —

Recursion, Structs

Overview

Today's Plan

Structs
Recursion
Exercise "Power Set"
Exercise "The Towers of Hanoi"

n.ethz.ch/~iopopa

Link to Webpage
Send an e-Mail

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch

1. Feedback regarding code expert

General things regarding

m Avoid returning vectors in the functions you are writing

std::vector<int> read_vector(){
std: :vector<int> v;
//Reading the vector
}
int main(){
std: :vector<int> v = read_vector();

3

m The vector is returned by value, which means it's copied when returned
to main

General things regarding

m Pass the vector by reference in the function instead

void read_vector(std::vector<int>& v){
//Reading the vector elements directly in v
¥
int main(){
std: :vector<int> v;
read_vector();

}

Exercise 7: Task 1: Const and reference types

m You are allowed to return a const reference to a non-const variable in
C++

const int& foo(int& i) {
return ++i;

}

Exercise 7: Task 1: Const and reference types

m You are allowed to return a const reference to a non-const variable in
C++

const int& foo(int& i) {
return ++i;

}

m But you cannot change the value of i through the pointer that is
returned by the function due to constness

m For example, writing something like: foo(i) = 8; or foo(i)++ will
produce a runtime error because you should not atttempt to change
constant variables

Important changes regarding feedback

m Due to high workload, from today onwards you will only receive
feedback on request (unless | see something fundamentally wrong)

m This "request" can look like this and should be placed at the very top of
the code:

// FEEDBACK PLEASE

// - especially regarding lines 12, 13 and 42
// QUESTIONS

// - [re: line 42] I was wondering if [...]

m TA points are still being provided

m If the XP has to be set to 0 somewhere, | will mention in the feedback
why

Any questions regarding on your part?

2. Structs

Example for Structs

Example for Structs

struct strange {
int n;
bool b;
std::vector<int> a = std::vector<int>(0);

};

int main () {
strange x = {1, true, {1,2,3}};

strange y = x; // all elements are copied
std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3
return O;

Exercise "Geometry Exercise"

m Open "Geometry Exercise" on code expert

Exercise "Geometry Exercise"

m Open "Geometry Exercise" on code expert
m Think about how you would approach the problem with pen and paper

Exercise "Geometry Exercise"

m Open "Geometry Exercise" on code expert
m Think about how you would approach the problem with pen and paper
m Group Programming time!

3. Recursion

3. Recursion

3.1. Exercise "Power Set"

Exercise "Power Set"

Recap
m A power set is the set of all subsets

Exercise "Power Set"

Recap
m A power set is the set of all subsets

P(S) == {X | X C S}

Exercise "Power Set"

Recap
m A power set is the set of all subsets

P(S) == {X | X C S}

m Example:
m Given the set A = {a,b, ¢}

Exercise "Power Set"

Recap
m A power set is the set of all subsets

PS)={X|X CS}

m Example:
m Given the set A = {a,b, ¢}
m Its power setis P(A) = {{}, {a}, {b},{c}, {a,b},{a,c},{b,c},{a,b,c}}

Primer on set.h

B set is a self-made type! (a class)
m How does it work? See for yourself in set.h!

template <typename T>
class Set {
public:
Set(const Set& other);
// Creates an empty set
Set();
// Creates a new set from a set of elements
Set(const std::set<T>& elements);
// Creates a new set from a single element
Set (T element);
// ...

Exercise Power Set

m Open "Power Set" on code expert

Exercise Power Set

m Open "Power Set" on code expert
m Think about how you would approach the problem with pen and paper

Exercise Power Set

m Open "Power Set" on code expert
m Think about how you would approach the problem with pen and paper
m Implement a solution (optionally in groups)

Exercise Power Set

m Open "Power Set" on code expert

m Think about how you would approach the problem with pen and paper
m Implement a solution (optionally in groups)

m You can find the functionalities of the type set in the main. cpp file

m Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}

// set has at least 1 element -> split set into two sets

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}

// set has at least 1 element -> split set into two sets

{a}, {bc.d}

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}
// set has at least 1 element -> split set into two sets

{a}, {bc.d}

// get power set for remaining subset'

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}
// set has at least 1 element -> split set into two sets

{a}, {bc.d}

// get power set for remaining subset'

P({b,c,d}) = {{}, {0}, {c}, {d}, {b ¢}, .. }

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}
// set has at least 1 element -> split set into two sets

{a}, {bc.d}

// get power set for remaining subset'

P({b,c,d}) = {{}, {0}, {c}, {d}, {b ¢}, .. }

// init result with power set of remaining subset

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}
// set has at least 1 element -> split set into two sets

{a}, {bc.d}

// get power set for remaining subset'

P({b,c,d}) = {{}, {0}, {c}, {d}, {b ¢}, .. }

// init result with power set of remaining subset

result « {{},{b}, {c}, {d}, {b,c},...}

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}

// set has at least 1 element -> split set into two sets

{a}, {bc.d}

// get power set for remaining subset'

P({b,c,d}) = {{}, {0}, {c}, {d}, {b ¢}, .. }

// init result with power set of remaining subset

result « {{},{b}, {c}, {d}, {b,c},...}

// add first element to every set in the powerset

"Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)

Given: {a,b,c,d}
// set has at least 1 element -> split set into two sets
{a}, {b,c,d}

// get power set for remaining subset'
P({b,c,d}) = {{}, {0}, {c}, {d}, {b,c}, ...}
// init result with power set of remaining subset

result « {{},{b}, {c}, {d}, {b,c},...}

// add first element to every set in the powerset

{ {}, {0}, {c}. {d}, {b,c},..., }
{a},{a,b},{a,c},{a,d},{a,b,c},. ..,

"Here is where the Recursive Leap of Faith kicks in

16

Solution to "Power Set" (Base case)

