

Control Systems I Exercise 01

https://n.ethz.ch/~jgeurts/ jgeurts@ethz.ch

General Info

- Jorit Geurts
- 3. Semester RSC Master
- Email: jgeurts@ethz.ch
- Website with Exercise Material: <u>https://n.ethz.ch/~jgeurts/</u>

What are Control Systems?

- Definition from Wikipedia:
 - «A control system manages, commands, directs, or regulates the behaviour of other devices or systems using control loops.»
 - Control: Targeted influence of physical, chemical or other quantities in a technical system.
 - Loops: Some sort of feedback.
 - System: Physical system we want to control (with or without a controller)
- **Our goal:** Regulate some quantity to a desired state/value:
 - Stabilize a system (keep it in safe regions, achieve desired behaviour)
 - Reach a certain performance criterion (speed, accuracy, energy consumption)
 - Robustness (perform well even with disturbances, noise or modelling errors)

What are Control Systems?

- What can be controlled?
 - In principle everything feasibility and usefulness must be questioned
- Examples:
 - Heating System
 - Cruise Control
 - Inverted Pendulum
 - Robots

. . .

Control Systems 1

- **Modelling:** How do we mathematically describe the system we want to control?
 - Correct description of the physical system is very important.
 - What is relevant to keep track of?
 - Correct representation for unified theories and comparison of systems.
- **Analysis:** Understand the characteristics of a system.
 - What is the natural behaviour of the system?
 - Is the system stable or not?
 - Is the system controllable?
- **Synthesis:** How do we come up with a control signal/system?
 - Design of a feedback loop.
 - How do we achieve certain performance goals.

Control Systems 1

- Only **SISO** (single input single output) systems
- Using classical control approaches (no Artificial Intelligence)
 - These classical control approaches are very important for future harder control problems!
- In Control System 1 a lot will be done in frequency space using the Laplace transform.
 - Hard to have an intuitive understanding
 - BUT simplifies the maths
 - -> Trust the formulas you are given!
- Computer tools are very important (not allowed for the exam), use them.
 - Notebooks will help you understand the topics on a more intuitive level.

What is a System?

A system in Control Systems is an operator which defines a relationship between an input, an internal state and an output.

- **u**, **x** and **y** are in general time variant -> u(t), x(t), y(t)
- The general description of a system looks as follows: $y(t) = \Sigma(u(t), x(t))$
 - u(t) being the input
 - x(t) being the internal states of the system (often not directly measurable)
 - *y*(*t*) being the output
 - $\Sigma(t)$ being the system itself

What is a System?

A system in Control Systems is an operator which defines a relationship between an input, an internal state and an output.

• The relationship between the input and output are in **differential equations** (more next week):

•
$$\frac{d}{dt}x(t) = f(x(t), u(t)) \rightarrow y(t) = h(x(t), u(t))$$

Control System Architectures

- Feedforward:
 - Trying to balance a stick on your hand blindfolded and with gloves. -> very hard

$$\xrightarrow{r} C \xrightarrow{u} P \xrightarrow{y}$$

- Feedback:
 - Trying to balance a stick on your hand (eyes open and with gloves).

Control System Architectures

- Feedforward and Feedback
 - Balancing a stick in windy weather, knowing where the wind is coming from.

- r = reference value
- e = error signal
- C = controller
- F = feedforward

- u = control signal
- P = plant/system
- d = external disturbances
- n = measurement noise

Control System Architectures

There is no limit to the complexity (not relevant for this course)!

However, most loops can be looked separately using the tools learned in CS1.

Notebooks

- Weekly Python Notebooks in addition to the exercises
- Some theory parts for deeper understanding of the topics
- Some interactive examples to deepen the intuition or understanding of the subject
 - Play around with the sliders and options in the plots, they help a lot.
- See Moodle how to access them (I use VS-Code, but Google Collab does not require any setup)
- If you find any errors or would like to change anything, you can edit the notebook and create a pull request on Github.
 - If you have questions with that, just contact me or the head TA

Modelling Crash Course (More details next week)

- When modelling a system, we usually want to setup the Differential Equations governing the physics.
- For this you may lack the physical knowledge right now, but at the end of the semester your knowledge should be enough to model simple systems.
- Acceleration of a block:
- $u(t) = F(t), y(t) = v(t), F_R = b \cdot v(t)$ (Damper)
- Using Newton: $\sum F(t) = m \cdot a(t) \rightarrow a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}y(t)$
- We get the following system:

•
$$m \cdot \frac{d}{dt} y(t) = u(t) - b \cdot y(t) \Longrightarrow \Sigma: \frac{d}{dt} y(t) = -\frac{b}{m} y(t) + \frac{1}{m} u(t)$$

