
Exercise Session — Computer Science — 09
Structs, Classes, Operator overloading, Iterators



Overview

Today’s Plan

Follow-up
Classes and Operator Overloading
Exercise "Tribool"
Iterators
Exercise "Find Max"
Recursion

n.ethz.ch/~iopopa

� Link to Webpage

� Send an e-Mail

1

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch


1. Follow-up

2



Follow-up from last session

I hope you managed to finish the Power Set exercise on your own.
For those who liked recursion, check out the "Towers of Hanoi" exercise
from last week’s slides.
Don’t be scared of the "Towers of Hanoi", since most probably nothing
as hard will come up in the exam.

3



2. Feedback regarding code expert

4



General things regarding code expert

Nothing from my side this week :)

5



Any questions regarding code expert on your part?

6



3. Classes and Operator Overloading

7



Differentiating between functions

It is possible for two functions to have the same name, as long as the
compiler has another way to differentiate between them. The only possible
criteria for distinguishing functions are:

Names of the functions
Numbers of function arguments
Types of function arguments

8



Differentiating between functions

It is possible for two functions to have the same name, as long as the
compiler has another way to differentiate between them. The only possible
criteria for distinguishing functions are:

Names of the functions
Numbers of function arguments
Types of function arguments

8



Differentiating between functions

It is possible for two functions to have the same name, as long as the
compiler has another way to differentiate between them. The only possible
criteria for distinguishing functions are:

Names of the functions
Numbers of function arguments
Types of function arguments

8



Putting the Fun in Function I

Will this produce a compiler error?

int fun1(const int a){
// ...

}

int fun1(const int a, const int b){
// ...

}

Answer: No, because the two functions have a different numbers of
arguments (1 vs 2)

9



Putting the Fun in Function I

Will this produce a compiler error?

int fun1(const int a){
// ...

}

int fun1(const int a, const int b){
// ...

}

Answer: No, because

the two functions have a different numbers of
arguments (1 vs 2)

9



Putting the Fun in Function I

Will this produce a compiler error?

int fun1(const int a){
// ...

}

int fun1(const int a, const int b){
// ...

}

Answer: No, because the two functions have a different numbers of
arguments (1 vs 2)

9



Putting the Fun in Function II

Will this produce a compiler error?

int fun2(const int a){
// ...

}

int fun2(const float a){
// ...

}

Answer: No, because the two functions have a different parameter types
(int vs float)

10



Putting the Fun in Function II

Will this produce a compiler error?

int fun2(const int a){
// ...

}

int fun2(const float a){
// ...

}

Answer: No, because

the two functions have a different parameter types
(int vs float)

10



Putting the Fun in Function II

Will this produce a compiler error?

int fun2(const int a){
// ...

}

int fun2(const float a){
// ...

}

Answer: No, because the two functions have a different parameter types
(int vs float)

10



Putting the Fun in Function III

Will this produce a compiler error?

int fun3(const int a){
// ...

}

int fun3(const int b){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The names of the function parameters are irrelevant to the
compiler!

11



Putting the Fun in Function III

Will this produce a compiler error?

int fun3(const int a){
// ...

}

int fun3(const int b){
// ...

}

Answer: Yes, because

the two functions don’t have different numbers or
types of arguments

Notice: The names of the function parameters are irrelevant to the
compiler!

11



Putting the Fun in Function III

Will this produce a compiler error?

int fun3(const int a){
// ...

}

int fun3(const int b){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The names of the function parameters are irrelevant to the
compiler!

11



Putting the Fun in Function III

Will this produce a compiler error?

int fun3(const int a){
// ...

}

int fun3(const int b){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The names of the function parameters are irrelevant to the
compiler!

11



Putting the Fun in Function IV

Will this produce a compiler error?

int fun4(const int a){
// ...

}

double fun4(const int a){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The return types of the functions are irrelevant to the compiler!

12



Putting the Fun in Function IV

Will this produce a compiler error?

int fun4(const int a){
// ...

}

double fun4(const int a){
// ...

}

Answer: Yes, because

the two functions don’t have different numbers or
types of arguments

Notice: The return types of the functions are irrelevant to the compiler!

12



Putting the Fun in Function IV

Will this produce a compiler error?

int fun4(const int a){
// ...

}

double fun4(const int a){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The return types of the functions are irrelevant to the compiler!

12



Putting the Fun in Function IV

Will this produce a compiler error?

int fun4(const int a){
// ...

