

Netzwerk und Schaltungen II

Übung 12
Netzwerkberechnung mit Laplace-Transformation II

THEORIE FÜR DIE ÜBUNG

Laplace-Transformation 1

1. Differentialgleichungen im Zeitbereich aufstellen

$$u_R(t) = R \cdot i_R(t)$$

$$u_L(t) = L \cdot \frac{di_L(t)}{dt}$$
 $i_C(t) = C \cdot \frac{du_C(t)}{dt}$

$$i_{\mathcal{C}}(t) = C \cdot \frac{du_{\mathcal{C}}(t)}{dt}$$

Gleichungen in den Laplace-Bereich transformieren

Option 1 (Meistens sehr aufwending):

Laplace-Transformation von Hand mit dem Integral

$$\mathbf{F}(\mathbf{s}) = \mathcal{L}\{\mathbf{f}(\mathbf{t})\} = \int_{0}^{\infty} \mathbf{f}(\mathbf{t})e^{-s\mathbf{t}}d\mathbf{t}$$

Option 2 (Einfacher):

Laplace-Transformation mit der Korrespondenztabelle

Abb 1. (zbs. in der NUSII Zmf.)

3. Gleichung im Laplace-Bereich lösen

4. Die Lösung mit der Tabelle zurücktransformieren

u(t)	0	$\underline{U}(s)$	u(t)	0	$\underline{U}(s)$
u(at), a>0	0	$\frac{1}{a} \underline{U}(\frac{s}{a})$	$\lambda u(t) + \mu v(t)$	0	$\lambda \underline{U}(s) + \mu \underline{V}(s)$
$u(t-t_0)$	0	$e^{-st_0} \underline{U}(s)$	$e^{-at} u(t)$	0	$\underline{U}(s+a)$
-tu(t)	0	$\underline{U}'(s)$	$t^2 u(t)$	0	$\underline{U}''(s)$
$(-t)^n u(t)$	0	$\underline{U}^{(n)}(s)$			
u'(t)	0	$s\underline{U}(s)-u(0)$	$u^{\prime\prime}(t)$	0—•	$s^2\underline{U}(s) - s\ u(0) - u'(0)$
$u^{(n)}(t)$	○	$s^{n}\underline{U}(s) - s^{n-1}u(0) - s^{n-2}u'(0) - \dots - u^{(n-1)}(0)$			
$\int_0^t u(au) \mathrm{d} au$	0	$rac{1}{s} \underline{U}(s)$	period. mit T	○	$\frac{1}{1 - \mathrm{e}^{-sT}} \int_0^T u(t) \mathrm{e}^{-st} \mathrm{d}t$
$\frac{1}{\tau} \mathrm{e}^{-t/ au}$	0—•	$\frac{1}{s\tau+1}$	$1 - e^{-t/\tau}$	0	$\frac{1}{s(s\tau+1)}$
•	0	$\frac{1}{(s\tau+1)^2}$	$\frac{1}{\tau_1 - \tau_2} \left(e^{-t/\tau_1} - e^{-t/\tau_2} \right)$	o —•	$\frac{1}{(s\tau_1+1)(s\tau_2+1)}$
$ramp(t) = \begin{cases} 0 & t < 0 \\ t & t > 0 \end{cases}$	-	$\frac{1}{s^2}$	$t - \tau + \tau \mathrm{e}^{-t/ au}$	0	$\frac{1}{s^2(\tau s+1)}$
$\cos(\omega t)$	o—•	$\frac{s}{s^2 + \omega^2}$	$\mathcal{L}(t) = E(t)$	0	$\frac{1}{s}$
$\sin(\omega t)$	0	$\frac{\omega}{s^2 + \omega^2}$	$\frac{1}{a^2}(e^{at} - at - 1)E(t)$	o—•	$\frac{1}{s^2(s-a)}$
$\exp(at)$	○	$\frac{1}{s-a}$			

(Abbildung 1 : Tabelle aus der Zmf. für die Prüfung)

Repetion: Bauteile im Laplacebereich mit Anfangswerten

Komponente	Spannung	Strom
$\begin{array}{c c} \underline{I} & R \\ \hline \underline{U} \end{array}$	<u>U</u> =R <u>I</u>	<u>I</u> = <u>U</u> /R
$\frac{i(+0)}{s}$ $\frac{sL}{U}$	<u>U</u> =sL <u>I</u> -Li(+0)	$\underline{I} = \frac{1}{sL} \underline{U} + \frac{i(+0)}{s}$
$\frac{I}{sC} \xrightarrow{u(+0)} \frac{u(+0)}{s}$	$\underline{U} = \frac{1}{sC} \underline{I} + \frac{u(+0)}{s}$	<u>I</u> =sC <u>U</u> -Cu(+0)
$ \begin{array}{c c} \underline{U}_{l} \\ \underline{I}_{l} \\ \underline{SL}_{l} \\ \underline{I}_{2} \\ \underline{U}_{2} \end{array} $ $ \begin{array}{c c} \underline{i}_{l}(+0) \\ \underline{s} \\ \underline{i}_{2}(+0) \\ \underline{s} \\ \underline{s} \end{array} $	Transformator $\underline{U}_{l}(s) = sL_{l}I_{l}(s) - L_{l}i_{l}(+$ $\underline{U}_{2}(s) = sMI_{l}(s) - Mi_{l}(+$	$0) + sMI_2(s)-Mi_2(+0)$

