
Exercise Session — Computer Science — 10
Pointer-related Operators, References vs. Pointers, Iterators, this->,
Dynamic Memory

Overview

Today’s Plan

Follow-up
& vs *
References vs Pointers
this->
Dynamic Data Structures & Itera-
tors

Our_list Main Material
Our_list Bonus Material

n.ethz.ch/~iopopa

 Link to Webpage

 Send an e-Mail

1

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch

1. Follow-up

2

Follow-up from last session
What happens in a class if you don’t explicitly define a default
constructor?

The compiler provides a default constructor - only if no constructors
are explicitly declared in the class

class MyClass {
public:

int x;
std::string str;

};

int main() {
MyClass obj; // Compiler-generated default constructor
std::cout << obj.x << " " << obj.str; //Prints 0 and ""

}

3

Follow-up from last session
What happens in a class if you don’t explicitly define a default
constructor?
The compiler provides a default constructor - only if no constructors
are explicitly declared in the class

class MyClass {
public:

int x;
std::string str;

};

int main() {
MyClass obj; // Compiler-generated default constructor
std::cout << obj.x << " " << obj.str; //Prints 0 and ""

}

3

Follow-up from last session
What happens in a class if you don’t explicitly define a default
constructor?
However, if any constructor is defined, the compiler does not generate
the default constructor for you:

class MyClass {
public:

MyClass(int val) : x(val) {} // Parameterized constructor
int x;

};
int main() {

MyClass obj; // Compiler Error!!
}

If you still need a default constructor, you must explicitly declare it:
MyClass() = default; 4

2. & vs *

5

The meanings of &

The symbol & has many meanings in C++ which can be very confusing
It has 3 different meanings depending on its position in code:

The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;
3. to get the address of a variable (address-operator)

int *ptr_a = &a;

6

The meanings of &

The symbol & has many meanings in C++ which can be very confusing
It has 3 different meanings depending on its position in code:

The meaning of &

1. as AND-operator
bool z = x && y;

2. to declare a variable as an alias
int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

6

The meanings of &

The symbol & has many meanings in C++ which can be very confusing
It has 3 different meanings depending on its position in code:

The meaning of &
1. as AND-operator

bool z = x && y;

2. to declare a variable as an alias
int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

6

The meanings of &

The symbol & has many meanings in C++ which can be very confusing
It has 3 different meanings depending on its position in code:

The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

6

The meanings of &

The symbol & has many meanings in C++ which can be very confusing
It has 3 different meanings depending on its position in code:

The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;
3. to get the address of a variable (address-operator)

int *ptr_a = &a;

6

The meanings of *

Ditto with the symbol &.

The meaning of *

1. as (arithmetic) multiplication-operator
z = x * y;

2. to declare a pointer variable
int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

7

The meanings of *

Ditto with the symbol &.

The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;

2. to declare a pointer variable
int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

7

The meanings of *

Ditto with the symbol &.

The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;
2. to declare a pointer variable

int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

7

The meanings of *

Ditto with the symbol &.

The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;
2. to declare a pointer variable

int* ptr_a = &a;
3. to access a variable via its pointer (dereference-operator)

int a = *ptr_a;

7

Questions?

8

3. References vs Pointers

9

Pointer Basics

Try program1 tracing this in detail

int main() {

int a = 5;
int* x = &a;
*x = 6;

return 0;
}

1Full trace available here

10

https://lec.inf.ethz.ch/ifmp/2024/guides/tracing/pointers.html

References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

2 2 2 2

11

References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

2 2 2 2

11

Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be differ-
ent each time when called!)

12

Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be differ-
ent each time when called!)

12

Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be differ-
ent each time when called!)

12

Pointers und Adressen

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

}

Trace program and write expected
output, if the function is called

5
5
0x7ffe4d1fb914
0x7ffe4d1fb914

(The addresses could be differ-
ent each time when called!)

13

Pointers und Adressen

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

}

Trace program and write expected
output, if the function is called

5
5
0x7ffe4d1fb914
0x7ffe4d1fb914

(The addresses could be differ-
ent each time when called!)

13

Questions?

14

4. this->

15

What the f*&k is this->?