}

double fun4(const int a){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The return types of the functions are irrelevant to the compiler!
12



Putting the Fun in Function V

Will this produce a compiler error?

int fun5(const int a){
// ...

}

int fun6(const int a){
// ...

}

Answer: No, because the two functions carry different names

13



Putting the Fun in Function V

Will this produce a compiler error?

int fun5(const int a){
// ...

}

int fun6(const int a){
// ...

}

Answer: No, because

the two functions carry different names

13



Putting the Fun in Function V

Will this produce a compiler error?

int fun5(const int a){
// ...

}

int fun6(const int a){
// ...

}

Answer: No, because the two functions carry different names

13



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?

3.5 (double)
2 (int)
2 (double)
0 (int)
0 (double)

14



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)

2 (int)
2 (double)
0 (int)
0 (double)

14



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)
2 (int)

2 (double)
0 (int)
0 (double)

14



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)
2 (int)
2 (double)

0 (int)
0 (double)

14



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)
2 (int)
2 (double)
0 (int)

0 (double)

14



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)
2 (int)
2 (double)
0 (int)
0 (double)

14



Questions?

15



4. Exercise "Tribool"

16



Tribool as a Logic Object

How could we implement this in C++?
What operations and values do we need?

17



Tribool as a Logic Object

How could we implement this in C++?
What operations and values do we need?

17



Exercise "Tribool"

class Tribool {
private:

// 0 means false, 1 means unknown, 2 means true.
unsigned int value; // INV: value in {0, 1, 2}.

public:
// ...

};

18



Exercise "Tribool"

class Tribool {
private:

// ...
public:

// Constructor 1 (passing a numerical value)
// PRE: value in {0, 1, 2}.
// POST: tribool false if value was 0, unknown if 1, and true if 2.
Tribool(unsigned int value_int);
// TODO: add the definition in tribool.cpp

// Constructor 2 (passing a string value)
// PRE: value in {"true", "false", "unknown"}.
// POST: tribool false, true or unknown according to the input.
// TODO: add declaration here and the definition in tribool.cpp
// ...

};
19



Exercise "Tribool"

class Tribool {
private:

// ...
public:

// ...
// Member function string()
// POST: Return the value as string
// TODO: add declaration here and the definition in tribool.cpp

// Operator && overloading
// POST: returns this AND other
// TODO: add declaration here and the definition in tribool.cpp

};

20



Exercise "Tribool"

Where do we even start?
1. First (int) Constructor
2. Second (std::string) Constructor
3. Implement string() method
4. Implement logical AND as an operator

Where to put all this?
Declarations into Tribool.h
Definitions into Tribool.cpp

Using Out-of-Class definitions using the Scope Resolution Operator (::)

21



Exercise "Tribool"

Where do we even start?
1. First (int) Constructor
2. Second (std::string) Constructor
3. Implement string() method
4. Implement logical AND as an operator

Where to put all this?
Declarations into Tribool.h
Definitions into Tribool.cpp

Using Out-of-Class definitions using the Scope Resolution Operator (::)

21



Let’s Code (together)!

Open "Tribool" on code expert

We’re doing a live coding session

22



Let’s Code (together)!

Open "Tribool" on code expert
We’re doing a live coding session

22



Exercise "Tribool" Concepts

We encountered the following concepts and keywords while solving this
task:

Classes and Structs
Visibility
Operator Overloading
Declaration vs Definition
Out-of-Class-Definitions
const Functions
Constructors ("C-tors")
Member Initializer Lists
. . .

23



Exercise "Tribool" Concepts

We encountered the following concepts and keywords while solving this
task:

Classes and Structs
Visibility
Operator Overloading
Declaration vs Definition
Out-of-Class-Definitions
const Functions
Constructors ("C-tors")
Member Initializer Lists
. . .

23



Questions?

24



5. Iterators

25



What even are Iterators?

Iterators are used iterate (or move) through elements in a Container

What are Containers then?
Containers are objects that are used to store collections of elements
Some common C++ containers include
▶ std::vector
▶ std::set
▶ std::list

A complete list of the containers of the C++-standard library can be found
here,1 but most are not of relevance for us now

1https://en.cppreference.com/w/cpp/container
26

https://en.cppreference.com/w/cpp/container


What even are Iterators?

Iterators are used iterate (or move) through elements in a Container
What are Containers then?

Containers are objects that are used to store collections of elements
Some common C++ containers include

▶ std::vector
▶ std::set
▶ std::list

A complete list of the containers of the C++-standard library can be found
here,1 but most are not of relevance for us now

1https://en.cppreference.com/w/cpp/container
26

https://en.cppreference.com/w/cpp/container


What even are Iterators?

