
Exercise Session — Computer Science — 08
Recursion, Structs

Overview

Today’s Plan

Structs
Recursion

Exercise "Power Set"
Exercise "The Towers of Hanoi" n.ethz.ch/~iopopa

 Link to Webpage

 Send an e-Mail

1

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch

1. Feedback regarding code expert

2

General things regarding code expert

Avoid returning vectors in the functions you are writing

std::vector<int> read_vector(){
std::vector<int> v;
//Reading the vector

}
int main(){

std::vector<int> v = read_vector();
}

The vector is returned by value, which means it’s copied when returned
to main

3

General things regarding code expert

Pass the vector by reference in the function instead

void read_vector(std::vector<int>& v){
//Reading the vector elements directly in v

}
int main(){

std::vector<int> v;
read_vector();

}

4

Exercise 7: Task 1: Const and reference types

You are allowed to return a const reference to a non-const variable in
C++

const int& foo(int& i) {
return ++i;

}

But you cannot change the value of i through the pointer that is
returned by the function due to constness
For example, writing something like: foo(i) = 8; or foo(i)++ will
produce a runtime error because you should not atttempt to change
constant variables

5

Exercise 7: Task 1: Const and reference types

You are allowed to return a const reference to a non-const variable in
C++

const int& foo(int& i) {
return ++i;

}

But you cannot change the value of i through the pointer that is
returned by the function due to constness
For example, writing something like: foo(i) = 8; or foo(i)++ will
produce a runtime error because you should not atttempt to change
constant variables

5

Important changes regarding feedback

Due to high workload, from today onwards you will only receive
feedback on request (unless I see something fundamentally wrong)
This "request" can look like this and should be placed at the very top of
the code:

// FEEDBACK PLEASE
// - especially regarding lines 12, 13 and 42
// QUESTIONS
// - [re: line 42] I was wondering if [...]

TA points are still being provided
If the XP has to be set to 0 somewhere, I will mention in the feedback
why

6

Any questions regarding code expert on your part?

7

2. Structs

8

Example for Structs

struct strange {
int n;
bool b;
std::vector<int> a = std::vector<int>(0);

};

int main () {
strange x = {1, true, {1,2,3}};
strange y = x; // all elements are copied
std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3
return 0;

}

9

Example for Structs

struct strange {
int n;
bool b;
std::vector<int> a = std::vector<int>(0);

};

int main () {
strange x = {1, true, {1,2,3}};
strange y = x; // all elements are copied
std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3
return 0;

}

9

Exercise "Geometry Exercise"

Open "Geometry Exercise" on code expert

Think about how you would approach the problem with pen and paper
Group Programming time!

10

Exercise "Geometry Exercise"

Open "Geometry Exercise" on code expert
Think about how you would approach the problem with pen and paper

Group Programming time!

10

Exercise "Geometry Exercise"

Open "Geometry Exercise" on code expert
Think about how you would approach the problem with pen and paper
Group Programming time!

10

3. Recursion

11

3. Recursion

3.1. Exercise "Power Set"

12

Exercise "Power Set"

Recap
A power set is the set of all subsets

P(S) := {X | X ⊆ S}

Example:
Given the set A = {a, b, c}
Its power set is P(A) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

13

Exercise "Power Set"

Recap
A power set is the set of all subsets

P(S) := {X | X ⊆ S}

Example:
Given the set A = {a, b, c}
Its power set is P(A) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

13

Exercise "Power Set"

Recap
A power set is the set of all subsets

P(S) := {X | X ⊆ S}

Example:
Given the set A = {a, b, c}

Its power set is P(A) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

13

Exercise "Power Set"

Recap
A power set is the set of all subsets

P(S) := {X | X ⊆ S}

Example:
Given the set A = {a, b, c}
Its power set is P(A) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

13

Primer on set.h

set is a self-made type! (a class)
How does it work? See for yourself in set.h!

template <typename T>
class Set {

public:
Set(const Set& other);
// Creates an empty set
Set();
// Creates a new set from a set of elements
Set(const std::set<T>& elements);
// Creates a new set from a single element
Set(T element);
// ...