The meaning of this->

this-> has two parts

this
is a pointer to the current object (class or struct T)
so it is of type T*

->
is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

16

What the f*&k is this->?

The meaning of this->

this-> has two parts
this

is a pointer to the current object (class or struct T)

so it is of type T*
->

is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

16

What the f*&k is this->?

The meaning of this->

this-> has two parts
this

is a pointer to the current object (class or struct T)
so it is of type T*

->
is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

16

What the f*&k is this->?

The meaning of this->

this-> has two parts
this

is a pointer to the current object (class or struct T)
so it is of type T*

->
is a cool looking operator

this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

16

What the f*&k is this->?

The meaning of this->

this-> has two parts
this

is a pointer to the current object (class or struct T)
so it is of type T*

->
is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

16

Example

What is this used here for?

struct WeirdNumber {

int number;

void increment_by(int number){
(*this).number = (*this).number + number;
// or
// this->number = this->number + number;

}
};

To distinguish between the two number variables with the same name

17

Example

What is this used here for?

struct WeirdNumber {

int number;

void increment_by(int number){
(*this).number = (*this).number + number;
// or
// this->number = this->number + number;

}
};

To distinguish between the two number variables with the same name

17

Example

int main(){

WeirdNumber a = {42}; // list initialization for structs
WeirdNumber b = {-17};

a.increment_by(3);
// ’this’ in the call of the increment_by function
// refers to the object a.
b.increment_by(2);
// ’this’ in the call of the increment_by function
// refers to the object b.

std::cout << a.number << " " << b.number << std::endl;

return 0;
}

18

5. Dynamic Data Structures & Iterators

19

5. Dynamic Data Structures & Iterators

5.1. Our_list Main Material

20

our_list

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always pointing
to the next
But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21

our_list

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always pointing
to the next

But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21

our_list

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always pointing
to the next
But what even is an lnode?

Answer: A struct made up of an int value and an lnode-pointer

21

our_list

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always pointing
to the next
But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21

our_list

First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);

Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list

How can we access the different elements?
Access to Value of the lnode that the iterator is pointing to:

*it
Next lnode in line:

node->next
Create a pointer to a new lnode:

new lnode{value, pointer}
Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list

First task: Implement a constructor that initializes a new list with iterators
We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the different elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22

our_list: class our_list

class our_list {

struct lnode {
// ...

};

lnode* head;

public:

class const_iterator {
// ...

};

// member functions
};

23

our_list: struct lnode

// in class our_list //
struct lnode {

int value;
lnode* next;

};

24

our_list: const_iterator

// in class our_list //
class const_iterator {

const lnode* node;
public:

const_iterator(const lnode* const n);
// PRE: Iterator doesn't point to the element beyond the last one
// POST: Iterator points to the next element
const_iterator& operator++(); // Pre-increment
// POST: Return the reference to the number at which the
// iterator is currently pointing
const int& operator*() const;
// True if iterators are pointing to different elements
bool operator!=(const const_iterator& other) const;
// True if iterators are pointing to the same element
bool operator==(const const_iterator& other) const;

};
25

our_list: member functions

// in class our_list //
our_list();

// PRE: begin and end are iterators pointing to the same vector
// and begin is before end
// POST: Constructed our_list contains all elements between begin and end
our_list(const_iterator begin, const_iterator end);

// POST: e is appended at the beginning of the vector
void push_front(int e);

// POST: Returns an iterator that points to the first element
const_iterator begin() const;

// POST: Returns an iterator that points after the last element
const_iterator end() const;

26

Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27

Exercise "our_list::init"

Open "our_list::init" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27

Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

27

Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27

Exercise "our_list::init" (Solution)

our_list::our_list(our_list::const_iterator begin,
our_list::const_iterator end) {

this->head = nullptr;
if (begin == end) {

return;
}
// add first element
our_list::const_iterator it = begin;
this->head = new lnode { *it, nullptr };
++it;
lnode *node = this->head;
// add remaining elements
for (; it != end; ++it) {

node->next = new lnode { *it, nullptr };
node = node->next;

}
}

28

Exercise "our_list::init" (Solution)

our_list::our_list(our_list::const_iterator begin,
our_list::const_iterator end) {

this->head = nullptr;
if (begin == end) {

return;
}
// add first element
our_list::const_iterator it = begin;
this->head = new lnode { *it, nullptr };
++it;
lnode *node = this->head;
// add remaining elements
for (; it != end; ++it) {

node->next = new lnode { *it, nullptr };
node = node->next;

}
}

28

Questions?