Iterators are used iterate (or move) through elements in a Container
What are Containers then?

Containers are objects that are used to store collections of elements
Some common C++ containers include
▶ std::vector
▶ std::set
▶ std::list

A complete list of the containers of the C++-standard library can be found
here,1 but most are not of relevance for us now

1https://en.cppreference.com/w/cpp/container
26

https://en.cppreference.com/w/cpp/container


What even are Iterators?

Iterators are used iterate (or move) through elements in a Container
What are Containers then?

Containers are objects that are used to store collections of elements
Some common C++ containers include
▶ std::vector
▶ std::set
▶ std::list

A complete list of the containers of the C++-standard library can be found
here,1 but most are not of relevance for us now

1https://en.cppreference.com/w/cpp/container
26

https://en.cppreference.com/w/cpp/container


Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()
Iterator pointing to first element
auto it = C.end()
Iterator pointing to first element past the end3

*it
Access (and maybe modify) current element
++it
Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()

Iterator pointing to first element
auto it = C.end()
Iterator pointing to first element past the end3

*it
Access (and maybe modify) current element
++it
Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()
Iterator pointing to first element
auto it = C.end()

Iterator pointing to first element past the end3

*it
Access (and maybe modify) current element
++it
Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()
Iterator pointing to first element
auto it = C.end()
Iterator pointing to first element past the end3

*it

Access (and maybe modify) current element
++it
Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()
Iterator pointing to first element
auto it = C.end()
Iterator pointing to first element past the end3

*it
Access (and maybe modify) current element
++it

Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

auto2 it = C.begin()
Iterator pointing to first element
auto it = C.end()
Iterator pointing to first element past the end3

*it
Access (and maybe modify) current element
++it
Advance iterator by one element

2Very useful for unwieldy return types
3PTE: Past-the-End

27



6. Exercise "Find Max"

28



Exercise "Find Max"

// PRE: i < j <= v.size()
// POST: Returns the greatest element of all elements
// with indices between i and j (excluding j)
int find_max(const std::vector<int>& v, int i, int j) {

int max_value = 0;

for (; i < j; ++i) {
if (max_value < v[i]) {

max_value = v[i];
}

}

return max_value;
}

29



Exercise "Find Max"

// PRE: i < j <= v.size()
// POST: Returns the greatest element of all elements
// with indices between i and j (excluding j)
int find_max(const std::vector<int>& v, int i, int j) {

int max_value = 0;

for (; i < j; ++i) {
if (max_value < v[i]) {

max_value = v[i];
}

}

return max_value;
}

29



Exercise "Find Max"

Open "Find Max" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

30



Exercise "Find Max"

Open "Find Max" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

30



Exercise "Find Max"

Open "Find Max" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

30



Exercise "Find Max"

Open "Find Max" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

30



Exercise "Find Max" (Solution)

// PRE: (begin < end) && (begin and end must be valid iterators)
// POST: Return the greatest element in the range [begin, end)
int find_max(std::vector<int>::iterator begin,

std::vector<int>::iterator end) {
int max_value = 0;

for(; begin != end; ++begin) {
if (max_value < *begin) {

max_value = *begin;
}

}

return max_value;
}

31



Exercise "Find Max" (Solution)

// PRE: (begin < end) && (begin and end must be valid iterators)
// POST: Return the greatest element in the range [begin, end)
int find_max(std::vector<int>::iterator begin,

std::vector<int>::iterator end) {
int max_value = 0;

for(; begin != end; ++begin) {
if (max_value < *begin) {

max_value = *begin;
}

}

return max_value;
}

31



Questions?

32



The algorithm Library

Surely somebody smarter already implemented all the common
algorithms for us, right?

Yes! The algorithm library
These functions are designed to work with various containers like
vectors, arrays, lists, etc., and help in performing tasks efficiently
without the need to write the algorithms from scratch each time
Don’t forget to #include <algorithm>

33



The algorithm Library

Surely somebody smarter already implemented all the common
algorithms for us, right?
Yes! The algorithm library

These functions are designed to work with various containers like
vectors, arrays, lists, etc., and help in performing tasks efficiently
without the need to write the algorithms from scratch each time
Don’t forget to #include <algorithm>

33



The algorithm Library

Surely somebody smarter already implemented all the common
algorithms for us, right?
Yes! The algorithm library
These functions are designed to work with various containers like
vectors, arrays, lists, etc., and help in performing tasks efficiently
without the need to write the algorithms from scratch each time