};

14

Exercise Power Set

Open "Power Set" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)
You can find the functionalities of the type set in the main.cpp file
Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?

15

Exercise Power Set

Open "Power Set" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)
You can find the functionalities of the type set in the main.cpp file
Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?

15

Exercise Power Set

Open "Power Set" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

You can find the functionalities of the type set in the main.cpp file
Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?

15

Exercise Power Set

Open "Power Set" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)
You can find the functionalities of the type set in the main.cpp file
Possible key questions: For which (simple) cases do we always know
the solution? Is there a pattern that the power sets follow when
another element is added?

15

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}

// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}

// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }

// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }

// add first element to every set in the powerset{
{}, {b}, {c}, {d}, {b, c}, . . . ,

{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset

{
{}, {b}, {c}, {d}, {b, c}, . . . ,

{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}

1Here is where the Recursive Leap of Faith kicks in
16

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset1

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}
1Here is where the Recursive Leap of Faith kicks in

16

Solution to "Power Set" (Base case)

SetOfCharSets power_set(const CharSet& set) {
// base case: empty set
if (set.size() == 0) {

return SetOfCharSets(CharSet());
}

17

Solution to "Power Set" (Base case)

SetOfCharSets power_set(const CharSet& set) {
// base case: empty set
if (set.size() == 0) {

return SetOfCharSets(CharSet());
}

17

Solution to "Power Set"

// set has at least 1 element -> split set into two sets.
CharSet first_element_subset = CharSet(set.at(0));
CharSet remaining_subset = set - first_element_subset;

// get power set for remaining subset
SetOfCharSets remaining_subset_power_set = power_set(remaining_subset);

// init result with power set of remaining subset
SetOfCharSets result = remaining_subset_power_set;

// add first element to every set in the powerset
for (unsigned int i = 0; i < remaining_subset_power_set.size(); ++i) {

result.insert(first_element_subset + remaining_subset_power_set.at(i));
}

return result;
18

Questions?

19

3. Recursion

3.2. Exercise "The Towers of Hanoi"

20

The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It’s notoriously
difficult if one is not familiar with
recursion.

21

The Towers of Hanoi

Struggling with this exercise is a bit
of a rite of passage for newbie
programmers. It’s notoriously
difficult if one is not familiar with
recursion.

21

Experiment: The Towers of Hanoi

left middle right

1

Experiment: The Towers of Hanoi

left middle right

1

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

Exercise Towers of Hanoi

Open "Towers of Hanoi" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

22

The Towers of Hanoi – Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")
6

The Towers of Hanoi – Code

move(n, src, aux, dst))
1 Move the top n � 1 discs from src to aux with auxiliary staple dst :

move(n � 1, src, dst, aux);

2 Move 1 disc from src to dst
move(1, src, aux, dst);

3 Move the top n � 1 discs from aux to dst with auxiliary staple src:
move(n � 1, aux, src, dst);

7

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);
move(n-1, aux, src, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (’move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n�1, src, dst, aux);
move(1, src, aux, dst);
move(n�1, aux, src, dst);

}
}
int main() {

move(4, " left " , "middle", "right");
return 0;

}
9

The Towers of Hanoi – Code Alternative
void move(int n, const string &src, const string &aux, const string &dst){

// base case
if (n == 0) return;

// recursive case
move(n�1, src, dst, aux);
std :: cout << src << " ��> " << dst << "\n";
move(n�1, aux, src, dst);

}

int main() {
move(4, " left " , "middle", "right");
return 0;

}
10

Questions?

23

4. Outro

24

General Questions?

25

See you next time

Have a nice week!

26

	Feedback regarding codeexpertcolorcodeexpertcolorcode expert
	Structs
	Recursion
	Exercise "Power Set"
	Exercise "The Towers of Hanoi"

	Outro