29

our_list

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)
However:

Use Pointers
What happens in the case of "0" (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

30

our_list

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)

However:
Use Pointers
What happens in the case of "0" (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

30

our_list

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)
However:

Use Pointers
What happens in the case of "0" (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

30

Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

31

Exercise "our_list::swap"

Open "our_list::swap" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

31

Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

31

Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

31

Exercise "our_list::swap" (Solution)

void our_list::swap(int index) {

if (index == 0) {

assert(this->head != nullptr);
assert(this->head->next != nullptr);

lnode* tmp = this->head->next;
this->head->next = this->head->next->next;
tmp->next = this->head;
this->head = tmp;

} else {/* ... */}

32

Exercise "our_list::swap" (Solution)

void our_list::swap(int index) {

if (index == 0) {

assert(this->head != nullptr);
assert(this->head->next != nullptr);

lnode* tmp = this->head->next;
this->head->next = this->head->next->next;
tmp->next = this->head;
this->head = tmp;

} else {/* ... */}

32

Exercise "our_list::swap" (Solution)

else { lnode* prev = nullptr;
lnode* curr = this->head;

while (index > 0) { // Find the element
prev = curr;
curr = curr->next;
--index;

}

assert(curr != nullptr);
assert(curr->next != nullptr);

lnode* tmp = curr->next; // Swap with the next one
curr->next = curr->next->next;
tmp->next = curr;
prev->next = tmp; }}// two '}' to close function

33

Questions?

34

5. Dynamic Data Structures & Iterators

5.2. Our_list Bonus Material

35

Exercise "our_list::extend"

Open "our_list::extend" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

36

Exercise "our_list::extend"

Open "our_list::extend" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

36

Exercise "our_list::extend"

Open "our_list::extend" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

36

Exercise "our_list::extend"

Open "our_list::extend" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

36

Exercise "our_list::extend" (Solution)

void our_list::extend(our_list::const_iterator begin,
our_list::const_iterator end) {

if (begin == end) { return; }
our_list::const_iterator it = begin;
if (this->head == nullptr) {

this->head = new lnode { *it, nullptr };
++it;

}
lnode *n = this->head;
while (n->next != nullptr) {

n = n->next;
}
for (; it != end; ++it) {

n->next = new lnode { *it, nullptr };
n = n->next;

}
}

37

Exercise "our_list::extend" (Solution)

void our_list::extend(our_list::const_iterator begin,
our_list::const_iterator end) {

if (begin == end) { return; }
our_list::const_iterator it = begin;
if (this->head == nullptr) {

this->head = new lnode { *it, nullptr };
++it;

}
lnode *n = this->head;
while (n->next != nullptr) {

n = n->next;
}
for (; it != end; ++it) {

n->next = new lnode { *it, nullptr };
n = n->next;

}
}

37

Questions?

38

Exercise "our_list::merge_sorted" (Difficult)

In case all these classes, pointers, dynamic data allocation wasn’t hard
enough for you, let’s throw recursion to the mix too!

39

Exercise "our_list::merge_sorted" (Difficult)

In case all these classes, pointers, dynamic data allocation wasn’t hard
enough for you, let’s throw recursion to the mix too!

39

Merge-Sort

Merge-Sort

•Goal: Sort an arbitrary array as quickly as possible.