Don’t forget to #include <algorithm>

33



The algorithm Library

Surely somebody smarter already implemented all the common
algorithms for us, right?
Yes! The algorithm library
These functions are designed to work with various containers like
vectors, arrays, lists, etc., and help in performing tasks efficiently
without the need to write the algorithms from scratch each time
Don’t forget to #include <algorithm>

33



Exercise "The algorithm Library"

Open "The algorithm Library" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

34



Exercise "The algorithm Library"

Open "The algorithm Library" on code expert

Think about how you would approach the problem
Implement a solution (optionally in groups)

34



Exercise "The algorithm Library"

Open "The algorithm Library" on code expert
Think about how you would approach the problem

Implement a solution (optionally in groups)

34



Exercise "The algorithm Library"

Open "The algorithm Library" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

34



Exercise "The algorithm Library" (Solution)

// ...

int largest_element = *std::max_element(vec.begin(), vec.end());

// ...

std::sort(vec.begin(), vec.end());

// ...

35



Exercise "The algorithm Library" (Solution)

// ...

int largest_element = *std::max_element(vec.begin(), vec.end());

// ...

std::sort(vec.begin(), vec.end());

// ...

35



Questions?

36



7. Recursion

37



Exercise "Recursion to Iteration 1"

Open "Recursion to Iteration 1" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

38



Exercise "Recursion to Iteration 1"

Open "Recursion to Iteration 1" on code expert

Think about how you would approach the problem
Implement a solution (optionally in groups)

38



Exercise "Recursion to Iteration 1"

Open "Recursion to Iteration 1" on code expert
Think about how you would approach the problem

Implement a solution (optionally in groups)

38



Exercise "Recursion to Iteration 1"

Open "Recursion to Iteration 1" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

38



Exercise "Recursion to Iteration 1" (Solution)

// PRE: n >= 0
int f_it(const int n) {

if (n <= 2) {
return 1;

}
int a = 1; // f(0)
int b = 1; // f(1)
int c = 1; // f(2)
for (int i = 3; i < n; ++i) {

const int a_prev = a; // f(i-3)
a = b; // f(i-2)
b = c; // f(i-1)
c = b + 2 * a_prev; // f(i)

}
return c + 2 * a; // f(n-1) + 2 * f(n-3)

}

39



Exercise "Recursion to Iteration 1" (Solution)

// PRE: n >= 0
int f_it(const int n) {

if (n <= 2) {
return 1;

}
int a = 1; // f(0)
int b = 1; // f(1)
int c = 1; // f(2)
for (int i = 3; i < n; ++i) {

const int a_prev = a; // f(i-3)
a = b; // f(i-2)
b = c; // f(i-1)
c = b + 2 * a_prev; // f(i)

}
return c + 2 * a; // f(n-1) + 2 * f(n-3)

}
39



Exercise "Recursion to Iteration 2"

Open "Recursion to Iteration 2" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

40



Exercise "Recursion to Iteration 2"

Open "Recursion to Iteration 2" on code expert

Think about how you would approach the problem
Implement a solution (optionally in groups)

40



Exercise "Recursion to Iteration 2"

Open "Recursion to Iteration 2" on code expert
Think about how you would approach the problem

Implement a solution (optionally in groups)

40



Exercise "Recursion to Iteration 2"

Open "Recursion to Iteration 2" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

40



Exercise "Recursion to Iteration 2" (Solution)

// PRE: n >= 0
int f_it(const int n) {

if (n == 0) { // special case
return 1;

}

std::vector<int> f_values(n+1, 0);
f_values[0] = 1;

for (int i = 1; i <= n; ++i) {
f_values[i] = f_values[i-1] + 2 * f_values[i / 2];

}

return f_values[n];
}

41



Exercise "Recursion to Iteration 2" (Solution)

// PRE: n >= 0
int f_it(const int n) {

if (n == 0) { // special case
return 1;

}

std::vector<int> f_values(n+1, 0);
f_values[0] = 1;

for (int i = 1; i <= n; ++i) {
f_values[i] = f_values[i-1] + 2 * f_values[i / 2];

}

return f_values[n];
}

41



Questions?

42



8. Outro

43



General Questions?

44



See you next time

Have a nice week!

45


	Follow-up
	Feedback regarding codeexpertcolorcodeexpertcolorcode expert 
	Classes and Operator Overloading
	Exercise "Tribool"
	Iterators
	Exercise "Find Max"
	Recursion
	Outro

