
Exercise Session — Computer Science — 12
Pointer Arithmetic, Memory Management

Overview

Today’s Plan

Pointers
Example: Pointers on Arrays
Example: Special Copy

Exercise "Push Back"
Memory Management

n.ethz.ch/~iopopa

� Link to Webpage

� Send an e-Mail

1

https://n.ethz.ch/~iopopa/
mailto:iopopa@ethz.ch

Follow-up from last session

Can we manually delete memory pointed to by a Smart Pointer?
No, because smart pointers automatically manage the memory they
own and delete it when they go out of scope or when the reference
count drops to zero.

If you manually delete memory managed by a smart pointer, the smart
pointer will attempt to delete the same memory again when it goes out
of scope, resulting in undefined behavior.

2

Follow-up from last session

Can we manually delete memory pointed to by a Smart Pointer?
No, because smart pointers automatically manage the memory they
own and delete it when they go out of scope or when the reference
count drops to zero.
If you manually delete memory managed by a smart pointer, the smart
pointer will attempt to delete the same memory again when it goes out
of scope, resulting in undefined behavior.

2

Follow-up from last session

Main disadvantages of smart pointers

Compatibility Issues
Smart pointers might not always be compatible with libraries that expect
raw pointers or use their own memory management schemes.
Converting between smart pointers and raw pointers (.get()) can
introduce risks if not handled properly.

Unnecessary Overhead for Simple Cases
Performance Overhead

3

Follow-up from last session

Main disadvantages of smart pointers
Compatibility Issues

Smart pointers might not always be compatible with libraries that expect
raw pointers or use their own memory management schemes.
Converting between smart pointers and raw pointers (.get()) can
introduce risks if not handled properly.

Unnecessary Overhead for Simple Cases
Performance Overhead

3

Follow-up from last session

Main disadvantages of smart pointers
Compatibility Issues

Smart pointers might not always be compatible with libraries that expect
raw pointers or use their own memory management schemes.
Converting between smart pointers and raw pointers (.get()) can
introduce risks if not handled properly.

Unnecessary Overhead for Simple Cases

Performance Overhead

3

Follow-up from last session

Main disadvantages of smart pointers
Compatibility Issues

Smart pointers might not always be compatible with libraries that expect
raw pointers or use their own memory management schemes.
Converting between smart pointers and raw pointers (.get()) can
introduce risks if not handled properly.

Unnecessary Overhead for Simple Cases
Performance Overhead

3

1. Pointers

4

new vs new[]

new T allocates one space in memory for the specified type

new T[n] allocates n spaces in memory for the specified type1

Both return a pointer which points to the (first) element of the range

1this memory will be contiguous, i.e. "next to each other in memory"
5

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1

Both return a pointer which points to the (first) element of the range

1this memory will be contiguous, i.e. "next to each other in memory"
5

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1

Both return a pointer which points to the (first) element of the range

1this memory will be contiguous, i.e. "next to each other in memory"
5

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the

2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns

2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns

8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4

sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the

2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns

2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns

8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4

sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

Arrays
Statically allocated array

int myStatArr[3] = {2, 3, 8};

myStatArr now points to the 2

*myStatArr returns 2

myStatArr[2] returns 8

myStatArr[1] = -4 sets 3 to -4

Dynamically allocated arrays

int* myDynArr = new int[3]{2, 3, 8};

myDynArr now points to the 2

*myDynArr returns 2

myDynArr[2] returns 8

myDynArr[1] = -4 sets 3 to -4
But what is the difference between them?

Memory is allocated at compile
time on the stack.

The size of the array must be
known at compile time and cannot
be changed during runtime.

Memory is allocated at runtime on the heap
using new.

The size can be specified during runtime,
allowing for more flexibility.