Um die Tabelle für die Rücktransformation aus dem Bildbereich zurück in den Zeitbereich benutzen zu können, muss man oft kompliziertere Brüche mit der Partialbruchzerlegung (PBZ) in einfachere Brüche zerlegen:

Bsp:

$$\frac{1}{s(s+3)} \rightarrow PBZ \rightarrow \frac{1}{3 \cdot s} - \frac{1}{3(s+3)}$$

Ansatz für eine einfache PBZ:

$$\frac{1}{(s-s_1)\cdot(s-s_2)\cdot ...} = \frac{A_1}{s-s_1} + \frac{A_2}{s-s_2} + ...$$

-> Mit dem Nenner der linken Seite Erweitern:

$$1 = A_1 \cdot (s - s_2) \cdot \dots + A_2 \cdot (s - s_1) \cdot \dots$$

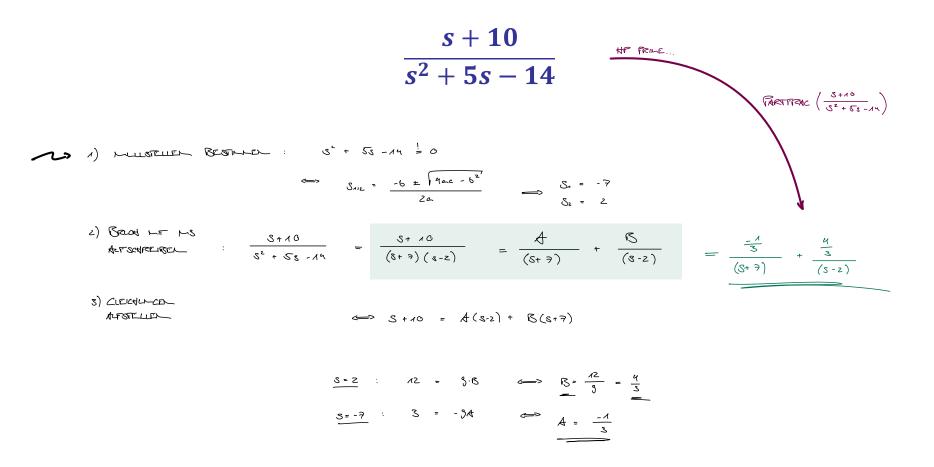
-> Liefert n Gleichungen um die Koeffizienten $A_1 \dots A_n$ zu bestimmen.

Bei *m*-fachen Nullstellen:

$$\frac{(Polynom (Grad \le m-1))}{(s-s_1)^m} = \frac{A_1}{(s-s_1)} + \frac{A_2}{(s-s_1)^2} + \dots + \frac{A_m}{(s-s_1)^m}$$

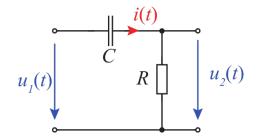
Partialbruchzerlegung Beispiel

Führe für folgenden Bruch eine Partialbruchzerlegung durch



Da war doch noch was - Bodeplots

 Wir benutzen sog. Bodeplots, um das Verhalten von Übertragungsfunktionen bei verschiedenen Frequenzen zu untersuchen

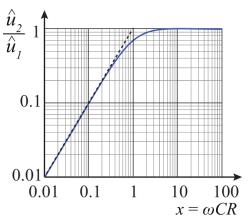


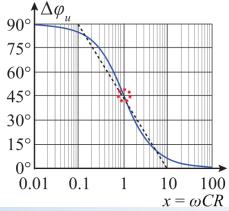
- Zwei Plots: Amplitude + Phasenverschiebung
- Uns interessiert das Verhalten über mehrere Grössenordnungen

•
$$(\frac{u_2}{u_1})_{dB} = 20 \cdot \log_{10}(\frac{u_2}{u_1})$$

Erinnert euch an folgende Eigenschaft der log-Fkt.:

$$- log_{10}(A \cdot B \cdot C) = log_{10}(A) + log_{10}(B) + log_{10}(C)$$





Bodeplots: How to?