2

5 2 8 7 7 3 1

1 2 3 5 7 7 8

Merge-Sort

• Idea: Divide and Conquer

3

Merge-Sort

• Idea: Divide and Conquer
1. Split whole array into two parts. (Divide)

4

5 2 8 1

5 2 8 1

Divide

Merge-Sort

• Idea: Divide and Conquer
1. Split whole array into two parts. (Divide)
2. Then sort these and combine them. (Conquer)

5

5 2 8 1

5 2 8 1

1 2 5 8

5 1 82

Divide Conquer

Merge-Sort

• Idea: Divide and Conquer
1. Split whole array into two parts. (Divide)
2. Then sort these and combine them. (Conquer)

6

5 2 8 1

5 2 8 1

1 2 5 8

5 1 82

Divide Conquer

Merge-Sort

•Divide:

7

5 2 8 7 7 3 1

Merge-Sort

•Divide:

8

5 2 8 7 7 3 1

5 2 8 7 7 3 1

Merge-Sort

•Divide:

9

5 2 8 7 7 3 1

5 2 8 7 7 3 1

Merge-Sort

•Divide:

10

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 8 7 7 3 1

Merge-Sort

•Divide:

11

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 18 7

Merge-Sort

•Divide:

12

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

Merge-Sort

•Divide:

13

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

Merge-Sort

•Conquer:

14

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 1 3

2 8 7 7 3 1

8 7

Merge-Sort

•Conquer:

15

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 1 3

2 8 7 7 3 1

8 7

8

Merge-Sort

•Conquer:

16

5 2 8 7 7 3 1

2 5 1 3 7 7

5 2 7 1 3

2 8 7 7 3 1

8 7

8

Merge-Sort

•Conquer:

17

5 2 8 7 7 3 1

2 5 1 3 7 7

5 2 7 1 3

2 8 7 7 3 1

8 7

8

Merge-Sort

•Conquer:

18

1 2 3 5 7 7 8

2 5 1 3 7 7

5 2 7 1 3

2 8 7 7 3 1

8 7

8

Merge-Sort

•Conquer:

19

1 2 3 5 7 7 8

2 5 1 3 7 7

5 2 7 1 3

2 8 7 7 3 1

8 7

Merge-Step

•How does

work?

•Card-player’s trick:
Remove smaller «top card» (see next slides)

20

8

1 2 3 5 7 7 8

2 5 1 3 7 7

Merge-Sort – Exercise 1

• Idea:

21

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

22

Temporary

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

23

Temporary

1

[begin, middle)

5

8

[middle, end)

1

6

>

Merge-Sort – Exercise 1

• Idea:

24

Temporary

1

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

25

Temporary

1

5

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

26

Temporary

1

5

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

27

Temporary

1

5

6

[begin, middle)

5

8

[middle, end)

1

6>

Merge-Sort – Exercise 1

• Idea:

28

Temporary

1

5

6

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

29

Temporary

1

5

6

8

[begin, middle)

5

8

[middle, end)

1

6

Merge-Sort – Exercise 1

• Idea:

30

Temporary

1

5

6

8

[begin, middle)

5

8

[middle, end)

1

6

Runtime
(Intuition)

Alternative Proof

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

32

Alternative Proof

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

n

𝐥𝐨
𝐠
𝟐
𝐧

33

Alternative Proof

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

n

𝐥𝐨
𝐠
𝟐
𝐧

<= n-1

<= n-1

<= n-1

Number of
essential

comparisons
on that layer. 34

Alternative Proof

5 2 8 7 7 3 1

5 2 8 7 7 3 1

5 2 7 3 1

2 8 7 7 3 1

8 7

n

𝐥𝐨
𝐠
𝟐
𝐧

<= n-1

<= n-1

<= n-1

Number of
essential

comparisons
on that layer. 35

Exercise "our_list::merge_sorted" (Difficult)

Open "our_list::merge_sorted" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

40

Exercise "our_list::merge_sorted" (Difficult)

Open "our_list::merge_sorted" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

40

Exercise "our_list::merge_sorted" (Difficult)

Open "our_list::merge_sorted" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

40

Exercise "our_list::merge_sorted" (Difficult)

Open "our_list::merge_sorted" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

40

Exercise "our_list::merge_sorted" (Solution)

See code expert

41

Exercise "our_list::merge_sorted" (Solution)

See code expert

41

Questions?

42

6. Outro

43

General Questions?

44

See you next time

Have a nice week!

45

	Follow-up
	& vs *
	References vs Pointers
	this->
	Dynamic Data Structures & Iterators
	Our_list Main Material
	Our_list Bonus Material

	Outro