Solution to "Power Set" (Base case)

Set0fCharSets power_set(const CharSet& set) {
// base case: empty set
if (set.size() == 0) {
return SetOfCharSets(CharSet());
}

Solution to "Power Set"

// set has at least 1 element -> split set into two sets.
CharSet first_element_subset = CharSet(set.at(0));
CharSet remaining_subset = set - first_element_subset;

// get power set for remaining subset
Set0fCharSets remaining_subset_power_set = power_set(remaining subset);

// init result with power set of remaining subset
SetO0OfCharSets result = remaining subset_power_set;

// add first element to every set in the powerset
for (unsigned int i = 0; i < remaining_subset_power_set.size(); ++i) {
result.insert(first_element_subset + remaining_subset_power_set.at(i));

}

return result;

Questions?

3. Recursion

3.2. Exercise "The Towers of Hanoi"

20

The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It's notoriously
difficult if one is not familiar with
recursion.

21

The Towers of Hanoi

Struggling with this exercise is a bit Everyone: it's a game for kids
of a rite of passage for newbie
programmers. It's notoriously
difficult if one is not familiar with
recursion.

21

Experiment: The Towers of Hanoi

left middle right

Experiment: The Towers of Hanoi

L

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle right

Die Tiirme von Hanoi - So gehts!

left middle

The Towers of Hanoi — Recursive Approach

left middle right

The Towers of Hanoi — Recursive Approach

- assume we knew how
to ...

left middle right

The Towers of Hanoi — Recursive Approach

... transfer three discs ...

left middle right

The Towers of Hanoi — Recursive Approach

... then it becomes simple!

left middle right

The Towers of Hanoi — Recursive Approach

....and hop! -

left middle right

The Towers of Hanoi — Recursive Approach

left middle right

The Towers of Hanoi — Recursive Approach

- but how can we move three
discs?

left middle right

The Towers of Hanoi — Recursive Approach

assume we knew how
to ...

left middle right

The Towers of Hanoi — Recursive Approach

... transfer two discs from one
pile to another ...

- @

left middle right

The Towers of Hanoi — Recursive Approach

- o

left middle right

The Towers of Hanoi — Recursive Approach

... then it is very simple!

left middle right

The Towers of Hanoi — Recursive Approach

but how can we transfer
two discs?

left middle right

The Towers of Hanoi — Recursive Approach

SVe already know, how to ...

left middle right

The Towers of Hanoi — Recursive Approach

.. move one disc from one pile
to the other!

left middle right

The Towers of Hanoi — Recursive Approach

left middle right

The Towers of Hanoi — Recursive Approach

All is simple! The rest con-
tinues in the same way...

left middle right

Exercise Towers of Hanoi

m Open "Towers of Hanoi" on code expert
m Think about how you would approach the problem with pen and paper
m Implement a solution (optionally in groups)

22

The Towers of Hanoi — Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")

The Towers of Hanoi — Code

move(n, src, auxr, dst) =
Move the top n — 1 discs from src to aux with auxiliary staple dst:
move(n — 1, src, dst, auzx);

Move 1 disc from src to dst
move (1, src, aux, dst);

Move the top n — 1 discs from auz to dst with auxiliary staple src:
move(n — 1, auzx, src, dst);

The Towers of Hanoi — Code

void move(int n, const string &src, const string &aux, const string &dst){

if (m==1){

// base case (‘move’ the disc)

std ::cout << src << " ——> " << dst << std::endl;
} else {

// recursive case

The Towers of Hanoi — Code

void move(int n, const string &src, const string &aux, const string &dst){

if (m==1){

// base case (‘move’ the disc)

std ::cout << src << " ——> " << dst << std::endl;
} else {

// recursive case
move(n-1, src, dst, aux);

The Towers of Hanoi — Code

void move(int n, const string &src, const string &aux, const string &dst){

if (m==1){

// base case (‘move’ the disc)

std ::cout << src << " ——> " << dst << std::endl;
} else {

// recursive case
move(n-1, src, dst, aux);
move(l, src, aux, dst);

The Towers of Hanoi — Code

void move(int n, const string &src, const string &aux, const string &dst){

if (mn==1){

// base case (‘move’ the disc)

std ::cout << src << " ——> " << dst << std::endl;
} else {

// recursive case
move(n-1, src, dst, aux);
move(l, src, aux, dst);
move(n-1, aux, src, dst);

The Towers of Hanoi — Code

void move(int n, const string &src, const string &aux, const string &dst){

if (n==1){

// base case (’move’ the disc)

std::cout << src << " ——> " << dst << std::endl;
} else {

// recursive case
move(n—1, src, dst, aux);
move(l, src, aux, dst);
move(n—1, aux, src, dst);
}
}
int main() {
move(4, "left", "middle", "right");
return O;

The Towers of Hanoi — Code Alternative

void move(int n, const string &src, const string &aux, const string &dst){
// base case
if (n == 0) return;

// recursive case

move(n—1, src, dst, aux);

std::cout << src << " ——> " << dst << "\n";
move(n—1, aux, src, dst);

int main() {
move(4, "left", "middle", "right");
return O;

Questions?

23

4, Outro

General Questions?

25

See you next time

Have a nice week!

26

	Feedback regarding codeexpertcolorcodeexpertcolorcode expert
	Structs
	Recursion
	Exercise "Power Set"
	Exercise "The Towers of Hanoi"

	Outro

