

Persönliche Webseite

Netzwerke und Schaltungen II

Übung 1 Effektiv/ Gleichrichtwert

Willkommen und

GRATULIERE!

:

ADMINISTRATIVES

ALLES weitere wichtige (und weniger wichtige) auf MOODLE

Übungsplan & Study center

Übungsstunde (Freitag 10-12 Uhr):

- 1. Zusammenfassung der relevanten Theorie
- 2. Beispielaufgaben
- 3. Zeit für individuelle Fragen/individuelles Arbeiten

Die Übungsaufgaben können/sollen/müssen in Moodle abgegeben werden

- 3 Versuche pro Serie (keine Panik, sehr einfach)
- Abgabe offen von Freitag_n 12pm bis Donnerstag_{n+1} 11:59pm (verbindlich sind Angaben auf moodle)
- + 0.25 Notenbonus (...!)
 - «Ab 50% der erreichbaren Punkte für alle 13 Übungen beginnt der Notenbonus. Bei 75% der vollen
 Punkte wird der volle Bonus von 0.25 vergeben. Dazwischen wird linear skaliert. Die MC-Fragen zählen nicht zum Bonus.»

Study center: Montag 10-12 Uhr (Raum: Siehe Moodle)

Ihr dürft mir bei Fragen jeglicher Art jederzeit gerne eine mail schreiben: jamatter@ethz.ch

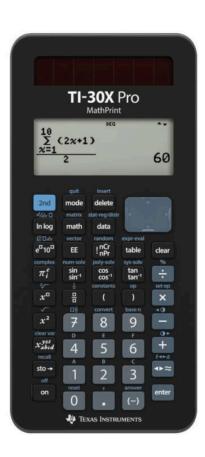
Übungen

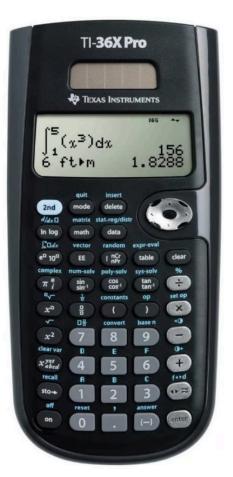
Bitte vergesst die Übungsaufgaben nicht... (weekly reminder)

Prüfung

Zweigeteilte Prüfung:

- Aufgaben wie in den Übungsserien (Berechnungen von Hand**)
 - Zusätzliches Übungsmaterial auf Moodle
 - Erlabte Hilfsmittel auf mystudies beachten!
- Multiple-Choice Aufgaben
 - Zu jeder Übungsserie ein Multiple-Choice Quiz auf Moodle
 - Empfehlung: Multiple-Choice Quiz w\u00e4hrend dem Semester schon l\u00f6sen und Fragen in der \u00dcbungsstunde und der Pr\u00e4senzstunde stellen!
- Erlaubte Taschenrechner **
 - https://hpe.ee.ethz.ch/education/allowed-pocket-calculators.html
- Nur die offizielle Zusammenfassung ist erlaubt
 - Daher am besten schon jetzt verwenden!
 - Änderungsvorschläge können per E-Mail gestellt werden
 - Updates sind während dem Semester möglich





Berechnungen von Hand (aka mit Taschenrechner)

- Ihr Braucht einen Taschenrechner (spätestens!) für NUS2.
 - Aber welchen?

Berechnungen von Hand (aka mit Taschenrechner)

- Ihr Braucht einen Taschenrechner (spätestens) für NUS2.
 - Aber welchen?
 - Den Besten.

oder

HP Prime Graphing calculator G2

Texas Instruments Nspire (TI Nspire CX 2, o.ä.)

Taschenrechner Bestellung & Webseite

- **Gruppenbestellung?**
- Webseite: https://n.ethz.ch/~jamatter/
 - Dort werde ich auch wöchentlich die slides der Übungsstunden hochladen.

Taschenrechner Bestellung Deadline: 2.3.2024 Falls Interesse besteht, werde ich die HP Prime G2 Taschenrechner bei https://www.taschenrechner.ch/Artikel/HPPRIMEG2 bestellen - siehe deadline. Mehr dazu in den ersten beiden Übungsstunden. Ab 1 Stk. - 129chf Ab 2 Stk. - 126chf Ab 5 Stk. - 123chf Ab 10 Stk. - 119chf Ab 20 Stk. - 115chf Bitte den "add" button NUR 1 MAL drücken. (Kann bis zu 1min dauern) add ETH Kürzel

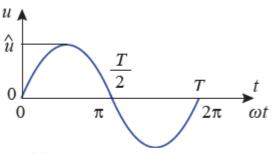
Die Preise sind von 2024 (evt. wird der Verkäufer einen Spezialpreis machen:)