Executive Summary:

- Übertragungsfunktion in Nullstellenform bringen (also nach Grundbausteinen aufsplitten)
- Grenzfrequenzen berechnen
- Beiträge der einzelnen Grundbausteine bestimmen
- Startpunkt berechnen
- Funktion aufzeichnen

Bodeplots: Grundbausteine I

	Formula	Amplitude		Phase	
Left Half- Plane Pole	$\frac{1}{1 + \frac{j\omega}{\omega_p}}$	-20dB per decade from pole	ω_p	−90° over two decades	-90° ω_p
Right Half- Plane Pole	$\frac{1}{1 - \frac{j\omega}{\omega_p}}$	-20dB per decade from pole	ω_p	+90° over two decades	+90° ω _p
Left Half- Plane Zero	$1 + \frac{j\omega}{\omega_z}$	+20dB per decade from zero	ω_z	+90° over two decades	+90°
Right Half- Plane Zero	$1 - \frac{j\omega}{\omega_z}$	+20dB per decade from zero	ω_z	−90° over two decades	-90° ω _z

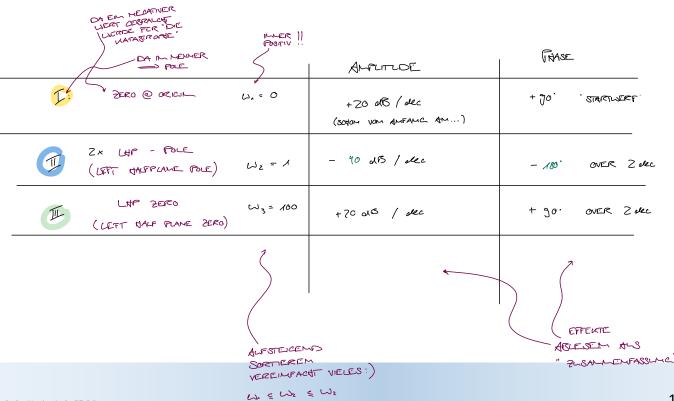
Bodeplots: Grundbausteine II

	Formula	Amplitude		Phase	
Zero at $\omega=0$	$\frac{j\omega}{\omega_0}$	$+20 \mathrm{dB}$ per dec., $0 \mathrm{dB}$ at $\omega = \omega_0$	ω_0	+90°	+90°
Pole at $\omega = 0$	$\frac{\omega_0}{j\omega}$	$-20 \mathrm{dB}$ per dec., $0 \mathrm{dB}$ at $\omega = \omega_0$	ω_0	-90°	0°
Constant	k	$20\log_{10} k $	<u></u>	$\varphi(k)$	$\phi(k)$ 0°

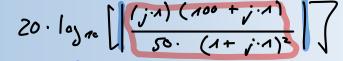
Bodeplot: Beispiel als Refresher

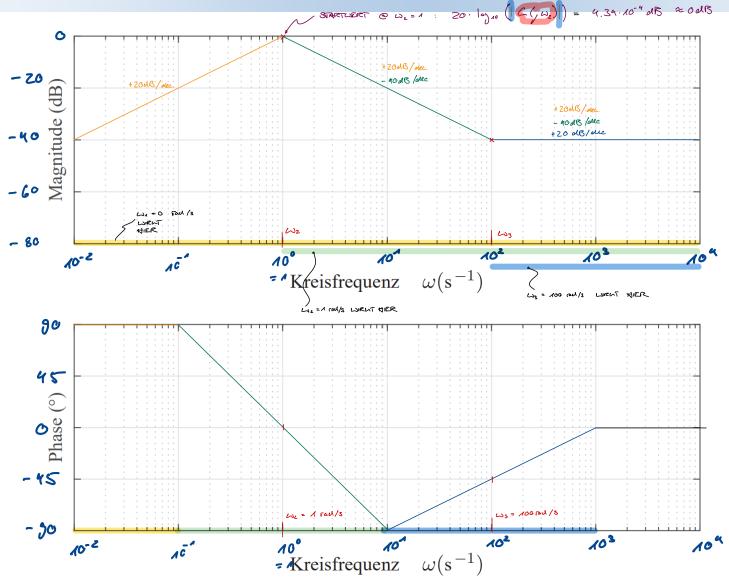
Zeichne das Bodeplot von folgender Übertragungsfunktion

$$\frac{U_2(s)}{U_1(s)} = \frac{s \cdot (100 + s)}{50 \cdot (1 + s)^2} = \mathcal{L}(s) = \mathcal{L}(s)$$



Bodeplots: Beispiel 1





BEISPIELAUFGABE

RL - Schaltung mit Laplace-Transformation

Die Spannungsquelle in Abb. 1 liefert die im rechten Teilbild dargestellte periodische Sägezahnspannung mit der Amplitude \hat{u} und der Periodendauer T.

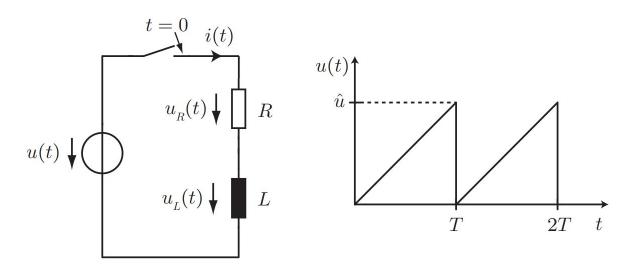


Abbildung 1: Sägezahnspannung an RL-Schaltung

Bestimmen sie den Verlauf des Stromes i(t) für den Zeitbereich $0 \le t \le 2T$. Stellen Sie den Zeitverlauf für $R=1\Omega, L=10mH, \widehat{u}=10$ V und $T=100\mu s$ dar.