
Exercise Session — Computer Science — 11
Memory Management, Problems with Pointers, Shared Pointer Unique
Pointer, Muddiest Point

Overview

Today’s Plan

Memory Management
Exercise "Box"
Common Issues with Pointers
Shared and Unique Pointers
Muddiest Point

n.ethz.ch/~iopopa

 Link to Webpage

 Send an e-Mail

1

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch

1. Memory Management

2

new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events
Must be public

3

new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor

Are just functions which are called at certain events
Must be public

3

new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events

Must be public

3

new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events
Must be public

3

Constructor

Constructor

Called when

an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for different types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);
personClass Person161(45);

More on this: cppreference link

4

https://en.cppreference.com/w/cpp/language/constructor

Constructor

Constructor

Called when an object of a class/struct is constructed

We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for different types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);
personClass Person161(45);

More on this: cppreference link

4

https://en.cppreference.com/w/cpp/language/constructor

Constructor

Constructor

Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want

There can be multiple constructors, e.g. for different types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);
personClass Person161(45);

More on this: cppreference link

4

https://en.cppreference.com/w/cpp/language/constructor

Constructor

Constructor

Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for different types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);
personClass Person161(45);

More on this: cppreference link

4

https://en.cppreference.com/w/cpp/language/constructor

Constructor

Constructor

Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for different types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);
personClass Person161(45);

More on this: cppreference link

4

https://en.cppreference.com/w/cpp/language/constructor

Constructor - Example in a class

class meineKlasse {
int a, b;

public:
const int& r; // for reading only!

// CONSTRUCTOR
meineKlasse(int i)

: a(i) // initializes r to refer to a
, b(i+5) // initializes a to the value of i
, r(a) // initializes b to the value of i+5
// ^ here we are using a "member initializer list"
// and if you want your constructor to do
// anything additionally, put it inside
{/*here (like in a regular function!)*/}

};

5

Constructor - Example in a class

class meineKlasse {
int a, b;

public:
const int& r; // for reading only!

// CONSTRUCTOR
meineKlasse(int i)

: a(i) // initializes r to refer to a
, b(i+5) // initializes a to the value of i
, r(a) // initializes b to the value of i+5
// ^ here we are using a "member initializer list"
// and if you want your constructor to do
// anything additionally, put it inside
{/*here (like in a regular function!)*/}

};
5

Member Initializer List

meineKlasse::meineKlasse()
: memberVariableEins(0) // init memberVariableEins
{ memberVariableZwei = 0; } // init memberVariableZwei

What is the difference between these two initializations of the member
variables?

Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

6

https://youtu.be/1nfuYMXjZsA

Member Initializer List

meineKlasse::meineKlasse()
: memberVariableEins(0) // init memberVariableEins
{ memberVariableZwei = 0; } // init memberVariableZwei

What is the difference between these two initializations of the member
variables? Why do we use MILs?

const members
In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

6

https://youtu.be/1nfuYMXjZsA

Member Initializer List

meineKlasse::meineKlasse()
: memberVariableEins(0) // init memberVariableEins
{ memberVariableZwei = 0; } // init memberVariableZwei

What is the difference between these two initializations of the member
variables? Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

6

https://youtu.be/1nfuYMXjZsA

Member Initializer List

meineKlasse::meineKlasse()
: memberVariableEins(0) // init memberVariableEins
{ memberVariableZwei = 0; } // init memberVariableZwei

What is the difference between these two initializations of the member
variables? Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

6

https://youtu.be/1nfuYMXjZsA

Destructor

Destructor

is called when

an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

7

Destructor

Destructor

is called when an object of a class/struct is deconstructed. This can
happen

at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

7

Destructor

Destructor

is called when an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used

is used to keep memory "clean" when an object is no longer in use

7

Destructor

Destructor

is called when an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

7

Destructor - Example in a class

class meineKlasse {
int* value;

public:

// other -ctors and stuff go here

~meineKlasse(){

delete value; // That's how we clean up the value which
// lies at the slot that the int-pointer is
// pointing to, instead of just deleting
// the int-pointer (avoiding "memory leaks")

}

};

8

Destructor - Example in a class

class meineKlasse {
int* value;

public:

// other -ctors and stuff go here

~meineKlasse(){

delete value; // That's how we clean up the value which
// lies at the slot that the int-pointer is
// pointing to, instead of just deleting
// the int-pointer (avoiding "memory leaks")

}

};
8

Copy-constructor

Copy-Constructor

is called when

an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

9

Copy-constructor

Copy-Constructor

is called when an object is initialized with another object of the same
class/struct

there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

9

Copy-constructor

Copy-Constructor

is called when an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy

not to be confused with the operator=, which does something very
similar

9

Copy-constructor

Copy-Constructor

is called when an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

9

Shallow Copy vs. Deep Copy

10

Shallow Copy vs. Deep Copy

10

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when

an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct

is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations

is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types

Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff

must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually

class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that

you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

(copy-)assignment-operator (=)

Assignment-operator (=)

is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stuff first, then copy constructor stuff
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

11

operator= vs. Copy-Constructor

// our class/struct is named "Box"

Box first; // init by default constructor
Box second(first); // init by copy-constructor
Box third = first; // also init by copy-constructor
second = third; // assignment by (copy-)assignment operator

The last two cases look similar, but remember:
the (copy-)assignment-operator= only comes into action after an object has
already been initialized

12

operator= vs. Copy-Constructor

// our class/struct is named "Box"

Box first; // init by default constructor
Box second(first); // init by copy-constructor
Box third = first; // also init by copy-constructor
second = third; // assignment by (copy-)assignment operator

The last two cases look similar, but remember:
the (copy-)assignment-operator= only comes into action after an object has
already been initialized

12

Questions?