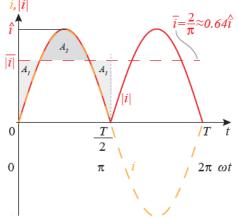
Screenshot von ganz unten auf der Webseite. (15.2.24)

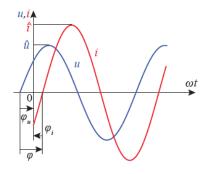
Simulationen

- Die Aufgaben sind in Moodle als Simulationsmodele verfügbar
- Auf Moodle ist Lizenz für PLECS-Simulationssoftware verfügbar
- Simulationsaufgaben nicht Teil der Übungen und nicht klausurrelevant

THEORIE FÜR DIE ÜBUNG




KomA basics (stellt euch alle z als <u>z</u> vor!)

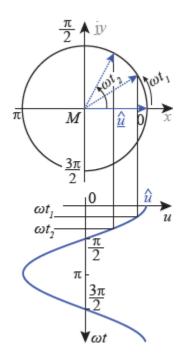

$$i=j$$
 No reason*, just accept it \odot
$$z=a+bj$$

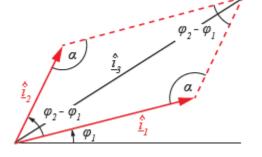
$$r=|z|=\sqrt[2]{a^2+b^2}$$
 $\varphi=\arctan(\frac{b}{a})$
$$z=a+bj=r*e^{j\varphi}=r*(\cos(\varphi)+j*\sin(\varphi))$$

$$Re\{z\}=Re\{r*(\cos(\varphi)+j*\sin(\varphi))\}=r*\cos(\varphi)$$

Wiederholung: Grundbegriffe Wechselgrössen

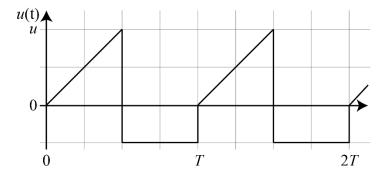
- Scheitelwert bzw. Spitzenwert $\widehat{m{u}}$
- Periodendauer T
- Frequenz $f = \frac{1}{T}$
- Winkelgeschwindigkeit $\omega = \frac{2\pi}{T} = 2\pi f$
- Mittelwert $\bar{\mathbf{u}} = \frac{1}{T} \int_{t=t_0}^{t=t_0+T} u(t) \ dt$
- Gleichrichtwert $|\bar{\mathbf{u}}| = \frac{1}{T} \int_{t=t_0}^{t=t_0+T} |u(t)| \, dt$
- Effektivwert $U = \sqrt{\frac{1}{T} \int_{t=t_0}^{t=t_0+T} u(t)^2 dt}$
- Phasenverschiebung φ





Wiederholung: Zeigerdiagramm

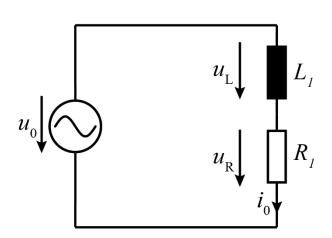
- Sinusförmiges Zeitsignal $u(t) = \hat{u} \cos(\omega t + \phi)$
- Rotierender Zeiger $\widehat{\underline{u}}' = \widehat{u}e^{j\phi}e^{j\omega t}$
- Zeiger $\widehat{u} = \widehat{u}e^{j\phi}$
- Rücktransformation $u(t)=\Re(\widehat{\underline{u}}')$ = $\Re(\widehat{u}e^{j\varphi}e^{j\omega t})$ $=|\widehat{\underline{u}}|cos(\omega t+arg(\widehat{\underline{u}}))$
- Zeiger können grafisch addiert und subtrahiert werden


BEISPIELAUFGABE

Beispielaufgabe 1

Bestimmen Sie für die gezeigte Spannung

- Mittelwert ū
- Gleichrichtwert |ū|
- Effektivwert U
- Spitze-Spitze-Wert u_{ss}



Beispielaufgabe 2

Gegeben:

$$i(t) = \hat{i}\cos(\omega t)$$
, $\hat{i} = 1A$, $\omega = 1000Hz$, $R = 2\Omega$, $L = 1mH$

- Berechnen Sie im Zeitbereich $u_R(t)$ und $u_L(t)$
- Zeichnen Sie $\widehat{\underline{u}}_{
 m L}$, $\widehat{\underline{u}}_{
 m R}$ und $\widehat{\underline{i}}$
- Zeichnen Sie $\hat{\underline{u}}_0$
- Ermitteln Sie $u_o(t = 0s)$ und i(t = 0s)
- Ermitteln Sie $u_o(t = T/8)$ und i(t = T/8)