6

delete vs delete[]

We remember:

every new needs a delete
delete[] is the corresponding operator to new[]
Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

7

delete vs delete[]

We remember: every new needs a delete

delete[] is the corresponding operator to new[]
Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

7

delete vs delete[]

We remember: every new needs a delete
delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

7

delete vs delete[]

We remember: every new needs a delete
delete[] is the corresponding operator to new[]
Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing

Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

7

delete vs delete[]

We remember: every new needs a delete
delete[] is the corresponding operator to new[]
Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

7

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3
ptr - 3
Permanent shifts
ptr++
--ptr
ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2
Compare positions
ptr_1 < ptr_2
ptr_1 != ptr_2

8

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3
ptr - 3

Permanent shifts
ptr++
--ptr
ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2
Compare positions
ptr_1 < ptr_2
ptr_1 != ptr_2

8

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3
ptr - 3
Permanent shifts
ptr++
--ptr
ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2
Compare positions
ptr_1 < ptr_2
ptr_1 != ptr_2

8

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3
ptr - 3
Permanent shifts
ptr++
--ptr
ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2
ptr_1 != ptr_2

8

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3
ptr - 3
Permanent shifts
ptr++
--ptr
ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2
Compare positions
ptr_1 < ptr_2
ptr_1 != ptr_2

8

Questions?

9

1. Pointers

1.1. Example: Pointers on Arrays

10

Pointer Arithmetic

int* a = new int[5]{0, 8, 7, 2, -1};
int* ptr = a; // pointer assignment
++ptr; // shift to the right
int my_int = *ptr; // read target
ptr += 2; // shift by 2 elements

// ^ Note how this does not simply "add 2" to the
// underlying memory address, but instead adds the
// appropriate amount to get to the integer variable
// that is stored "2 ints further away"

*ptr = 18; // overwrite target
int* past = a+5;
std::cout << (ptr < past) << "\n"; // compare pointers

11

Bug Hunt
Find and fix at least 3 problems in the following program

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;

for (int* p = a; p <= a+7; ++p) { // copy a into b using pointers
*c++ = *p;

}

for (int i = 0; i <= 7; ++i) { // cross-check with random access
if (a[i] != c[i]) {

std::cout << "Oops, copy error...\n";
}

}

Problems: p, i are dereferenced at a+7; c doesn’t point to b[0] anymore!

12

Bug Hunt
Find and fix at least 3 problems in the following program

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;

for (int* p = a; p <= a+7; ++p) { // copy a into b using pointers
*c++ = *p;

}

for (int i = 0; i <= 7; ++i) { // cross-check with random access
if (a[i] != c[i]) {

std::cout << "Oops, copy error...\n";
}

}

Problems: p, i are dereferenced at a+7; c doesn’t point to b[0] anymore! 12

Questions?

13

1. Pointers

1.2. Example: Special Copy

14

Special Copy?

// PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges
// POST: - - - - - - - TODO: determine it! - - - - - - - -
// -
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

15

Reverse Copy!

// PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges
// POST: The range [b, e) is copied in reverse orde
// into the range [o, o+(e-b))
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

Which of these inputs are valid after int* a = new int[5];?
a) f(a, a+5, a+5) b) f(a, a+2, a+3) c) f(a, a+3, a+2)
Answer: b)

16

Reverse Copy!

// PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges
// POST: The range [b, e) is copied in reverse orde
// into the range [o, o+(e-b))
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

Which of these inputs are valid after int* a = new int[5];?
a) f(a, a+5, a+5) b) f(a, a+2, a+3) c) f(a, a+3, a+2)

Answer: b)

16

Reverse Copy!

// PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges
// POST: The range [b, e) is copied in reverse orde
// into the range [o, o+(e-b))
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

Which of these inputs are valid after int* a = new int[5];?
a) f(a, a+5, a+5) b) f(a, a+2, a+3) c) f(a, a+3, a+2)
Answer: b)

16

Questions?

17

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a
i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr
i.e. we are not allowed to change
to where the pointer points

18

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr
i.e. we are not allowed to change
to where the pointer points

18

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a
i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr
i.e. we are not allowed to change
to where the pointer points

18

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a
i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr
i.e. we are not allowed to change
to where the pointer points

18

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a
i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr

i.e. we are not allowed to change
to where the pointer points

18

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to a
i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to ptr
i.e. we are not allowed to change
to where the pointer points

18

Questions?