13

2. Exercise "Box"

14

Exercise "Box (copy)"

Here we’ll take a very close look at the implementation

Go to code expert and open the code example "Box (copy)"

Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout
Small code-together :)

15

Exercise "Box (copy)"

Here we’ll take a very close look at the implementation

Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr either, it’s just fancy std::cout
Small code-together :)

15

Exercise "Box (copy)"

Here we’ll take a very close look at the implementation

Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout

Small code-together :)

15

Exercise "Box (copy)"

Here we’ll take a very close look at the implementation

Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout
Small code-together :)

15

Members of "Box"

Box::Box(const Box& other) {
ptr = new int(*other.ptr);

}

Box& Box::operator= (const Box& other) {
*ptr = *other.ptr;
return *this;

}

16

Members of "Box"

Box::~Box() {
delete ptr;
ptr = nullptr;

}

Box::Box(int* v) {
ptr = v;

}

int& Box::value() {
return *ptr;

}

17

Tracing test_destructor1()

void test_destructor1() {
std::cerr << "[enter] test_destructor1" << std::endl;

int a;

{
Box box(new int(1));
a = 5;

}

std::cout << "a = " << a << std::endl;
std::cerr << "[exit] test_destructor1" << std::endl;

}

18

Tracing test_destructor2()

void test_destructor2() {
std::cerr << "[enter] test_destructor2" << std::endl;

{
Box* box_ptr = new Box(new int(2));
delete box_ptr; // to trigger destructor of Box above

}

std::cerr << "[exit] test_destructor2" << std::endl;
}

19

Tracing test_copy_constructor()

void test_copy_constructor() {
std::cerr << "[enter] test_copy_constructor" << std::endl;

{
Box demo(new int(0));
Box demo_copy = demo;

demo.value() = 4;

demo_copy.value() = 5;
}

std::cerr << "[exit] test_copy_constructor" << std::endl;
}

20

Tracing test_assignment()

void test_assignment() {
std::cerr << "[enter] test_assignment" << std::endl;

{
Box demo(new int(0));
demo.value() = 3;
Box demo_copy(new int(0));
demo_copy = demo;
demo.value() = 4;
demo_copy.value() = 5;

}

std::cerr << "[exit] test_assignment" << std::endl;
}

21

Questions?

22

3. Common Issues with Pointers

23

Dangling Pointers

What?

A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1
How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
24

Dangling Pointers

What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1
How?

This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
24

Dangling Pointers

What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1
How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?

Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
24

Dangling Pointers

What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1
How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
24

Double-Free

What?

Double-free occurs when delete is called twice on the same memory
allocation.
How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.
So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

25

Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.
How?

This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.
So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

25

Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.
How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.
So?

Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

25

Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.
How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.
So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

25

Use-After-Free

What?

Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.
How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.
So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

26

Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.
How?

This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.
So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

26

Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.
How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.
So?

Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

26

Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.
How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.
So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

26

*nullptr

 xkcd

27

https://xkcd.com/371/

*nullptr

 xkcd

27

https://xkcd.com/371/

Questions?

28

Doomed to cause errors?

How to prevent all this?

Smart Pointers!

29

Doomed to cause errors?

How to prevent all this?

Smart Pointers!

29

Doomed to cause errors?

How to prevent all this?

Smart Pointers!

29

4. Shared and Unique Pointers

30

Smart Pointers

Smart Pointers

Smart pointers are convenient wrappers around regular pointers that
help prevent memory leaks by automatically managing memory
The smart pointers shared_ptr and unique_ptr are part of the
standard <memory> library.

31

Comparison unique_ptr vs shared_ptr

shared_ptr

A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

unique_ptr
A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

32

Comparison unique_ptr vs shared_ptr

shared_ptr
A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

unique_ptr
A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

32

Comparison unique_ptr vs shared_ptr

shared_ptr
A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

unique_ptr

A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

32

Comparison unique_ptr vs shared_ptr

shared_ptr
A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

unique_ptr
A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

32

Questions?

33

5. Muddiest Point

34

So, what are you stuck on?

Q&A Session

35

6. Outro

36

General Questions?

37

See you next time

Have a nice week!

38

	Memory Management
	Exercise "Box"
	Common Issues with Pointers
	Shared grayand Unique Pointers
	Muddiest Point
	Outro