19

2. Exercise "Push Back"

20

Exercise "Push Back"

Open "Push Back" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

21

Exercise "Push Back"

Open "Push Back" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

21

Exercise "Push Back"

Open "Push Back" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

21

Solution "Push Back"

// PRE: source_begin points to first element to be copied;
// source_ends points to element after the last element to be copied;
// destination_begin points to first element of target memory block;
// #elements in target memory location >= #elements in source;
// POST: copies the content of the source memory block to the destination
// memory block.
void copy_range(const int* const source_begin,

const int* const source_end,
int* const destination_begin){

int* dst = destination_begin;
for (const int* src = source_begin; src != source_end; ++src) {

*dst = *src;
++dst;

}
}

22

Solution "Push Back"

void our_vector::push_back(int new_element) {
// 1. Allocate a new memory block larger by one element
unsigned int lenghtOfNewBlock = this->count + 1;
int* const ptrToNewBlock = new int[lenghtOfNewBlock];

// 2. Copy all the elements from the old memory block to the new one
copy_range(this->elements, this->elements + count, ptrToNewBlock);

// 3. Deallocate the old memory block
delete[] this->elements; // frees memory from old elements
this->elements = ptrToNewBlock; // redirects pointer to new block

// 4. Add the new element at the end of the new memory block
this->elements[count] = new_element;
count++; // increment counter

}
23

Questions?

24

3. Memory Management

25

Bug Hunt I

// PRE: len is the length of the memory block that starts at array
void test1(int* array, int len) {

int* fourth = array + 3;
if (len > 3) {

std::cout << *fourth << std::endl;
}
for (int* p = array; p != array + len; ++p) {

std::cout << *p << std::endl;
}

}

Find mistakes in the code and suggest fixes

26

Bug Hunt I — Dangerous Pointer

// PRE: len is the length of the memory block that starts at array
void test1(int* array, int len) {

//int* fourth = array + 3; // ERROR
if (len > 3) {

int* fourth = array + 3; // OK
std::cout << *fourth << std::endl;

}
for (int* p = array; p != array + len; ++p) {

std::cout << *p << std::endl;
}

}

Even if the pointer is not dereferenced, it must point into a memory block or
to the element just after its end.

27

Bug Hunt II

// PRE: len >= 2
int* fib(int len) {

int* array = new int[len];
array[0] = 0; array[1] = 1;
for (int* p = array+2; p < array + len; ++p) {

*p = *(p-2) + *(p-1); }
return array; }

void print(int* array, int len) {
for (int* p = array+2; p < array + len; ++p) {

std::cout << *p << " ";
}

}
void test2(int len) {

int* array = fib(len);
print(array, len);

}
28

Bug Hunt II — Memory Leak

// PRE: len >= 2
int* fib(int len) {

int* array = new int[len];
array[0] = 0; array[1] = 1;
for (int* p = array+2; p < array + len; ++p) {

*p = *(p-2) + *(p-1); }
return array; }

void print(int* array, int len) {
for (int* p = array+2; p < array + len; ++p) {

std::cout << *p << " ";
}

}
void test2(int len) {

int* array = fib(len);
print(array, len);
delete[] array; // otherwise array is leaked!

}

Prevent the memory leak!

29

Bug Hunt III

// PRE: len >= 2
int* fib(int len) {

// ...
}
void print(int* m, int len) {

for (int* p = m+2; p < m + len; ++p) {
std::cout << *p << " ";

}
delete m;

}
void test2(int len) {

int* array = fib(len);
print(array, len);
delete[] array;

}
30

Bug Hunt III — Double Free!

// PRE: len >= 2
int* fib(int len) {

// ...
}
void print(int* m, int len) {

for (int* p = m+2; p < m + len; ++p) {
std::cout << *p << " ";

}
delete[] m;

}
void test2(int len) {

int* array = fib(len);
print(array, len);
// delete[] array; // array deallocated twice!

}
31

Questions?

32

4. Outro

33

General Questions?

34

See you next time

Have a nice week!

35

	Pointers
	Example: Pointers on Arrays
	Example: Special Copy

	Exercise "Push Back"
	Memory Management
	Outro

